
A AP-712

Order Number: 272674-001

APPLICATION
NOTE

DRAM Controller for i960®
JA/JF/JD Microprocessors

Paul Durazo

SPG EPD 80960 Applications Engineer

Intel Corporation
Embedded Processor Division
Mail Stop CH5-233
5000 W. Chandler Blvd.
Chandler, Arizona 85226

February 9, 1995

Information in this document is provided solely to enable use of Intel products. Intel assumes no liability
whatsoever, including infringement of any patent or copyright, for sale and use of Intel products except as provided
in Intel’s Terms and Conditions of Sale for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which
may appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product
order.

MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH
trademark or products.

*Other brands and names are the property of their respective owners.

Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

© INTEL CORPORATION 1995

A AP-712

iii

DRAM CONTROLLER FOR I960® JA/JF/JD MICROPROCESSORS

1.0 INTRODUCTION... 1
1.1 Design Goals ... 1
1.2 i960 Jx Processor Bus/Core Frequencies ... 1
1.3 Page Mode DRAM SIMM .. 1
1.4 Burst Capabilities for 32-Bit Bus.. 1

2.0 BASIC DRAM CONTROLLER .. 2
2.1 Control Logic ... 3

2.1.1 Refresh Logic ... 3
2.1.2 Clock Generation ... 3
2.1.3 Wait State Profile ... 3

2.2 Address MUX .. 4
2.3 Address Latch Path ... 4
2.4 SIMMS... 4

3.0 STATE MACHINES AND SIGNALS.. 4
3.1 LATCH_ACC State Machine ... 5
3.2 DRAM_ACC Signal ... 5
3.3 DRAM_BANK State Machine .. 5
3.4 MUX State Machine... 5
3.5 BURST_ADDR State Machine .. 5
3.6 REFRESH State Machine ... 5
3.7 REFRESH_SYNC Signal .. 5
3.8 DRAM_REF State Machine... 5
3.9 nPRE_CAS State Machine.. 5
3.10 nCAS[3:0] Signals ... 6
3.11 nRAS0 State Machine ... 6
3.12 nRAS1 State Machine ... 6
3.13 nREADY Signal ... 6
3.14 nWE State Machine... 6

4.0 DRAM CONTROLLER ACCESS FLOW... 6
4.1 Single-Word Access .. 6
4.2 Quad-Word Access ... 9
4.3 Refresh Cycles .. 12

5.0 CONCLUSION .. 14

6.0 RELATED INFORMATION .. 14

APPENDIX A
ABEL FILE... A-1

AP-712 A

iv

FIGURES
Figure 1. Quad-Word Write Request with 2,1,1,1 Wait State Profile 1
Figure 2. Basic DRAM Controller State Machine ... 2
Figure 3. i960® Jx Processor DRAM Controller ... 2
Figure 4. DRAM Address Multiplexers ... 4
Figure 5. Address Latches ... 4
Figure 6. DRAM_STATES State Machine ... 6
Figure 7. Single-Word Read and Write State Diagram (A2 = 1) .. 7
Figure 8. Single Word Read Timing Diagram .. 8
Figure 9. Single Word Write Timing Diagram... 9
Figure 10. Quad-Word Read and Write State Diagram ... 10
Figure 11. 3, 1, 1, 1 Quad-Word Read Timing Diagram .. 11
Figure 12. 2, 1, 1, 1 Quad-Word Write Timing Diagram... 12
Figure 13. Refresh State Diagram ... 13
Figure 14. Refresh Timing Diagram (No Pending DRAM Request)....................................... 13
Figure 15. Refresh Timing Diagram (With Pending DRAM Request) 14

TABLES
Table 1. i960® Jx Processor’s Possible DRAM Wait State Combinations 3
Table A-1. i960® Jx Processor DRAM Controller ABEL File ... A-1
Table A-2. Signal and Product Term Allocation... A-16

A AP-712

1

1.0 INTRODUCTION

This application note describes a DRAM controller for use
with Intel’s i960® JA/JF/JD microprocessors. Other
application notes are available which describe DRAM
controllers for the i960 CA and CF processors; see Section
6.0, RELATED INFORMATION for ordering information.

This DRAM controller’s design features include:

• Non-interleaved design

• Can use standard 70 ns DRAM SIMM

• 3-1-1-1 wait state burst reads at 33 MHz

• 2-1-1-1 wait state burst writes at 33 MHz

• No delay lines

This application note contains some general DRAM
controller theory as well as this design’s state machine
definitions and timing diagrams. It also contains the PLD
equations which were used to build and test the prototype
design. Timing analysis was verified with Timing
Designer*. PLD equations were created in ABEL* as a
device-independent design. Schematics were developed
with OrCAD*. The timing analysis, schematics and PLD
files are available through Intel’s America’s Application
Support BBS, at (916) 356-3600.

1.1 Design Goals

A primary goal was to implement a single or dual bank 32-
bit DRAM controller with the minimum number of
components, using a standard 72-pin fast page mode
DRAM SIMM. Such a design may be useful in embedded
systems where space is at a premium. Accordingly, this
design avoids such techniques as write posting, parity
support and bank interleaving. A non-interleaved design
significantly reduces system cost and complexity by using
fewer components and logic. The memory in this design
can be divided into two banks for addressing flexibility.

