

APPLICATIONS

- ➤ Low cost Analog and Digital Data Links
- ➤ Automotive Electronics
- ➤ Digitized Audio
- ➤ Medical instruments
- ➤ PC-to-Peripheral Data Links
- ➤ Robotics Communications
- ➤ Motor Controller Triggering
- ➤ EMC/EMI Signal Isolation
- ➤ Local Area Networks
- ➤ Intra-System Links: Board-to-Board. Rack-to-Rack

DESCRIPTION

The IF-E96 is a low cost, high speed, visible red LED housed in a "connector-less" style plastic fiber optic package. The output spectrum is produced by a GaAlAs die which peaks at 660 nm, one of the optimal transmission windows of PMMA plastic optical fiber. The device package features an internal micro-lens, and a precision molded PBT housing to maximize optical coupling into standard 1000 μm core plastic fiber cable.

APPLICATION HIGHLIGHTS

The performance/price ratio of the IF-E96 is particularly attractive for high volume design applications. The visible red output has low attenuation in PMMA plastic fiber and aids in troubleshooting installations. When used with an IF-D96 photologic detector the IF-E96 can achieve data rates of 5 Mbps. Fast transition times and low attenuation makes the IF-E96 an excellent device selection for low cost analog and digital data links up to 75 meters.

FEATURES

- ◆ High Performance at Low Cost
- ◆ Visible Red Output Aids Troubleshooting
- ◆ Low Transmission Loss with PMMA Plastic Fiber
- ◆ Fast Transition Times
- ◆ Mates with standard 1000 um core jacketed plastic fiber cable
- ◆ No Optical Design required
- ◆ Internal Micro-Lens for Efficient Optical Coupling
- ◆ Inexpensive Plastic Connector Housing
- ◆ Connector-Less Fiber Termination
- ◆ Light Tight Housing Provides Interference-Free Transmission

MAXIMUM RATINGS

 $(T_A = 25^{\circ}C)$

Operating and Storage Temperature Range (T _{OP} , T _{STG})40° to 85°C
Junction Temperature (T_J) 85°C
Soldering Temperature (2 mm from case bottom)
$(T_S) t \le 5 s$
Reverse Voltage (V_R)
Power Dissipation
$(P_{TOT}) T_A = 25^{\circ}C \dots 60 \text{ mW}$
De-rate Above 25 $^{\circ}\text{C}$ 1.1 mW/ $^{\circ}\text{C}$
Forward Current, DC $(I_{\mbox{\scriptsize F}})$ 35 mA
Surge Current (I_{FSM}) t \leq 10 μ s

CHARACTERISTICS $(T_A=25$ °C)

Parameter	Symbol	IF-E96	Unit
Peak Wavelength	$\lambda_{ ext{PEAK}}$	660	nm
Spectral Bandwidth (50% of I _{MAX})	Δλ	20	nm
Output Power Coupled into Plastic Fiber (1 mm core diameter). Distance Lens to Fiber \leq 0.1 mm, 10 cm polished fiber, I_F =20 mA	$\Phi_{ ext{min}}$	>50 -13	μW dBm
Switching Times (10% to 90% and 90% to 10%) (R_L =47 Ω , I_F =10 mA)	t _r , t _f	.1	μs
Capacitance (V _F =0, F=1 MHz)	C ₀	30	pF
Forward Voltage (I _F =50 mA)	V _f	1.8 max	V
Temperature Coefficient, λ_{PEAK}	TC _λ	.2	nm/K

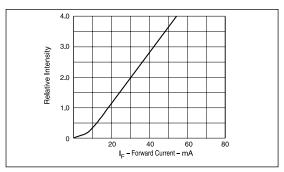


FIGURE 1. Normalized power launched versus forward current.

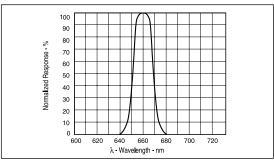


FIGURE 2. Typical spectral output versus wavelength.

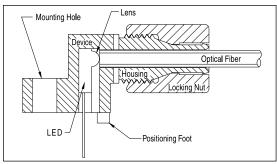
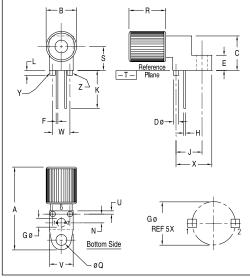



FIGURE 3. Cross-section of fiber optic device.

FIBER TERMINATION INSTRUCTIONS

- 1. Cut off the ends of the optical fiber with a singleedge razor blade or sharp knife. Try to obtain a precise 90-degree angle (square).
- Insert the fiber through the locking nut and into the connector until the core tip seats against the internal micro-lens.
- 3. Screw the connector locking nut down to a snug fit, locking the fiber in place.

Notes:

- Y AND Z ARE DATUM DIMENSIONS AND T IS A DATUM SURFACE.

- 4. POSITIONAL TOLERANCE FOR H DIM (2 PL):
- (♣) 0.25(0.010) (♠) | T | Y (♠) | Z (♠) 5. POSITIONAL TOLERANCE FOR Q Ø:
- ⊕ Ø 0.25(0.010) Ø T Y Ø Z Ø
- 6. POSITIONAL TOLERANCE FOR B:

 ⊕ Ø 0.25(0.010) ፟ T
- 7. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 8. CONTROLLING DIMENSION: INCH

PACKAGE IDENTIFICATION:

- ◆ Blue housing w/ Pink dot
- PIN 1. Cathode
- PIN 2. Anode

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	23.24	25.27	.915	.995
В	8.64	9.14	.340	.360
С	9.91	10.41	.390	.410
D	1.52	1.63	.060	.064
Ε	4.19	4.70	.165	.185
F	0.43	0.58	.017	.023
G	2.54 BSC		.100 BSC	
Н	0.43	0.58	.017	.023
J	7.62 BSC		.300 BSC	
K	10.35	11.87	.408	.468
L	1.14	1.65	.045	.065
N	2.54 BSC		.100 BSC	
Q	.305	3.30	.120	.130
R	10,48	10.99	.413	.433
S	6,98 BSC		.275 BSC	
U	0.83	1.06	.032	.042
٧	6.86	7.11	.270	.280
W	5.08 BSC		.200 BSC	
Χ	10.10	10.68	.397	.427

FIGURE 4. Case outline.