
iAP-CAN 16f

Features:

INICORE AG (Europe)
Mattenstrasse 6a,CH-2555 Brügg, Switzerland
Tel: ++41 32 374 32 00, Fax: ++41 32 374 32 01
E-mail: ask_us@inicore.ch
Web: www.inicore.ch

Ref.Nr.: V1.0 10/22/01

data sheet

INICORE Inc. (USA)
5600 Mowry School Road, Suite 180,
Newark, CA 94560
Tel: 510 445 1529 Fax: 510 656 0995
E-mail: ask_us@inicore.com
Web: www.inicore.com

• AMBA (APB) compliant Interface
• CAN2.0B compliant
• 1Mbit/s with > 8MHz clock
• 16 transmit buffers
• 16 messages deep receive buffer
• Message transmission timeout
• Advanced message priority handling
• Full access to internal status
• Structured, fully synchronous VHDL
• Designed for test, ready for SCAN
• Available on evaluation platform
• Utility library in C

CAN2.0B, developed for the European car industry,
became famous as a high security, fast and cost effec-
tive data link layer for multi master and real time ap-
plications.

The iAP-CAN 16f is a full CAN controller, which
provides message queueing for both transmission and
reception.

16 independent transmission queues allow the user to
prepare several messages in advance. The intelligent
priority handler will analyse the identifier of all pend-
ing messages to send and transmit the highest priority
message first.

For reception message buffering, the iAP-CAN 16f
provides a 16 messages deep fifo. A low overhead
handshake scheme is used in order to guarantee con-
sistency of the data structure in case of overflow. The
receive path is fully interrupt driven. The iAP-CAN
16f provides status information for message polling,
too.

Its structured, synchronous VHDL implementation
gives you reliable results on ASIC and FPGA tech-
nolgies.

AMBA (APB) compliant

iAP-CAN 16f Architecture

INICORE - the reliable Core and System Provider.
We provide high quality IP, design expertise and
leading edge silicon to the industry.

iniCAN

C
A

N
bu

s

A
PB

Configuration Registers

A
PB

 I
nt

er
fa

ce

TX Q0

...

TX Q15 T
X

 H
an

dl
er

IR
Q

s

RX Q0

...

RX Q15 R
X

 H
an

dl
er

Configuration and
Control

http://www.inicore.ch

INICORE AG iAP-CAN 16f data sheet
1 Overview This picture gives a short overview of the iAP-CAN 16f.

The iAP-CAN 16f is an AMBA (APB) compliant full CAN controller, based on INI-
CORE’s iniCAN. It delivers a receive fifo of 16 messages and 16 transmit queues with
priority handling. Interrupts allow an efficient message handling. The iAP-CAN 16f is
fully configurable and can be directly used in an AMBA system. Further, the easy, syn-
chronous APB protocol allows the usage in any system without or with minor modifica-
tions only.

1.1 General input This pin is used to initialize the whole iAP-CAN 16f circuit.

1.2 APB Interface The APB (Advanced Peripheral Bus) is a synchronous easy to use bus architecture for
peripherals from ARM. It provides the clock for the core.

pclk

reset_n

Interrupts

can_rx

can_tx

can_drv_ebl_n

iAP-CAN 16f

A
P

B
 in

te
rf

ac
e

C
A

N
bu

s

Sy
st

em
 c

on
tr

ol
in

te
rr

up
ts

APB

pin name type size description

reset_n in 1 asynchronous system reset, active low

pin name type size description

pclk in 1 APB clock and clock for the iAP-CAN 16f,
no other clock sources needed

paddr in 32 APB Address input, bits [6:2] used only

pwdata in 32 APB Write data

psel in 1 APB Select signal

penable in 1 APB Enable signal

pwrite in 1 APB Write signal

prdata out 32 APB read data
Ref.Nr.: V1.0 Page 2 of 14

INICORE AG iAP-CAN 16f data sheet
1.3 Interrupts The 3 interrupt pins are active high and remain high until they are acknowledged:

1.4 CAN bus These signals may be used to directly drive a physical bus line or an external driver. The
following picture shows how to connect an external Phillips CAN driver to iAP-CAN 16f:

pin name type size description

can_int_tx out 1 interrupt for transmit queue: active when a CAN mes-
sage has been sent

can_int_rx out 1 receive interrupt, active when a CAN message has been
received

can_int_err out 1 diagnostics interrupt for errors, etc.

pin name type size description

can_rx in 1 local receive signal
(connect to can_rx of external driver)

can_tx out 1 CAN transmit signal
(connect to can_tx of external driver)

can_drv_ebl_n out 1 external driver control signal

CANH

CANL

GND

RXD
TXD
RS

can_rx
can_tx
can_drv_ebl_n 100R

100nF

PCA82C250T

Vcc

100R
Ref.Nr.: V1.0 Page 3 of 14

INICORE AG iAP-CAN 16f data sheet
2 Functional
Description

This section explains the use of each register and block within the iAP-CAN 16f.