1.2 i960 Jx Processor Bus/Core
Frequencies

This DRAM controller is designed for use with a 5 volt
i960 Jx processor with bus frequencies up to 40 MHz. The
design was verified with a 33 MHz version (production 40
MHz devices were not available at the time this document
was published).

Available 80960 JA/JF speeds are 16 MHz, 25 MHz and
33 MHz. Intel’s clock-doubled version, the 80960JD,

operates at 16.7 MHz, 20 MHz and 25 MHz bus speeds,
with the core operating at 33.3 MHz, 40 MHz and 50 MHz,
respectively. Table 1 details the various DRAM speeds, bus
speeds and wait state combinations that were tested with
this design.

1.3 Page Mode DRAM SIMM

Page mode DRAM allows faster memory access by
keeping the same row address while selecting random
column addresses within that row. A new column address is
selected by deasserting CAS while keeping RAS active and
then asserting CAS with the new column address valid to
the DRAM. Page mode operation works very well with
burst buses, such as the i960 CA/CF processor bus, in
which a single address cycle can be followed by up to four
data cycles.

All WE pins on the SIMM are tied to a common WE line;
this feature requires the use of early write cycles. In an
early write cycle, write data is referenced to the falling edge
of CAS, not the falling edge of WE.

The DRAM SIMM has four CAS lines, one for each eight
(nine) bits in a 32-bit (36-bit) SIMM module. The four
CAS lines control the writing to individual bytes within the
SIMM. Each CAS signal is asserted with its respective BE.

1.4 Burst Capabilities for 32-Bit Bus

The i960 Jx processor can access up to four data words per
request. A request starts with the processor asserting ADS
in the address cycle, and ends by the processor asserting
BLAST in the last data cycle. Figure 1 shows ADS and
BLAST timings for a quad-word write request.

Figure 1. Quad-Word Write Request with 2,1,1,1
Wait State Profile

CLK1X

ADS

BLAST

Ta Tw Tw Td1 Tw Td2 Td3Tw Tw TrTd4

AP-712 A

2

The processor’s burst capabilities on a 32-bit bus include:

• Quad-word and triple-word requests start on quad-word
boundaries (A3 = 0, A2 = 0).

• Double-word requests start on double-word boundaries
(A3 = X, A2 = 0).

• Single-word requests can start on any word boundary
(A3 = X, A2 = X).

• Any request starting on an odd word boundary never
bursts (A3 = X, A2 = 1).

2.0 BASIC DRAM CONTROLLER

The main state machine of the DRAM controller in this
design is clocked using CLKIN (CLK1X clock). The
DRAM region is set at 0xAxxxxxxx for address decoding
and uses the entire 256 Mbyte region. The region must also
be configured as 32 bit in the processor’s PMCON10_11
register. The controller is implemented as a four-bit state
machine and is responsible for sequencing accesses as well
as refreshes to the DRAM banks. Figure 2 shows the basic
DRAM controller state machine.

Figure 2. Basic DRAM Controller State Machine

The first state is IDLE. The state machine transitions from
the IDLE state based on two events:

• DRAM refresh requests

• DRAM requests from the processor

The DRAM controller (Figure 3) has four distinct blocks:
control logic, address latches, address muxes, and the
DRAM SIMM. This section describes each block.

IDLE
BLAST

REFRESH

refresh request

 DRAM request pending

refresh complete

DRAM
ACCESS

DRAM request * refresh request

Figure 3. i960® Jx Processor DRAM Controller

i960® Jx Processor

AD31:0

BE3:0

AD31:0

LA31:4

Address

74F573

OC

OSC

CLKIN

CLOCK
GEN

RESET

Latch

C

OSC

A3:2
Control

LA31:4

Address

G

MUX

BA3:2

MA10:0

A/B

74F157A

AD31:0

BE3:0

CLK2x

RESET

A3:2

CLK1x

ADS
BLAST

W/R

COM_CLK

nREADY

BA3:2

nRAS1:0
nCAS3:0

nWE

MUX_OUT

MA10:0

nRAS1:0
nCAS3:0

nWE

AD31:0

DRAM SIMM

CLK2X

CLK1X

CLK1X

ALE

MUX

Control Logic

BE1:0/A1:0

COM_CLK (refresh CLK)

SYSTEM RESET

A AP-712

3

2.1 Control Logic

The DRAM controller is centered around a four-bit state
machine that controls accessing as well as refreshing of the
DRAM banks. All signals are generated based on the four-
bit state machine’s outputs.

2.1.1 Refresh Logic

Typical 2 Mbyte x32 DRAMs need to be refreshed every
15.5 µs. The DRAM controller refreshes the banks using
CAS-before-RAS refresh when the request is granted.

A refresh request has priority over a processor request.
When a processor and a refresh request occur simulta-
neously, the DRAM controller sequences a refresh to the
DRAM banks while the ACC_PENDING state machine
posts the processor request. The pending request is then
serviced after the refresh is done.

