

APPLICATIONS

- ➤ Digital Data Links
- ➤ PC-to-Peripheral Links
- ➤ Process Control
- ➤ Household Appliances
- ➤ Motor Controller Triggering
- ➤ Electronic Games
- Medical Instruments
- Automotive Electronics
- Robotics Communications
- ➤ EMC/EMI Signal Isolation

DESCRIPTION

The IF-D95T and IF-D95OC are photologic detectors housed in a "connector-less" style plastic fiber optic package. The detector contains an IC with a photodiode, linear amplifier, and Schmitt trigger logic circuit. The IF-D95T features a TTL/CMOS compatible totem-pole output, while the IF-D95OC has an open-collector output. The devices can drive up to 5 TTL loads over supply voltages ranging from 4.5 to 16 Volts. Optical response extends from 400 to 1100 nm making them compatible with a wide range of visible and near infrared LED and laser diode sources. The detector package features an internal micro-lens, and a precision molded PBT housing to ensure efficient optical coupling into standard 1000 μm core plastic fiber cable.

APPLICATION HIGHLIGHTS

The IF-D95T and IF-D95OC are suitable for digital data links at rates up to 125 kbps. A Schmitt trigger improves noise immunity and TTL/CMOS logic compatibility greatly simplifies interfacing with existing digital circuits. The integrated design of the IF-D97 provides a total, cost effective solution in a variety of digital applications.

FEATURES

- ◆ Integrated Photodetector, Amplifier and Schmitt Trigger
- Mates with Standard 1000 μm Core Jacketed Plastic Fiber Optic Cable
- ◆ No Optical Design Required
- ◆ Inexpensive But Rugged Plastic Connector Housing
- ◆ Internal Micro-Lens for Efficient Optical Coupling
- ◆ Connector-Less Fiber Termination
- ◆ Light-Tight Housing provides Interference Free Transmission
- ◆ High Optical Sensitivity
- ◆ Active Low Output Option Available as Special Order

MAXIMUM RATINGS

 $(T_{\Delta} = 25^{\circ}C)$

**	
Operating and Storage Temperature Range (T _{OP} , T _{STG})40° to 85°	°C
Soldering Temperature (2 mm from case bottom) (T_S) t \leq 5s240°	°C
Supply Voltage, (V_S) 18	V
Voltage at Output lead (IF-95OC only)35	V
Sinking Current, DC (I_C) 50 m	ıΑ
Source Current (I _O) (IF-95T only)10 m	ıΑ
Power Dissipation (P_{TOT}) T_A =25°C100 m ³	W

De-rate Above 25°C1.33 mW/°C

CHARACTERISTICS $(T_A=25^{\circ}C)$

Parameter	Symbol	Value	Unit
Peak Sensitivity	$\lambda_{ ext{PEAK}}$	800	nm
Spectral Sensitivity (S=10% of S _{MAX})	Δλ	400-1100	nm
Operating Voltage (max)	V_{CC}	16	V
Supply Current (max)	I_{CC}	12	mA
Light Required to Trigger V_{CC} =5 V, R_L =1k, λ =660 nm	Er (+)	1.0 (-30)	μW(dBm)
IF-D95T – High Level Output Voltage (I _{OH} = -1.0 μA)	V _{OH}	V _{CC} -2.1	V
Low Level Output Voltage (I _{OH} = 16 mA)	V_{OL}	0.34	V
Output Rise and Fall Times (f= 10.0 kHz, R _L = 10 TTL Loads) (max)	t _r , t _f	70	ns
Propagation Delay, Low-High, High-Low (f= 10.0 kHz, R _L = 10 TTL Loads)	t _{PLH} , t _{PHL}	8.0	μs
IF-D95OC – High Level Output Current (V _{OH} =30 V)	I _{OH}	100	μА
Low Level Output Voltage (I _{OL} =16 mA)	V _{OL}	0.4	V
Output Rise and Fall Times (f= 10.0 kHz , $R_L=300\Omega$) (max)	t _r , t _f	100	ns
Propagation Delay, Low-High, High-Low (f= 10.0 kHz, R_L =300 Ω)	t _{PLH} , t _{PHL}	8.0	μs

FIGURE 1. Typical detector response versus wavelength.

FIGURE 2. Normalized threshold irradiance vs. amb. temp.

FIGURE 3. Cross-section of fiber optic device.

FIBER TERMINATION INSTRUCTIONS

- 1. Cut off the ends of the optical fiber with a singleedge razor blade or sharp knife. Try to obtain a precise 90-degree angle (square).
- Insert the fiber through the locking nut and into the connector until the core tip seats against the internal micro-lens.
- 3. Screw the connector locking nut down to a snug fit, locking the fiber in place.

Notes:

- 1. Y AND Z ARE DATUM DIMENSIONS AND
- T IS A DATUM SURFACE,
- 2. POSITIONAL TOLERANCE FOR D Ø (2 PL):

 ⊕ Ø 0.25(0.010) ♠ T Y ♠ Z ♠
- 3. POSITIONAL TOLERANCE FOR F DIM (2 PL):
- ⊕ 0.25(0.010) M T Y M Z M
 4. POSITIONAL TOLERANCE FOR H DIM (2 PL):
- ♦ 0.25(0.010)
 ▼ T Y
 ▼ Z
 ▼
- 5. POSITIONAL TOLERANCE FOR Q Ø:
- ⊕ Ø 0.25(0.010) Ø T Y Ø Z Ø

 6. POSITIONAL TOLERANCE FOR B:
- POSITIONAL TOLERANCE FOR B: • Ø 0.25(0.010) ♥ T
- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 8. CONTROLLING DIMENSION: INCH

PACKAGE IDENTIFICATION:

- D95T-Black housing w/ Yellow dot D95OC-Black housing w/ Brown dot
- PIN 1. Ground
- PIN 2. Output
- PIN 3. V_{CC}

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	23.24	25.27	.915	.995	
В	8.64	9.14	.340	.360	
С	9.91	10.41	.390	.410	
D	1.52	1.63	.060	.064	
Ε	4.19	4.70	.165	.185	
F	0.43	0.58	.017	.023	
G	3.81	BSC	.150	BSC	
Н	0.43	0.58	.017	.023	
J	7.62 BSC		.300 BSC		
K	10.35	11.87	.408	.468	
L	1.14	1.65	.045	.065	
N	2,54 BSC		2.54 BSC .100 BSC		BSC
Q	.305	3.30	.120	.130	
R	10.48	10.99	.413	.433	
S	6.98 BSC		.275	BSC	
U	0.83	1.06	.032	.042	
٧	6.86	7.11	.270	.280	
W	5.08 BSC		5.08 BSC .200 BSC		
Χ	10,10	10.68	.397	.427	

FIGURE 4. Case outline.