2.1 iniCAN This is the actual CAN controller circuitry. It contains the complete data link layer, includ-
ing the framer, transmit and receive control, error handling and reporting and synchroni-
zation logic. Please refer to the iniCAN datasheet for a more detailed description.

2.2 TX Handler /
Queue

For transmission the iAP-CAN 16f provides 16 transmit queues which work as an intelli-
gent fifo. The fifo generates status information about the number of free queues, busy/idle
etc.

The TX handler is responsible for the message scheduling and the message prioritization
logic. After every arbitration loss or bus idle, all pending messages in the 16 queues are
analyzed and the highest priority message is sent first. This guarantees that urgent mes-
sages are sent as fast as possible and are not locked by preceding low priority messages.
The TX handler compares the message ID’s of all valid TX queues, selects the one with
the highest priority and forwards it to the CAN controller for transmission.

2.3 RX Handler /
FIFO

The RX path of the iAP-CAN 16f contains an RX handler and a 16-message deep RX
FIFO with an additional message read register.

The RX FIFO is preceded by a message filter that allows to select or inhibit (depending
on the comparison mode) certain messages or groups of messages. Two ID compare reg-
isters and two mask registers make this filter mechanism very simple.

The RX FIFO always holds the 16 latest messages. When the FIFO is overrun, an RX
FIFO overrun bit marks this situation. The message that caused the overrun is stored in
the FIFO and the oldest message is pushed out of the FIFO.

To read out a message one has to acknowledge the message first. The acknowledge causes
to push the oldest message in the RX FIFO out and store it in the message read register.
The pushing out of the oldest message has the advantage to release the FIFO to receive a
new message. And the message read register allows to read the message or parts of it until
the next acknowledge is done.

2.4 Register
Description

The following table lists all registers in the iAP-CAN 16f.

Register Size Access Description

CAN_CFG [7:0] R/W CAN configuration: (see iniCAN datasheet)
Bitrate

[11:8] R/W Tseg1

[14:12] R/W Tseg2

[17:16] R/W sync jump width (sjw)

[18] R/W Sampling

[19] R/W Edge Mode

[20] R/W Auto restart
Ref.Nr.: V1.0 Page 4 of 14

INICORE AG iAP-CAN 16f data sheet
CAN_CTRL [0] R Can start/stop control: (see iniCAN datasheet)
Stop Indicator:
‘0’: CAN is not stopped
‘1’: CAN is stopped

W Clear Stop: (see iniCAN datasheet)
‘0’: No effect
‘1’: Exit stop mode, start CAN synchronization

[1] R Stop announcement
‘0’: Normal operation
‘1’: Stop command asserted, CAN will stop as soon as possible

W Set Stop:
‘0’: No effect
‘1’: Enter stop mode, stop CAN as soon as possible

CAN_STATUS [7:0] R CAN status
Rx error counter

[16:8] R Tx error counter

[21:20] R CAN error status
“00”: error active (normal state)
“01”: error passive
“1x”: bus off

CAN_RX_FILT1 [28:0] R/W Filter value 1 for incoming messages.
ID compare value

[29] R/W IDE compare value 1

[30] R/W RTR compare value 1

[31] R/W Compare functionality
‘0’ compare to equal
‘1’ compare to NOT equal

CAN_RX_FILT2 [28:0] R/W Filter value 2 for incoming messages.
ID compare value

[29] R/W IDE compare value 2

[30] R/W RTR compare value 2

[31] R/W Compare functionality
‘0’ compare to equal
‘1’ compare to NOT equal

CAN_RX_MASK1 [28:0] R/W Mask register 1 for incoming message ID
‘0’ bit is don’t care
‘1’ bit is compared

[29] R/W IDE mask 1

[30] R/W RTR mask 1

CAN_RX_MASK2 [28:0] R/W Mask register 2 for incoming message ID
‘0’ bit is don’t care
‘1’ bit is compared