In the tested design, an eight-bit synchronous up-counter
generates refresh requests. The counter is clocked using
COM_CLK (7.3728 MHz clock). REFRESH_SYNC is
asserted each time the counter reaches 98 (13.7 µs) which in
turn asserts DRAM_REF. The REFRESH_SYNC equation
synchronizes the output (when counter reaches 98) of the
REFRESH state machine (which uses COM_CLK) to
CLK1X. The refresh counter is reset to zero and counting
resumes after the DRAM_STATES state machine completes

servicing the refresh. During reset, the counter is also
loaded with a zero.

2.1.2 Clock Generation

In this design a Motorola* MC88916D low skew CMOS
PLL was used to generate the clock signals for the DRAM
controller. The MC88916D uses the output of the oscillator
as an input and outputs a 2X and 4X copy of the oscillator
output:

• The 2X output is referred to as CLKIN or CLK1X

• The 4X output is referred to as CLK2X

The MC88916D produces a very low skew copy of both
CLK1X and CLK2X. At 33 MHz, the maximum skew
between the MC88916 and any of its outputs is ±1 ns, while
the skew between any of the individual outputs is ±750 ps
under equal loading conditions. In this design all clock lines
are series terminated with 22-ohm resistors.

2.1.3 Wait State Profile

Table 1 provides typical wait state profiles for read and
write accesses. the listed wait states have been tested with
the design by changing the clock frequency and wait states
and meeting the timing requirements for MUX, RAS and
CAS.

Table 1. i960® Jx Processor’s Possible DRAM Wait State Combinations

DRAM
Access Time Mode 16 MHz Bus 20 MHz Bus 25 MHz Bus 33 MHz Bus 40 MHz Bus1

60ns
Read 1, 1, 1, 1 1, 1, 1, 1 1, 1, 1, 1 3, 1, 1, 1 3, 1, 1, 1

Write 1, 0, 0, 0 1, 0, 0, 0 1, 1, 1, 1 2, 1, 1, 1 2, 1, 1, 1

70ns
Read 1, 1, 1, 1 1, 1, 1, 1 2, 1, 1, 1 3, 1, 1, 1 3, 2, 2, 2

Write 1, 0, 0, 0 1, 0, 0, 0 1, 1, 1, 1 2, 1, 1, 1 2, 1, 1, 1

80ns
Read 1, 1, 1, 1 1, 1, 1, 1 2, 1, 1, 1 3, 1, 1, 1 4, 2, 2, 2

Write 1, 0, 0, 0 1, 1, 1, 1 2, 1, 1, 1 3, 1, 1, 1 3, 2, 2, 2

100ns
Read 1, 1, 1, 1 2, 1, 1, 1 3, 1, 1, 1 4, 2, 2, 2 4, 3, 3, 3

Write 1, 0, 0, 0 2, 1, 1, 1 3, 1, 1, 1 3, 1, 1, 1 4, 2, 2, 2

NOTE:
1. Contact your local Intel Sales Representative to determine availability of the 40 MHz i960 JA/JF processor.

AP-712 A

4

2.2 Address MUX

Figure 4 is a block diagram of the latched DRAM address
logic. The quad 2-input multiplexers transmit row and
column addresses across the combined MA10:0 bus. The
row address is passed through to the DRAM when RAS is
asserted and the column address is passed through when
CAS is asserted. The multiplexers are always enabled
because the enable pins are tied low. BA3:2 signals are
generated by using A3:2, respectively. BA3:2 are the only
address bits that increment during a burst. The timing of
these signals during bursts is critical for proper operation.

Figure 4. DRAM Address Multiplexers

2.3 Address Latch Path

As shown in Figure 5, the addresses are transferred to the
latch outputs when the ALE signal is asserted. The latched
addresses are always seen at the outputs by tying the output
enables low.

Figure 5. Address Latches

MUX_OUT

MA10:0

A

B

A/B

G

3 x 74F157A
Multiplexers

LA23, 21,19...5,4

LA22, 20, 18...6, BA3:2

NOTE:
Thicker lines indicate a bus.

Y

ALE

LA31:4

E

OE

4 x 74F573

AD31:4

BE1:0 / A1:0

NOTE:
Thicker lines indicate a bus.

D

D
Q

2.4 SIMMS

The SIMM block consists of one standard 72-pin SIMM
socket, arranged as one or two banks. The parity bits of a
x36 SIMM are not used in this design. However, x36
SIMMs are standard for PCs and workstations making them
more readily available. The only penalty is more loading on
the address and control lines due to the extra DRAM
devices on the x36 SIMM.

In this design all address and control lines to the SIMM are
series terminated with 22-ohm resistors.

3.0 STATE MACHINES AND SIGNALS

This section describes the state machines and signals used
in this design. Most of the state machines are simple and the
PLD equations can be referenced in APPENDIX A. The
DRAM controller’s state machine DRAM_STATES is the
most complex of all the state machines; for that reason, this
application note provides more detail on the operations of
this state machine.

