
iAH-INTC32

Features:

INICORE AG (Europe)
Mattenstrasse 6a,CH-2555 Brügg, Switzerland
Tel: ++41 32 374 32 00, Fax: ++41 32 374 32 01
E-mail: ask_us@inicore.ch
Web: www.inicore.ch

Ref.Nr.: V1.0 6/8/01

data sheet

INICORE Inc. (USA)
5600 Mowry School Road, Suite 180,
Newark, CA 94560
Tel: 510 445 1529 Fax: 510 656 0995
E-mail: ask_us@inicore.com
Web: www.inicore.com

• AMBA (AHB) compliant Interface
• Zero waitstate interface
• 32 fully programmable interrupt sources
• 32bit vector for each interrupt
• Programmable priority for each interrupt

with round robin option
• Various static and event-type interrupts
• Nested interrupts with masking of lower

priority interrupts for RTOS support
• Optional ‘End of Interrupt’ register
• Prepared to be expanded to 64 interrupts
• Designed for test, ready for SCAN
• Structured, synchronous VHDL coding
• Available on evaluation platform
• Utility library in C

The iAH-INTC is an AMBA (AHB) compliant, fully
programmable interrupt controller with 32 interrupt
sources. A 32bit vector can be assigned to each inter-
rupt. Priority can be fixed or round robin, where the
fixed priority configuration locks interrupts during the
service of a higher priority interrupt.

Any interrupt source can have any priority and it can
be mapped either to IRQ or FIQ. Interrupt signals can
be configured as static hi/low, event and toggle.

An optional ’end of interrupt’ procedure is used in
case of nested interrupts, which makes it ideal for real
time operating systems.

The connection to the AHB interface makes the inter-
rupt controller very fast, eliminating the slow accesses
over the APB bridge in ARM / AMBA systems.

As every product of INICORE, our core is prepared
for SCAN test.

The iAH-INTC is delivered in VHDL source code,
with test bench, documentation and our C utility li-
brary for embedding and immediate start.

AMBA (AHB) compliant

INICORE - the reliable Core and System Provider.
We provide high quality IP, design expertise and
leading edge silicon to the industry.

AHB iA
H

-IN
TC

32

Interrupts
FIQ

IRQ

ARM Processor

http://www.inicore.ch

INICORE AG iAH-INTC32 data sheet
1 Overview This pictures gives a short overview of the iAH-INTC32.

The iAH-INTC32 is principally bus connected. Other signals are the interrupt signals
themselves, which go directly to the processor. They are active low. The 32 interrupt
inputs (sources) are placed on the right hand. First, they are reordered in the switch matrix
according to the configuration of the interrupt assignment. Then, the signals are synchro-
nized and re-organized as configured (edge detection, etc.)
Active interrupts are stored in the flags registers and then gated with the interrupt enable
register. The resulting signals are fed to the priority logic and the interrupt controller itself,
which does the mapping of IRQ or FIQ interrupts and assigns the corresponding interrupt
vector from the vector memory to the highest priority interrupt which is pending.

iAH-INTC32

Priority Logic &

Interrupt

Circuit

F
L

A
G

S

E
B

L

Interrupt Vector RAM

32 x 32

IRQ

AHB

INT0

INT31

VRDATA

VADDR

VWR_EBL

VWDATA

Detection

Matrix

Switch

CFG

CFGCFG

CFG

auto acknowledge
FIQ

CFG

Controller
Ref.Nr.: V1.0 Page 2 of 11

INICORE AG iAH-INTC32 data sheet
2 IO description The following part lists the input and output ports of the iAH-INTC32 core and gives a
short overview of their functionality.

These pins are used to clock and initialize the whole iAH-INTC32 core. There are no
other clocks in this core.

Interrupt pins:

These pins are used to interface the interrupt vector RAM.