[29] R/W IDE mask 2

[30] R/W RTR mask 2

Register Size Access Description
Ref.Nr.: V1.0 Page 5 of 14

INICORE AG iAP-CAN 16f data sheet
CAN_MSG_STATUS [7:0] R RX FIFO fill level:
0x00: RX queue is empty
0x01: RX queue contains 1 message
0x10: RX queue contains 16 messages

[8] R Message status register:
RX FIFO overflow flag

W clear RX FIFO overflow flag
‘0’: no action
‘1’: clear flag

[9] R TX queue full
‘0’: queue is not full
‘1’: queue is full

[10] R TX message pending
‘0’: No message pending in queue or CAN
‘1’: Message pending in queue or sending

CAN_INT_EBL [0] R/W Interrupt enable flags:
TX message sent interrupt enable

[1] R/W RX interrupt enable

[2] R/W RX error counter > 96 interrupt enable

[3] R/W TX error counter > 96 interrupt enable

[4] R/W crc error interrupt enable

[5] R/W form error interrupt enable

[6] R/W ack error interrupt enable

[7] R/W stuff error interrupt enable

[8] R/W bit error interrupt enable

[9] R/W arbitration loss interrupt enable

[10] R/W overload interrupt enable

Register Size Access Description
Ref.Nr.: V1.0 Page 6 of 14

INICORE AG iAP-CAN 16f data sheet
CAN_INT_STATUS [0] R Interrupt flags:
‘0’: no interrupt active
‘1’: ‘TX message sent’ interrupt active

W Clear flag:
‘0’: no action
‘1’: clear flag

[1] R RX interrupt enable

W Clear flag

[2] R RX error counter > 96 interrupt enable

W Clear flag

[3] R TX error counter > 96 interrupt enable

W Clear flag

[4] R crc error interrupt enable

W Clear flag

[5] R form error interrupt enable

W Clear flag

[6] R ack error interrupt enable

W Clear flag

[7] R stuff error interrupt enable

W Clear flag

[8] R bit error interrupt enable

W Clear flag

[9] R arbitration loss interrupt enable

W Clear flag

[10] R overload interrupt enable

W Clear flag

CAN_RX_D0 [7:0] R Data bytes 1-4 of received CAN message
Data 1

[15:8] R Data 2

[23:16] R Data 3

[31:24] R Data 4

CAN_RX_D1 [7:0] R Data bytes 5-8 of received CAN message
Data 5

[15:8] R Data 6

[23:16] R Data 7

[31:24] R Data 8

CAN_RX_ID [28:0] R Identifier of received CAN message
Extended identifier

[28:18] R Standard identifier

Register Size Access Description
Ref.Nr.: V1.0 Page 7 of 14

INICORE AG iAP-CAN 16f data sheet
CAN_RX_CTRL [3:0] R DLC and control information of received CAN message.
DLC (data length code)
“0000“: 0 data bytes
“0001”: 1 data byte
“0010”: 2 data bytes
...
“1000”: 8 data bytes (maximum)
other values n/a

[4] R IDE (identifier extension bit)
‘0’: standard format data frame
‘1’: extended format data frame

[5] R RTR (remote transmission request bit)
‘0’: data frame
‘1’: remote frame

n/a W write any value to this register to move the next RX message
into the RX message read register
This also acknowledges the RX interrupt

Register Size Access Description
Ref.Nr.: V1.0 Page 8 of 14

INICORE AG iAP-CAN 16f data sheet
CAN_TX_Q_D0 [7:0] R/W Transmit queue data bytes 1-4 of CAN message
Data 1

[15:8] R/W Data 2

[23:16] R/W Data 3

[31:24] R/W Data 4

CAN_TX_Q_D1 [7:0] R/W Transmit queue data bytes 5-8 of CAN message
Data 5

[15:8] R/W Data 6

[23:16] R/W Data 7

[31:24] R/W Data 8

CAN_TX_Q_ID [28:0] R/W Transmit queue identifier
Extended identifier

[28:18] R/W Standard identifier

CAN_TX_Q_CTRL [3:0] R/W Transmit queue DLC and control information
(write access starts transmission)
DLC

[4] R/W IDE

[5] R/W RTR

Register Size Access Description
Ref.Nr.: V1.0 Page 9 of 14

INICORE AG iAP-CAN 16f data sheet
3 Programming
Model

This section describes the configuration and programming of the iAP-CAN 16f.