In this design, some of the state machines are clocked with
the CLK1X clock (bus clock frequency), while others are
clocked off the CLK2X clock (twice the bus clock
frequency), or the COM_CLK (communications\UART
clock frequency).

Certain state machines and their outputs were clocked off of
CLK2X so that their outputs could use PH1 or PH2 as
conditions for transition. The high portion of CLK1X is
referenced as PH1 (phase one). The low portion of CLK1X
is referenced as PH2 (phase 2).

All PLD equations are written in ABEL. APPENDIX A,
PLD EQUATIONS, contains a listing of the PLD equations
file. The state machine transitions described here follow the
ABEL conventions for logic operators.

• ! represents NOT, bit-wise negation

• & represents AND

• # represents OR

In this design signals do not have a polarity assigned,
signals that begin with a “n” signify that the signal is active
low. For example, nRAS0 refers to the non-asserted state
(SET_HIGH) and !nRAS0 refers to the asserted state
(SET_LOW).

A AP-712

5

3.1 LATCH_ACC State Machine

The LATCH_ACC state machine is a one-bit state machine
that monitors DRAM requests from the processor. This
state machine is necessary because a DRAM request may
occur during a refresh. DRAM refresh has priority over a
processor’s request. Therefore, this state machine is used to
post the processor request. This state machine generates the
LATCHACC signal.

3.2 DRAM_ACC Signal

The DRAM_ACC signal monitors DRAM requests from
the processor, and pending DRAM requests from
LATCH_ACC state machine. When conditions are met
DRAM_ACC initiates the DRAM portion of the DRAM
controller. The DRAM_ACC state machine generates the
DRAMACC signal.

3.3 DRAM_BANK State Machine

The DRAM_BANK state machine is a one-bit state
machine that decodes AD20 to select between DRAM
bank 0 (!AD20) or DRAM bank 1 (AD20). This state
machine is clocked using the CLK1X clock. The
DRAM_BANK state machine generates the DRAMBANK
signal.

DRAM bank decoding is dependent on which size DRAM
module is used. The following address lines provide
contiguous memory:

• AD20 is decoded for a 2 Mbyte SIMM

• AD22 is decoded for a 8 Mbyte SIMM

• AD24 is decoded for a 32 Mbyte SIMM

• For 1 Mbyte, 4 Mbyte and 16 Mbyte SIMM modules,
only one bank is possible

The DRAM_BANK state machine is currently fixed for
2 Mbyte SIMM. If a size other than this default size is
needed, replace AD20 with the appropriate address bit.

3.4 MUX State Machine

The MUX state machine is a one-bit state machine that is
used to control the address multiplexers, essentially to
select between row (MUX) or column addresses (!MUX). It
is clocked using the CLK2X clock. This state machine
generates the MUX_OUT signal.

3.5 BURST_ADDR State Machine

The BURST_ADDR state machine is a two-bit state
machine that is toggled on burst accesses to select the next
data word (next column data). The state machine is initially
loaded with the value of the processor’s A3:2 during the
address state (IDLE) and then increments after each data
state (DATA). This state machine is clocked using the
CLK1X clock, and generates the BA3:2 signal. These
signals are an input to the DRAM Address Muxes.

3.6 REFRESH State Machine

The REFRESH state machine is a seven-bit state machine
that is used as a counter to indicate when a refresh is
required. The state machine is clocked using COM_CLK
(7.3728 MHz). In the tested system, COM_CLK was
present to drive a UART for communications. This state
machine sequences from 0 to 98 then resets to zero.
Sequencing begins when DRAM_REF is not asserted.

3.7 REFRESH_SYNC Signal

The REFRESH_SYNC signal monitors the REFRESH
state machine counter. REFRESH_SYNC is asserted when
the counter reaches a count of 98. The REFRESH_SYNC
equation synchronizes the output (when counter reaches
98) of the REFRESH state machine, which uses
COM_CLK, to CLK1X.

3.8 DRAM_REF State Machine

The DRAM_REF state machine is a one-bit state machine
that uses the output of the REFRESH_SYNC equation.
This state machine is clocked using the CLK1X clock, and
generates the DRAMREF signal. DRAMREF signals the
DRAM_STATES machine that a refresh is needed.
DRAMREF is deasserted when the refresh states complete.

3.9 nPRE_CAS State Machine

The nPRE_CAS state machine is a one-bit state machine
and generates the nPRECAS signal. This signal is
generated one CLK2X clock cycle earlier than nCAS3:0.
The output of this state machine is then fed to the nCAS3:0
equations where it is asserted at the correct time. This state
machine is clocked using the CLK2X clock.

AP-712 A

6

3.10 nCAS3:0 Signals

The nCAS3:0 signals are asserted when nPRE_CAS and the
respective nBE3:0 signal are asserted. The output of this
state machine is then fed to the DRAM. This equation is
clocked using the CLK2X clock.

3.11 nRAS0 State Machine

The nRAS0 state machine is a one-bit state machine that is
used to generate the RAS signal for bank 0. This state
machine is clocked using the CLK2X clock, and generates
the nRAS_0 signal.