The AHB bus connection:

pin name type size description

hclk in 1 AHB clock, the only clock source for the controller

reset_n in 1 asynchronous system reset, active low

scan_mode in 1 test pin for scan mode, must be ‘0’ for normal operation

pin name type size description

int_sources
[31:0]

in 32 interrupt sources, int(0) has highest priority int(31) has
lowest (without re-ordering). These signals are synchro-
nized internally.

fiq_n out 1 Fast interrupt request to processor, active low

irq_n out 1 Interrupt request to processor, active low

pin name type size description

vrdata in 32 output of vector RAM (vector of to vector number)

vwr_ebl out 4 write enable signals to vector RAM (byte enable)

vaddr out 5 address signal for vector RAM (vector number)

vwdata out 32 write data to vector RAM (for initialization)

pin name type size description

hsel in 1 Select signal for interrupt controller

hwrite in 1 Write signal

htrans in 2 Transaction control signals

hsize in 3 Transaction size signals

haddr in 32 Address; bits [31:8] ignored

hwdata in 32 Write data (seen from processor)

hrdata out 32 Read data (seen from processor)

hready out 1 Ready signal

hresp out 2 Slave response (always okay)
Ref.Nr.: V1.0 Page 3 of 11

INICORE AG iAH-INTC32 data sheet
3 Register
Description

This section explains the use of each register and block within the interrupt controller.

3.1 Register Map The following table lists all registers in the iAH-INTC32.

Register Size Access Description

INT_IRQ_VEC 32 R(W)1 IRQ interrupt vector:
Read: Fetch IRQ interrupt vector
Write: Write Interrupt vector into vector memory

INT_FIQ_VEC 32 R FIQ interrupt vector:
Read: Fetch FIQ interrupt vector

INT_IRQ_EOI 0 W IRQ end of interrupt:
write to this address to mark an IRQ end of interrupt

INT_FIQ_EOI 0 W FIQ end of interrupt:
write to this address to mark an FIQ end of interrupt

INT_IRQ_VEC_NBR 5 R(W) IRQ interrupt number (level):
Read: IRQ int number of last fetched IRQ vector
Write: Set address for vector memory programming

INT_FIQ_VEC_NBR 5 R FIQ interrupt number (level)
Read: IRQ int number of last fetched IRQ vector

INT_IRQ_NEST 5 R Number of nested IRQ interrupts

INT_FIQ_NEST 5 R Number of nested FIQ interrupts

INT_IRQ_IN_WORK 32 R IRQ in work
‘0’: interrupt not being processed
‘1’: corresponding interrupt vector has been fetched but no end
of interrupt has been marked for this interrupt

INT_FIQ_IN_WORK 32 R FIQ in work

INT_MAP 32 R/W Interrupt mapping register:
‘0’: map source to nIRQ
‘1’: map source to nFIQ

INT_RAW_STATUS 32 R/W Raw interrupt status register:
‘0’: no interrupt occurred
‘1’: interrupt detected

INT_STATUS 32 R/W Status register of enabled interrupts:
‘0’: no interrupt occurred
‘1’: interrupt detected

INT_EBL 32 R/W Interrupt enable register:
‘0’: source disabled
‘1’: source enabled

INT_EBL_SET 32 W Interrupt enable set register:
‘0’: no action
‘1’: set corresponding enable bit
Ref.Nr.: V1.0 Page 4 of 11

INICORE AG iAH-INTC32 data sheet
INT_EBL_CLR 32 W Interrupt enable clear register:
‘0’: no action
‘1’: clear corresponding enable bit

INT_CFG [0] R/W Write-ability of vector number registers
‘0’: vector number registers not writable
‘1’: vector number registers writable

INT_MODE1 32 R/W Interrupts mode register 1:
‘0’: interrupt defined as static
‘1’: interrupt define as event

INT_MODE2 32 R/W Interrupts mode register 2:
‘0’: static: active 0; event: toggle interrupt
‘1’: static: active 1; event: 1 clock pulse interrupt

INT_ASSIGN 32 R/W Interrupt assignment register:
[15:8]: Interrupt priority number is assigned to
interrupt number [7:0]

1. (W) means only writable when INT_CFG(0) = ‘1’

Register Size Access Description
Ref.Nr.: V1.0 Page 5 of 11

INICORE AG iAH-INTC32 data sheet
4 Programming
Model

This section describes the configuration and programming of the iAH-INTC32.