3.1 Configuration The iAP-CAN 16f has to be configured correctly before the CAN is started. The register
CAN_CFG contains all necessary information to define baud rate, synchronization modes
etc. of the CAN bus. Please refer to the iniCAN datasheet for more information.

After configuration, the CAN is started by setting the ‘Clear stop’ flag in the CAN_CTRL
register. This will force the CAN core to leave stop mode and start with bus synchroniza-
tion. The status of the synchronization can be polled by reading the CAN_CTRL register:
Bits [1:0] indicate whether the CAN core is in transition to start/stop or in steady state:

Register CAN_INT_EBL contains enable flags for the following internal interrupt flags:

Per default, all interrupts are disabled.

Interrupts which are mapped to a common interrupt signal are ORed together.

CAN_CTRL[1:0] Activity

“00” CAN running

“01” CAN synchronization

“10” CAN will stop

“11” CAN stopped

Interrupt enable flag Routed to interrupt pin:

‘TX message sent’ interrupt enable can_int_tx

RX interrupt enable can_int_rx

CAN error interrupt enable:
RX error counter > 96 indicator
TX error counter > 96 indicator
crc error indicator
form error indicator
ack error indicator
stuff error indicator
bit error indicator
arbitration loss indicator
overload indicator

can_int_err
Ref.Nr.: V1.0 Page 10 of 14

INICORE AG iAP-CAN 16f data sheet
3.2 Message
Handling

3.2.1 Transmitting messages

For transmission the iAP-CAN 16f provides 16 transmit queues which can be used in a
fifo mode. Status information for the queue is available through register
CAN_MSG_STATUS or CAN_INT_STATUS.

For a complete CAN message, max. 4 cycles are used to fill the queue. To activate the
transmission process, register CAN_TX_Q_CTRL serves as activator. Write accesses to
the other tx queue registers do not affect the send process. The transmit interrupt is acti-
vated after successful transmission of a CAN message.

After every arbitration loss or bus idle, all pending messages in the 16 queues are analyzed
and the highest priority identifier is sent first. This guarantees that urgent messages are
sent as fast as possible and aren’t locked by preceding low priority messages.

The typical send process looks as follows (example for 4-byte data message):

1. Check if the queue is not full in the CAN_MSG_STATUS. When a ‘full’ flag is ‘0’,
then the queue is ready and can be used.

2. Write CAN data bytes 1-4 into CAN_TX_Q_D0

3. Write CAN identifier into CAN_TX_Q_ID

4. Write CAN DLC, RTR and IDE into CAN_TX_Q_CTRL -> this also starts
the transmission.

5. Wait for a transmit interrupt or poll the interrupt flag

6. Acknowledging of the transmission interrupt is done by writing a ‘1’ to the flag in the
register CAN_INT_STATUS.

To automate the transmission procedure one can set up an interrupt routine that is trig-
gered by the TX message sent successfully interrupts. The routine acknowledges the inter-
rupt by writing a ‘1’ to the corresponding interrupt flag and then writes the next message
into an empty TX queue and so on. Of course the first message cannot be written into a
TX queue by the interrupt routine.

3.2.2 Receiving Messages

The receive path features a configurable message filter mechanism, that can select or
inhibit (depending on the compare operation selected) certain messages. Two filter regis-
ters are included that are compared against the incoming message ID. The two mask reg-
isters can be used to extend the filtering in order to select or inhibit groups of messages.
If the comparison is passed then the message is stored in the RX FIFO, otherwise the mes-
sage is discarded.

To read out a message one has to acknowledge the message first by writing an arbitrary
value into register CAN_RX_CTRL. This write access causes to push the next RX mes-
sage out of the RX FIFO and store it in the RX read register. This register can be read
out via CAN_RX_D0, CAN_RX_D1, CAN_RX_ID and CAN_RX_CTRL. The pushing
out of the next message has the advantage to release the FIFO to receive a new message.
And the RX read register allows to read the message or parts of it until the next acknowl-
edge is done.

When the FIFO is overrun, the RX FIFO overrun bit in register CAN_MSG_STATUS is
set to ‘1’. The message that caused the overrun is stored in the FIFO and the oldest mes-
sage is pushed out of the FIFO. Therefore the FIFO holds always the latest 16 messages.
Clearing the RX FIFO overrun flag takes place through a write to the corresponding flag
in register CAN_MSG_STATUS.