3.12 nRAS1 State Machine

The nRAS1 state machine is a one-bit state machine that is
used to generate the RAS signal for bank 1. This state
machine is clocked using the CLK2X clock, and generates
the nRAS_1 signal.

3.13 nREADY Signal

The nREADY signal is asserted during the data cycle of a
DRAM access. Data is valid on the rising edge of CLK1X
while nREADY is asserted. BLAST from the processor
deasserts on the rising edge of CLK1X if nREADY is
asserted during the last data cycle of the request. nREADY
is clocked using the CLK1X clock.

3.14 nWE State Machine

The nWE state machine is a two-bit state machine that is
asserted while a DRAM write is in progress. It controls the
WE lines of the banks to perform early writes. This state
machine is clocked using the CLK2X clock, and generates
the nWE_OUT signal.

4.0 DRAM CONTROLLER ACCESS FLOW

This section explains how the DRAM_STATES state
machine is sequenced while reading, writing, and refreshing
the DRAM. Examples used are:

• single-word read and write access

• quad-word read and write access

• refresh

Figure 6 shows the complete DRAM_STATES state
machine for the tested 33 MHz design. More detail on the

states and state machine are given in the following
examples.

Figure 6. DRAM_STATES State Machine

4.1 Single-Word Access

Figure 7 shows the state diagram for a single-word read and
write. Figure 8 is the single-word read timing diagram;
Figure 9 is the single-word write timing diagram.

From the IDLE state the state machine waits for a DRAM
access request or a refresh request. If a DRAM access is
requested and not a refresh request, the state machine then
transitions to the next state (WAIT3).

In WAIT3 state when PH1 is true, nRAS0 or nRAS1 is
asserted depending on the bank selection; MUX is then
asserted when PH2 is true. If the current access is a read, the
machine proceeds to the WAIT2 state. If the current access
is a write, the signals that normally assert in WAIT2 state
(described below) now assert in WAIT3 state. The machine

DATA

WAIT3

WAIT2

IDLE

WAIT1

Tw

Tw

Tw

Td

Write

REF5

REF1

REF4

REF3

REF2

REF0

DRAM Request * !Refresh Request Refresh Request

Pending D
R

AM
 R

equest

Burst

DRAM Access
Complete

Refresh complete

Read

RECOVER
Tr

A AP-712

7

proceeds to WAIT1 state bypassing WAIT2 state when the
access is a write.

In WAIT2 state when PH2 is true, nCASx (x=3, 2, 1, or 0) is
asserted if nPRE_CAS and the respective byte enable signal
from the processor is asserted. The nWE signal is also
asserted in WAIT2 state when PH2 is true. The machine
then enters WAIT1 state.

When WAIT1 state is true, the respective nCAS signal is
asserted when WAIT1 and PH2 are true. At this point, the

processor has already asserted BLAST. The machine then
proceeds to the DATA state.

Data is valid in the DATA state (Td) on the rising edge of
CLK1X. When the DATA state is true, nREADY asserts.
The respective nCAS signals deassert when DATA and PH2
are true. From the DATA state, the machine proceeds to the
RECOVER state since BLAST is asserted.

When RECOVER is true, nREADY deasserts. When
RECOVER and PH1 are true, MUX and the respective
nRAS signals deassert completing the single word access.

Figure 7. Single-Word Read and Write State Diagram (A2 = 1)

DATA

WAIT3

WAIT2

IDLE

WAIT1

RECOVER

Tw

Tw

Tw

Td0 Tr

A

C

D

E

F

G

A = !DRAM_REF & DRAM_ACC

B = W_nR
C = !W_nR

D = UNCONDITIONAL
E = UNCONDITIONAL
F = !nBLAST

G = UNCONDITIONAL

B

AP-712 A

8

Figure 8. Single Word Read Timing Diagram

nW_R

CLK2X

CLK1X

ADS

DRAM_ACC

MUX

nRASx

nCASx

IDLE Ta Tw3 Tw1Tw2 Td0 Tr

nWE

A3:2

MA10:0

AD31:0

BE3:0

DRAM_BANK1:0

nREADY

BLAST

X1

Address Data

WAIT3 WAIT2 WAIT1 DATA RECOVER

ColumnRow

A AP-712

9

Figure 9. Single Word Write Timing Diagram

CLK2X

CLK1X

ADS

DRAM_ACC3

MUX

nRASx

nCASx

IDLE Ta Tw3 Tw1 Td0 Tr

nWE

A3:2

MA10:0

AD31:0

BE3:0

DRAM_BANK1:0

nREADY

BLAST

Address

X1

Data

Column

WAIT3 DATA RECOVERWAIT1

nW_R

Row

4.2 Quad-Word Access

Figure 10 shows the state diagram for a quad-word access.
This state diagram also applies for triple-, and double-word
accesses. Figure 11 is the quad-word read timing diagram;
Figure 12 is the quad-word write timing diagram.

From the IDLE state the state machine waits for a DRAM
access request or a refresh request. If a DRAM access is
requested and not a refresh request, the state machine then
transitions to the next state (WAIT3).