4.1 Configuration The interrupt controller needs to be configured first. Until complete configuration, the
interrupt enable of the processor should not be enabled. Following steps are needed:

4.1.1 Assigning of interrupt vector inputs

The interrupt vector inputs can be assigned to any of the interrupt controller inputs, which
allows a software controlled configuration of each interrupt priority. The scheme works as
follow:

On the right side, we talk about interrupt inputs (before the switch matrix); on the left
hand, we talk about interrupt channels or priority (after the switch matrix). All further
interrupt configurations are related to the left hand side (to the interrupt channels or pri-
ority).

Every input of the priority resolver (called ‘m’) has an entry ‘n’ in the INT_ASSIGN reg-
ister file, which defines which int_sources(n) is connected to it’s input ‘m’.

Example: to assign the int_sources(20) to the priority (1), write the value 0x1401 to the
INT_ASSIGN register file. This will store the value 0x01 into the register file entry 0x14,
which will route then the input 20 (=0x14) to the priority 1.

Please note: It is obvious that different priority inputs can be routed to the same
int_sources signals, which does not make sense. The assignments should be exclusive.

4.1.2 Interrupt types

The iAH-INTC32 supports 4 types of interrupt inputs (at int_sources), which are separated
in to major categories. These features are programmed in registers INT_MODE 1 and 2.

INT_MODE1 defines whether the interrupt signal is of static or event type. The settings
are individual for each interrupt input.

int_sources

[0]
[1]
[n]
[31]

Switch matrix

INT_ASSIGN[n]Priority Resolver[m]

[0]

[1]

[m]

[31]

highest

lowest

to controller

interrupt channels interrupt inputs

reference for numbering of configuration registers
Ref.Nr.: V1.0 Page 6 of 11

INICORE AG iAH-INTC32 data sheet
Static types – With INT_MODE1[n] = ‘0’, the static interrupt type for interrupt ‘n’ is
selected. The interrupting devices has it’s own interrupt flag which has to be cleared by
the processor in the interrupt handler. Typical applications are peripherals with FIFOs,
where the interrupt is active as long as there is data available in the FIFO. With
INT_MODE2[n], the level of these interrupts can be selected (active high or low).

Static interrupts are insensitive against glitches etc. but they should not disappear without
proper acknowledgement of the interrupts in the controller, which would disturb nested
interrupt schemes.

Event types – With INT_MODE[n] = ‘1’, event type interrupts are selected. These inter-
rupts signal actions, like unbuffered peripherals (“data received”), and are used to set the
iAH-INTC32-internal interrupt flags when they occur. Event types can be selected as tog-
gle interrupts when INT_MODE2[n] is set to ‘0’. This means that every edge on the inter-
rupt source is interpreted as a valid interrupt. Active high pulses are selected when
INT_MODE2[n] is set to ‘1’ (for one HCLK cycle).

Please note: Event type interrupt inputs must be glitch-free. Event pulses must be synchro-
nized to the HCLK clock domain.

See the following picture for better comprehension:

4.1.3 Interrupt mapping

The INT_MAP register defines which interrupt channel is mapped to the IRQ (set to ‘0’)
and which channel is mapped to the FIQ (set to ‘1’). Every interrupt channel can be
mapped to the same IRQ or FIQ output, or any combination is possible. With ARM pro-

hclk

int_sources

active interrupt (‘1’ = active)

Static types, active low

hclk

int_sources

active interrupt (‘1’ = active)

Static types, active high

hclk

int_sources

active interrupt (‘1’ = active)

Event types, toggle

hclk

int_sources

active interrupt (‘1’ = active)

Event types, pulse
Ref.Nr.: V1.0 Page 7 of 11

INICORE AG iAH-INTC32 data sheet
cessors, FIQ has higher priority than IRQ, which is not of importance inside the iAH-
INTC32.

