
Version 2.0 Last modification by MI, 16.01.2002 Document may change without further notice

Product Description
The iniUART is an innovative, flexible
implementation of an UART (Universal
Asynchronous Receiver Transmitter). The
iniUART implements the RS-232 serial
protocol, provides the interface between a
microprocessor and a serial port or between
the system and a standard serial port.

Key features: The core contains a highly
accurate programmable baud rate
generator, which allows to generate any
baudrate independently (up to 1/64) of the
system clock speed. 3 point input sampling
and glitch rejection are implemented in the
serial receiver.
The iniUART core is be used as a data link
layer with parallel interfaces and event
communication. Application-specific blocks
(e.g., interrupt controller, special
interfaces, status reporting circuits) can
then be built around the iniUART without
modification of the iniUART. MDS offers also
complete UART modules, please refer to
our webpage.
MDS’s in-depth know how in serial
communication and frequency synthesizers
gives you the best benefit for the UART of
your needs.
MDS offers the structural VHDL UART
simulation/synthesis model for the target
technology of your choice.

Features:
! Baudrate Synthesizer for

any baudrate up to 1/64
of clock speed

! No dedicated clock freq.
! 7 or 8 Bits Data
! No/Odd/Even Parity
! Error Detection
! 1 or 2 Stop Bits
! Format Check
! 3-Point Input Sampling
! Parallel Interface with

Event Control

iniUART Structure

iniUART

Memec Design Services
Memec Inicore AG
Mattenstrasse 6a
CH-2555 Brügg / Switzerland
e-mail: ask_us@inicore.ch
http://www.inicore.ch

S
m

art U
A
R
T
 T

ech
n
o
lo

g
y

RX Data

RX Ctrl

TX Data

TX Ctrl

serial out

Baudrate
Synthesizer

Receive
Unit

Format
Analyzer

Transmit
Unit

Config

serial in

iniUART

Title of Document © by Memec Design Services / Memec Inicore AG Page 2 of 8

Table of Content

1 Overview .. 3
1.1 Event communication.. 3
2 IO description .. 5
2.1 General inputs ... 5
2.2 Configuration... 5
2.2.1 Baudrate... 5
2.3 Serial interface .. 6
3 Transmitter interface .. 7
4 Receiver interface .. 8

Title of Document © by Memec Design Services / Memec Inicore AG Page 3 of 8

1 Overview

The iniUART core is generally used as a data link layer with parallel interfaces and event communication.
Microprocessor specific interfaces are built around the iniUART, as well queues, interrupt controllers and
status reporting circuits1. The following picture shows all inputs and outputs:

1.1 Event communication

For communicating events, the iniUART core uses or produces active ‘1’ pulses, which are activated for only
one clk cycle. In the inactive state, they remain low with respect to the rising clk edge, so glitches may
occur. For communicating over clock domains, these events must be synchronized first!

The parameters tsetup, thold and tpd are technology dependent and must be determined according to the
chosen technology.

1 For complete UART solutions, please check our iniUART 16f datasgeet.

tsetup thold

clk

event input

event output

event

tpd tpd

iniUART clk

reset_n

uart_config.data_78
uart_config.par_ebl
uart_config.par_pol
uart_config.stop_12
uart_config.tx_run
uart_config.rx_run
uart_config.baudrate

uart_tx_pin

uart_tx_pin

uart_tx_busy uart_tx_data

uart_tx_we

uart_rx_data

uart_rx_ready

uart_par_error

uart_form_error

TX Unit

RX Unit

Configuration

Title of Document © by Memec Design Services / Memec Inicore AG Page 4 of 8

Title of Document © by Memec Design Services / Memec Inicore AG Page 5 of 8

2 IO description

The following part lists the input and output ports of the iniUART core and gives a short overview of their
functionality.

2.1 General inputs

These pins are used to clock and initialize the whole iniUART core. There are no other clocks in this core.

pin name type description
clk in system clock, rising edge used only, must be at least 64 times higher than

maximum baudrate
reset_n in asynchronous system reset, active low, goes to all flip flops

2.2 Configuration

The configuration pins are used to set the bitrate, bit timing and output format. They’re static inputs. and
used for both receiver and transmitter in common.

pin name type description
uart_config.baudrate[15:0] in Defines the baudrate. see 2.2.1, Baudrate for more details
uart_config.data_78 in Transmit and receive data size:

‘0’: use 7 bit data
‘1’: use 8 bit data

uart_config.par_ebl in Parity enable:
‘0’: no parity check, no parity bit transmitted and received
‘1’: use parity check, parity bit inserted and checked

uart_config.par_pol in Parity polarity:
‘0’: use even parity2
‘1’: use odd parity
This parameter is ignored when par_ebl is inactive!

uart_config.stop_12 in Transmit and receive stop bit number:
‘0’: use and check 1 stop bit
‘1’: use and check 2 stop bits

uart_config.tx_run in Transmit control:
‘0’: transmitter off, ignores all inputs, outputs inactive
‘1’: transmitter is working

uart_config.rx_run in Receive control:
‘0’: receiver off, ignores all inputs, outputs are inactive
‘1’: receiver is working

2.2.1 Baudrate

The baudrate generator is not a simple prescaler, but an innovative DCO (digitally controlled oscillator)
which allows generating all baudrates from the system clock within a certain range. There is no special clock
frequency needed for that purpose so that you’re free to choose the system clock for the iniUART, which
simplifies considerably the clock structure.