In WAIT3 state when PH1 is true, nRAS0 or nRAS1 is
asserted depending on the bank selection; MUX is then
asserted when PH2 is true. If the current access is a read, the
machine proceeds to the WAIT2 state. If the current access
is a write, the signals that normally assert in WAIT2 state

(described below) assert in WAIT3 state. The machine
proceeds to WAIT1 bypassing WAIT2 state when the access
is a write (see Figure 10).

In WAIT2 state when PH2 is true, nCASx (x=3, 2, 1, or 0) is
asserted if nPRE_CAS and the respective byte enable signal
from the processor is asserted. The nWE signal is also
asserted in WAIT2 state when PH2 is true. The machine
then enters WAIT1 state.

From the WAIT1 state the machine proceeds to the DATA
state.

The DATA state is the data cycle (Td) of the access. Data is
valid on the rising edge of CLK1X. When the DATA state is
true, nREADY asserts. The respective nCAS signals
deassert when DATA and PH2 are true. From the DATA

AP-712 A

10

state, the machine can proceed to the RECOVER state if
BLAST is asserted. If BLAST is not asserted, the state
machine reenters WAIT1 state (see Figure 10).

When WAIT1 state is true, nREADY is deasserted. The
respective nCAS signal is asserted when WAIT1 and PH2
are true. The machine then proceeds to the DATA state for
the second data cycle (Td1).

Data is valid in the DATA state (Td1) on the rising edge of
CLK1X. When the DATA state is true, nREADY asserts.
The respective nCAS signals deassert when DATA and PH2
are true. From the DATA state, the machine can proceed to
WAIT1 if BLAST is not asserted.

When WAIT1 state is true, nREADY is deasserted. The
respective nCAS signal is asserted when WAIT1 and PH2
are true. The machine then proceeds to the DATA state for
the third data cycle (Td2).

Data is valid in the DATA state (Td2) on the rising edge of
CLK1X. When the DATA state is true, nREADY asserts.
The respective nCAS signals deassert when DATA and PH2
are true. From the DATA state, the machine can proceed to
WAIT1 if BLAST is not asserted.

When WAIT1 state is true, nREADY is deasserted. The
respective nCAS signal is asserted when WAIT1 and PH2
are true. The processor asserts BLAST sometime in this
state. The machine then proceeds to the DATA state for the
fourth data cycle (Td3).

Data is valid in the DATA state (Td3) on the rising edge of
CLK1X. When the DATA state is true, nREADY asserts.
The respective nCAS signals deassert when DATA and PH2
are true. From the DATA state, the machine proceeds to the
RECOVER state since BLAST is asserted.

When RECOVER is true, nREADY deasserts. When
RECOVER and PH1 are true, MUX and the respective
nRAS signals deassert, completing the quad word access.

The RECOVER state is a required state by the i960 Jx
processor. This state is a function of the processor’s
RDYRCV pin. The processor continues to insert recovery
states until it samples the RDYRCV pin HIGH. This
function allows slow external devices more time to float
their buffers before the processor drives address again.
Transition to the next state, IDLE, is unconditional.

Figure 10. Quad-Word Read and Write State
Diagram

DATA

WAIT3

WAIT2

IDLE

WAIT1

RECOVER

Tw

Tw

Tw

Td Tr

A

C

D

E

G

H

A = !DRAM_REF & DRAM_ACC

B = W_nR

C = !W_nR
D = UNCONDITIONAL
E = UNCONDITIONAL
F = nBLAST
G = !nBLAST
H = UNCONDITIONAL

B

F

A AP-712

11

Figure 11. 3, 1, 1, 1 Quad-Word Read Timing Diagram

CLK2X

CLK1X

ADS

DRAM_ACC

MUX

nRASx

nCASx

IDLE Td3Ta Tw3 Tw1Tw2 Td1Td0 Tw1Tw1 Tw1 Td2 Tr

nWE

A3:2

MA10:0

AD31:0

BE3:0

DRAM_BANK1:0

nREADY

BLAST

00 10

Row

Address Data Data Data Data

11

WAIT3 WAIT2 WAIT1 DATA WAIT1 DATA WAIT1 DATA WAIT1 DATA RECOVER

nW_R

Column Column ColumnColumn

01

AP-712 A

12

Figure 12. 2, 1, 1, 1 Quad-Word Write Timing Diagram

CLK2X

CLK1X

ADS

DRAM_ACC

MUX

nRAS

nCAS

IDLE Td3Ta Tw3 Tw1 Td1Td0 Tw1Tw1 Tw1 Td2 Tr

nWE

A3:2

MA10:0

AD31:0

BE3:0

DRAM_BANK1:0

nREADY

BLAST

Address Data Data

00 01 10 11

Data Data

WAIT3 WAIT1 DATA WAIT1 DATA WAIT1 DATA WAIT1 DATA RECOVER

nW_R

Row Column Column ColumnColumn

4.3 Refresh Cycles

In the tested design it was convenient to divide the commu-
nications\UART clock by 98 to provide a refresh request
every 13.3 µs. The DRAM_STATES state machine services
the request and sequences the refresh states. The example
below describes the refresh states in the DRAM_STATES
state machine.