Writing several times to register CAN_RX_CTRL flushes the RX FIFO.
Ref.Nr.: V1.0 Page 11 of 14

INICORE AG iAP-CAN 16f data sheet
Reading out of the RX FIFO can be done on a polling basis (checking the fill level via
register CAN_MSG_STATUS) or it can be triggered by the RX interrupt.

3.3 Exception
Handling

This section describes how CAN errors can be traced. The iAP-CAN 16f provides sticky
flags for all types of CAN errors, which are:

• RX error counter > 96
• TX error counter > 96
• crc error
• form error
• ack error
• stuff error
• bit error
• arbitration loss
• overload

All of these flags have individual interrupt enable bits and are ORed together to form the
CAN error interrupt, which allows to report only relevant events/errors to the software.

These flags are set to ‘1’ when such an error/event occurs and can be cleared by writing
a ‘1’ to the corresponding bits in the CAN_INT_STATUS register. When a ‘1’ is written
to the interrupt status flag (CAN error interrupt) in the CAN_INT_STATUS register, all
sticky bits in the CAN_INT_STATUS register and the interrupt itself are cleared. Please
note that the CAN error interrupt also depends on both “error counter > 96’ interrupts.
The two ‘error counter > 96’ flags are set when the corresponding counter value becomes
bigger than 96. These flags remain set until they are cleared again (sticky bits).
Ref.Nr.: V1.0 Page 12 of 14

INICORE AG iAP-CAN 16f data sheet
4 Implementation
Guidelines

This section describes how the iAP-CAN 16f is embedded into a system.

4.1 FIFO
Memory

The fifos for rx and tx message buffering are normally synthesized and does not need fur-
ther attention. For FPGA and ASIC implementations, it can be replaced by a memory
hardmacro, which may result in better utilization results. The fifo has synchronous write
access and asynchronous read access features.

4.2 APB Bus This bus is directly connected to the APB Bridge. Since the protocol is very basic, it can
be connected to any other synchronous bus. The following timing diagram shows the tim-
ing of the iAP-CAN 16f bus, which is compatible to APB:

The iAP-CAN 16f does not count on the 2 cycle access of the APB protocol, the signals
are only relevant during the high time of penable.

pclk

paddr

psel

penable

pwrite

pwdata

prdata

Active cycle
Ref.Nr.: V1.0 Page 13 of 14

INICORE AG iAP-CAN 16f data sheet
4.3 Register Map This table shows the (byte) address offset for the registers.

Register Address offset

CAN_CFG 0x00

CAN_CTRL 0x04

CAN_STATUS 0x08

CAN_RX_FIFO_CFG 0x0c

CAN_RX_FILT1 0x10

CAN_RX_FILT2 0x14

CAN_RX_MASK1 0x18

CAN_RX_MASK2 0x1c

CAN_MSG_STATUS 0x20

CAN_INT_EBL 0x24

CAN_INT_STATUS 0x28

CAN_RX_D0 0x2c

CAN_RX_D1 0x30

CAN_RX_ID 0x34

CAN_RX_CTRL 0x38

CAN_TX_Q_D0 0x3c

CAN_TX_Q_D1 0x40

CAN_TX_Q_ID 0x44

CAN_TX_Q_CTRL 0x48
Ref.Nr.: V1.0 Page 14 of 14

	1 Overview
	1.1 General input
	1.2 APB Interface
	1.3 Interrupts
	1.4 CAN bus
	2 Functional Description
	2.1 iniCAN
	2.2 TX Handler / Queue
	2.3 RX Handler / FIFO
	2.4 Register Description
	3 Programming Model
	3.1 Configuration
	3.2 Message Handling
	3.2.1 Transmitting messages
	1. Check if the queue is not full in the CAN_MSG_STATUS. When a ‘full’ flag is ‘0’, then the queu...
	2. Write CAN data bytes 1-4 into CAN_TX_Q_D0
	3. Write CAN identifier into CAN_TX_Q_ID
	4. Write CAN DLC, RTR and IDE into CAN_TX_Q_CTRL -> this also starts the transmission.
	5. Wait for a transmit interrupt or poll the interrupt flag
	6. Acknowledging of the transmission interrupt is done by writing a ‘1’ to the flag in the regist...

	3.2.2 Receiving Messages

	3.3 Exception Handling
	4 Implementation Guidelines
	4.1 FIFO Memory
	4.2 APB Bus
	4.3 Register Map