4.1.4 Interrupt Enable

The INT_EBL register is used to mask out temporarily or in general certain interrupt
channels. A ‘1’ in the corresponding bit of INT_EBL activates the interrupt channel,
where a ‘0’ does mask it out. Nevertheless, the status of a de-activated interrupt channel
is still visible by reading the INT_RAW_STATUS register. This allows the software to
select between polling and interrupt driven schemes without changing the hardware.

4.1.5 Vector initialization

The vector memory holds a 32bit address for every interrupt channel. This is in general a
read-only operation, but for configuration, it has to be written. This is done by setting the
INT_CFG bit to ‘1’, which makes the vector memory writable.

The write process takes place in 2 steps: First, the number of the interrupt channel to be
configured is written into the INT_IRQ_VEC_NBR. Then, the corresponding vector is
written into register INT_IRQ_VEC, which performs the write transfer to the vector mem-
ory. These steps have to be repeated for every interrupt channel. To bring the interrupt
controller back into normal mode, set the INT_CFG register back to ‘0’. The mapping to
IRQ or FIQ does not matter since the mapping is defined by the INT_MAP register, not
by the number of the interrupt channel. The address stored in the vector memory is the
same for IRQ and FIQ mapping.

Please note: Always disable CPU interrupts when configuring the interrupt controller.

4.2 Interrupt
Handling

4.2.1 Non nested interrupts

Interrupt handlers which do rely on the fact, that every interrupt is served without further
interruptions by higher priority interrupts. In this case, the ‘in work’ registers do not have
to be used. After configuration of the interrupt controller, the interrupt enable flags of the
processor can be activated. For a typical interrupt, the procedure would look as follow:

1. The interrupt occurs and is seen in the INT_FLAG register

2. IRQ asserted (depending on the configuration)

3. The processor fetches the vector from INT_IRQ_VEC. This will clear the INT_FLAG
in case of event type interrupts. The interrupt number is stored in
INT_IRQ_VEC_NBR register.

4. The processor jumps to the address read before into the interrupt handler

5. The interrupt is served and the CPU returns to the main application.

The ‘in work’ and ‘end of interrupt’ registers are not used in non-nested applications. The
interrupt priority is only relevant when more than one interrupts are activated concurrently.
Normally, it’s a ‘first come first served’ scheme.

4.2.2 Nested interrupts

Especially real time systems have to take care of the interrupt priority. When an interrupt
is served, all lower priority interrupts are masked out and the CPU will re-enable the inter-
rupt enable flag. Therefore, higher priority interrupts can interrupt the pending and actu-
ally served one. To allow such a scheme, the ‘in work’ and ‘end of interrupt’ registers
have to be used. The process works as follow:
Ref.Nr.: V1.0 Page 8 of 11

INICORE AG iAH-INTC32 data sheet
1. The interrupt occurs and is seen in the INT_FLAG register

2. IRQ asserted (depending on the configuration)

3. The processor fetches the vector from INT_IRQ_VEC. This will clear the INT_FLAG
flag in case of event type interrupts. The interrupt number is stored in
INT_IRQ_VEC_NBR register. In the mean time, the INT_IRQ_IN_WORK bit is set
and marks that this interrupt is actually served. All lower priority interrupts are masked
out and not visible to the CPU.

4. The CPU stacks the actual status and re-enables it’s interrupt enable flag.

5. A higher priority interrupt than the actual may occur (proceed at 1.)

6. At the end of the interrupt service routine, the CPU writes to the INT_IRQ_EOI a
dummy value (only the write access is detected, the write data is not relevant), which
will clear the pending ‘in work’ flag and mark the end of the interrupt service routine.
This will also re-enable the lower priority interrupts, respectively set the mask to the
next lower pending interrupt level if nested interrupts are pending.

The level of nesting can be checked in the INT_IRQ_NEST register. In case of a processor
crash, the interrupt controller can be re-initialized by writing maximum 32times to the
‘end of interrupt’ registers, which will clear all pending interrupts.

Please note that static interrupts have to be de-asserted before the ‘end of interrupt’ com-
mand.
Ref.Nr.: V1.0 Page 9 of 11

INICORE AG iAH-INTC32 data sheet
5 Implementation
Guidelines

This section describes how the iAH-INTC32 is embedded into a system.