Figure 13 shows the refresh state diagram; Figure 14 shows
the refresh timing diagram with a pending DRAM request;
Figure 15 shows the refresh timing diagram with no
pending DRAM request.

In the IDLE state — if DRAMREF (see Section 3.8,
DRAM_REF State Machine) is asserted and PH1 is true —
all nCAS3:0 signals are asserted. Since DRAM_REF is
asserted, the machine enters the REF5 state. The machine
unconditionally proceeds to the REF4 state.

In the REF4 state when PH1 is true, the nRAS1:0 signals
are asserted. The machine unconditionally proceeds to the
REF3 state.

In the REF3 state when PH1 is true, the nCAS3:0 signals
are deasserted. The machine unconditionally proceeds to
the REF2 state.

A AP-712

13

In the REF2 state when PH2 is true, the nRAS1:0 signals
are deasserted. The machine unconditionally proceeds to
the REF1 state.

There are no signals that transition in state REF1. The
machine unconditionally proceeds to the REF0 state.

When the REF0 state is true, the DRAMREF signal is
deasserted. The machine then checks the DRAMACC
status. If asserted, a DRAM access is pending and the
machine proceeds to WAIT3 state (see Figure 13 and Figure
15). If DRAMACC is not asserted, the machine proceeds to
the IDLE state (see Figure 13 and Figure 14).

Figure 13. Refresh State Diagram

Figure 14. Refresh Timing Diagram (No Pending DRAM Request)

A = DRAM_REF
B = UNCONDITIONAL

REFRESH4

IDLE

REFRESH5

REFRESH3REFRESH2

A

B

C

D

C = UNCONDITIONAL

D = UNCONDITIONAL

E = UNCONDITIONAL

REFRESH1

REFRESH0

E

F

F = UNCONDITIONAL

G = !DRAM_ACC
H = DRAM_ACC

To WAIT3 state

H

G

CLK2X

CLK1X

DRAM_REF

MUX

nRAS1:0

nCAS3:0

DRAM_ACC

Idle Ref5 Ref4 Ref2Ref3 IdleRef1 Ref0

AP-712 A

14

Figure 15. Refresh Timing Diagram (With Pending DRAM Request)

CLK2X

CLK1X

DRAM_REF

MUX

nRAS1:0

nCAS3:0

DRAM_ACC

Idle Ref5 Ref4 Ref2Ref3 Wait3Ref1 Ref0

5.0 CONCLUSION

The DRAM Controller design successfully implements a
single or dual bank 32-bit, non-interleaved DRAM
controller. This design does this while using a minimum
number of components. A standard 72-pin fast page mode
DRAM SIMM was used to take advantage of the i960 Jx
processor’s burst bus capability. This design operates at
5 volts, with bus speeds up to 33 MHz. Various DRAM
speeds, bus speeds up to 40 MHz, and wait state combina-
tions were also successfully tested with minor changes to
the basic design.

6.0 RELATED INFORMATION

This application note is one of four that are related to
DRAM controllers for the i960 processors. The following
table shows the documents and order numbers:

Document Name App.
Note # Order #

DRAM Controller for the 33 MHz i960®
CA/CF Microprocessors AP-703 272627

Simple DRAM Controller for 25/16 MHz
i960® CA/CF Microprocessors AP-704 272628

DRAM Controller for the 40 MHz i960®
CF Microprocessors AP-706 272655

To receive these documents or any other available Intel
literature, contact:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect IL 60056-7641
1-800-879-4683

To receive files that contain the timing analysis, schematics
and PLD equations for this and the other DRAM controller
application notes, contact:

Intel Corporation
America’s Application Support BBS
916-356-3600

A

A-1

APPENDIX A
ABEL FILE

Table A-1 contains the PLD equations which were used to build and test the prototype design. Table A-2 defines signal
and product term allocation. The PLD equations were created in ABEL* as a device-independent design. Using the ABEL
software, a PDS file was created and then imported into PLDSHELL* software. PLDSHELL was used to “fit” the design
into an Altera EPX780 FLEXlogic* PLD. PLDSHELL was also used to create the JEDEC file and to simulate the design.

Table A-1. i960® Jx Processor DRAM Controller ABEL File (Sheet 1 of 15)

Module JXDRAM

Title ‘ 80960 Jx DRAM Controller

Source File JXDRAM.ABL

Revision 1.0

Date 11/15/94

Designer Paul Durazo

 Intel 80960 Applications engineer’

“ **

“ Non interleaved DRAM controller for the 80960JA/JF/JD with bus speeds up to 40MHz.

“ One or two banks may be used depending on the DRAM size.

“ See DRAM_BANK state machine for further information.

“ DRAM start address is 0xA0000000

“ DRAM wait state configuration is 3,1,1,1

“ Active Low signals are designated with a (n) in front of the signal name.

“ A (!) in front of a signal signifies it is cleared to 0.