To configurate the baudrate, the 16bit value is calculated according the following formula:

18216
nf

Baudrate clk= respective Baudrate
f

n
clk

16218

=

where Baudrate is the transmitting speed in bits per second
 fclk is the system clock speed in Hz
 n is the 16bit value to be programmed

2 number of ones in a byte, including parity bit is even

Title of Document © by Memec Design Services / Memec Inicore AG Page 6 of 8

Examples:
For 8Mhz clock and 64kbps, n is 33554(dec), accuracy better than 13ppm,
For 10Mhz clock and 1200bps, n is 503(dec), accuracy better than 600ppm.

Limitations:
Values for n lower than 100(dec) should not be used, otherwise the accuracy may be below 1%.
e.g. for 8MHz clock, the possible baudrates with accuracy better than 1% range from 190bps to 125kbps.

Accuracy:
The worst case accuracy can be calculated by simply inversing the value n. Therefore, a value larger than
100 will guarantee accuracy better than 1%, values larger than 1000 produce results better than 0.1%.

Jitter:
The faster the baudrate, the better the accuracy, but more relative jitter is added. Maximum absolute jitter
is always equal 1/fclk.

2.3 Serial interface

The serial interface includes the receive and transmit path separately. It is full a duplex solution, receive and
transmit is possible at the same time.

pin name type description
rx_pin in Pin for the incoming bit stream. The inactive state is logic ‘1’
tx_pin out Pin for the outgoing bit stream. The inactive state is logic ‘1’

Title of Document © by Memec Design Services / Memec Inicore AG Page 7 of 8

3 Transmitter interface

For transmitting data, a parallel event controlled interface is used. It is an efficient way to embed the
iniUART in systems as well as connecting simple or complex specific interfaces, including queues etc., to it.

pin name type description
uart_tx_data[7:0] in 8bit data to be transmitted. For 7bit configuration, bit[7] is ignored.

Data must be valid and stable when uart_tx_we is active.
uart_tx_we in Event for storing the tx_data in the transmit shift register and start of

transmission. It’s up to the system to not activate this input when the
iniUART is busy.

uart_tx_busy out When the transmitter is sending a byte, this status output remains
active (logic ‘1’) until it is ready to send a new byte. While uart_tx_busy
is ‘1’, uart_tx_we mustn’t be activated.

The following diagram shows a typical case:

The transmitter path stores the incoming byte in the shift register by means of the uart_tx_we signal and
starts the transmitting activity. uart_tx_busy goes high also and remains high until the data is sent.

clk

uart_tx_we

uart_tx_pin

uart_tx_busy

uart_tx_data

start sending ready for next byte

valid data may change

Title of Document © by Memec Design Services / Memec Inicore AG Page 8 of 8

4 Receiver interface

For receiving data, a similar type of interface is used as in the transmitter path.

pin name type description
uart_rx_data[7:0] out 8bit data that has been received. For 7bit configuration, bit[7] is

ignored. The data will be stable only during the active phase of
uart_rx_ready. Add a buffer register if data should remain stable until
reception of next character.

uart_rx_ready out Event (active ‘1’) for signalling, that a new byte has arrived and the
uart_rx_data is valid now.

uart_par_error out Event (active ‘1’) for signalling, that a byte with wrong parity has been
received and aborted (it’s not visible at rx_ready)
This signal is always inactive when par_ebl is deactivated.

uart_form_error out Event (active ‘1’) for signalling, that a byte with wrong format has been
received and aborted (it’s not visible at rx_ready)

This is a normal case, where a correct byte arrives...

... and when a parity or form error occurs

The receiver path contains several checks and special features. First, the level at the uart_rx_pin is watched.
When a falling edge is detected, the receiver is started. A reception is started only when the start bit after a
falling edge is detected low. If parity is enabled, it is checked and eventual failures are reported on
uart_par_error. Missing stop bits (level not zero) are reported as format checks. In all error cases, the data
byte is aborted and the error reason is reported. Please note that uart_rx_ready is not asserted when error
reporting is done.

clk

uart_rx_ready

uart_par_error

uart_form_error

end of transmission, byte aborted

uart_rx_data invalid data

clk

uart_rx_ready

uart_par_error

uart_form_error

byte received

uart_rx_data data may change valid data may change