5.1 Memory
Connection

The vector memory is a 32 by 32 bit asynchronous single port memory. It is available in
any ASIC library. The connection is not critical, since the write access takes place over 3
cycles, where setup and hold times are guaranteed. The read cycle takes place in a com-
binatorial way within one cycle. The address is directly derived from FF’s. The following
timing diagram shows the write and read cycles and how the memory has to be connected:

5.2 AHB
Connection

The AHB connection uses only a subset of all AHB signals. The remaining signals can
left open. The iAH-INTC32 does not make use of error or split/retry answering features.
Although the haddr is 32bits wide, only bits [7:2] are used. The configuration registers do
not support byte or halfword accesses. Such accesses are ignored.

5.3 ASIC
Integration

The design is prepared for SCAN test. When the scan_mode signal is activated, the asyn-
chronous memory is put into a transparent mode. There is no asynchronous logic. The
VHDL can be synthesized to any technology, including FPGA. No special timing con-
straints for inputs are needed. The readback path (hrdata) should be constrained when the
AHB is clocked with high speed.

hclk

vaddr

vwr_ebl

vwdata

vrdata

write access read access

valid

valid

valid

valid

32 x 32 async 1 port memory

d_in d_out

addr

we
iAH-INTC32

hclk

vaddr

vwr_ebl

vwdata

vrdata
Ref.Nr.: V1.0 Page 10 of 11

INICORE AG iAH-INTC32 data sheet
6 Register Map This table shows the (byte) address offset for the registers.

Address Register

0x00 INT_IRQ_VEC

0x04 INT_FIQ_VEC

0x08 INT_IRQ_EOI

0x0c INT_FIQ_EOI

0x10 INT_IRQ_VEC_NBR

0x14 INT_FIQ_VEC_NBR

0x18 INT_IRQ_NEST

0x1c INT_FIQ_NEST

0x20 INT_IRQ_IN_WORK

0x24 reserved

0x28 INT_FIQ_IN_WORK

0x2c reserved

0x30 INT_MAP

0x34 reserved

0x38 INT_RAW_STATUS

0x3c reserved

0x40 INT_STATUS

0x44 reserved

0x48 INT_EBL

0x4c reserved

0x50 INT_EBL_SET

0x54 reserved

0x58 INT_EBL_CLR

0x5c reserved

0x60 INT_CFG

0x64 reserved

0x68 INT_MODE1

0x6c reserved

0x70 INT_MODE2

0x74 reserved

0x78 INT_ASSIGN
Ref.Nr.: V1.0 Page 11 of 11

	1 Overview
	2 IO description
	3 Register Description
	3.1 Register Map
	4 Programming Model
	4.1 Configuration
	4.1.1 Assigning of interrupt vector inputs
	4.1.2 Interrupt types
	Static types
	Event types

	4.1.3 Interrupt mapping
	4.1.4 Interrupt Enable
	4.1.5 Vector initialization

	4.2 Interrupt Handling
	4.2.1 Non nested interrupts
	1. The interrupt occurs and is seen in the INT_FLAG register
	2. IRQ asserted (depending on the configuration)
	3. The processor fetches the vector from INT_IRQ_VEC. This will clear the INT_FLAG in case of eve...
	4. The processor jumps to the address read before into the interrupt handler
	5. The interrupt is served and the CPU returns to the main application.

	4.2.2 Nested interrupts
	1. The interrupt occurs and is seen in the INT_FLAG register
	2. IRQ asserted (depending on the configuration)
	3. The processor fetches the vector from INT_IRQ_VEC. This will clear the INT_FLAG flag in case o...
	4. The CPU stacks the actual status and re-enables it’s interrupt enable flag.
	5. A higher priority interrupt than the actual may occur (proceed at 1.)
	6. At the end of the interrupt service routine, the CPU writes to the INT_IRQ_EOI a dummy value (...

	5 Implementation Guidelines
	5.1 Memory Connection
	5.2 AHB Connection
	5.3 ASIC Integration
	6 Register Map