“ ie. nCAS is active low but not asserted, !nCAS is asserted or cleared to 0

“ **

“ Uxx device ‘iFX780_132’;

“ input signals

CLK1X PIN; “ 1X clock

CLK2X PIN; “ 2X clock

ICLK1X PIN; “ 1X clock fed to macrocell

COM_CLK PIN; “ Refresh clock

AD31 PIN;

AD30 PIN;

AD29 PIN;

AD28 PIN;

AD22 PIN;

nADS PIN;

W_nR PIN;

nRESET PIN;

nBLAST PIN;

nBE3 PIN;

nBE2 PIN;

nBE1 PIN;

nBE0 PIN;

A3 PIN;

A2 PIN;

AP-712 A

A-2

“output and node signals

nRAS_1 PIN istype ‘reg’ ;

nRAS_0 PIN istype ‘reg’ ;

nWE_OUT PIN istype ‘reg’ ;

MUX_OUT PIN istype ‘reg’ ;

BA3 PIN istype ‘reg’ ;

BA2 PIN istype ‘reg’ ;

DRAMREF NODE istype ‘reg’ ;

LATCH_ACC NODE istype ‘reg’ ;

DRAM_ACC NODE istype ‘com’ ;

DRAMBANK NODE istype ‘reg’ ;

REFRESH_SYNC NODE istype ‘reg’ ;

nREADY PIN istype ‘reg’ ;

nPRECAS NODE istype ‘reg’ ;

nCAS_3 PIN istype ‘reg’ ;

nCAS_2 PIN istype ‘reg’ ;

nCAS_1 PIN istype ‘reg’ ;

nCAS_0 PIN istype ‘reg’ ;

Q3 NODE istype ‘reg’ ;

Q2 NODE istype ‘reg’ ;

Q1 NODE istype ‘reg’ ;

Q0 NODE istype ‘reg’ ;

R6 NODE istype ‘reg’ ; “Refresh counter bit 6

R5 NODE istype ‘reg’ ; “Refresh counter bit 5

R4 NODE istype ‘reg’ ; “Refresh counter bit 4

R3 NODE istype ‘reg’ ; “Refresh counter bit 3

R2 NODE istype ‘reg’ ; “Refresh counter bit 2

R1 NODE istype ‘reg’ ; “Refresh counter bit 1

R0 NODE istype ‘reg’ ; “Refresh counter bit 0

C = .C.;

X = .X.;

SET_LOW = ^b0;

SET_HI = ^b1;

“ Sate | I/O pin

“ references | references

PH1 = [ICLK1X]; “ high phase of 1X clock

PH2 = [!ICLK1X]; “ low phase of 1X clock

DRAM_STATES = [Q3, Q2, Q1, Q0]; “ main dram state machine

nRAS0 = [nRAS_0]; “ Bank 0 RAS signal

nRAS1 = [nRAS_1]; “ Bank 1 RAS signal

nCAS3 = [nCAS_3];

nCAS2 = [nCAS_2];

nCAS1 = [nCAS_1];

nCAS0 = [nCAS_0];

MUX = [MUX_OUT];

BURST_ADDR = [BA3,BA2];

Table A-1. i960® Jx Processor DRAM Controller ABEL File (Sheet 2 of 15)

A AP-712

A-3

nWE = [nWE_OUT];

DRAM_BANK = [DRAMBANK];

DRAM_REF = [DRAMREF];

LATCHACC = [LATCH_ACC];

DRAMACC = [DRAM_ACC];

REFRESH = [R6, R5, R4, R3, R2, R1, R0];

nPRE_CAS = [nPRECAS];

RECOVER = ^b0000; “ RECOVER is a recovery state and is required by the processor.

IDLE = ^b0001; “ IDLE is the address state; determines if DRAM access has occurred.

WAIT3 = ^b0010; “ WAIT3-1 are wait states

WAIT2 = ^b0011; “

WAIT1 = ^b0100; “

DATA = ^b0101; “ Data state

REF5 = ^b1000; “ REF5-1 are Refresh states

REF4 = ^b1001; “

REF3 = ^b1010; “

REF2 = ^b1011; “

REF1 = ^b1100; “

REF0 = ^b1101; “

SA0 = ^b00; “ Burst address counter states

SA1 = ^b01;

SA2 = ^b10;

SA3 = ^b11;

RF0 = ^b0000000; “ Refresh counter States

RF1 = ^b0000001;

RF2 = ^b0000010;

RF3 = ^b0000011;

RF4 = ^b0000100;

RF5 = ^b0000101;

RF6 = ^b0000110;

RF7 = ^b0000111;

RF8 = ^b0001000;

RF9 = ^b0001001;

RF10 = ^b0001010;

RF11 = ^b0001011;

RF12 = ^b0001100;

RF13 = ^b0001101;

RF14 = ^b0001110;

RF15 = ^b0001111;

RF16 = ^b0010000;

RF17 = ^b0010001;

RF18 = ^b0010010;

RF19 = ^b0010011;

RF20 = ^b0010100;

RF21 = ^b0010101;

RF22 = ^b0010110;

RF23 = ^b0010111;

Table A-1. i960® Jx Processor DRAM Controller ABEL File (Sheet 3 of 15)

AP-712 A

A-4

RF24 = ^b0011000;

RF25 = ^b0011001;

RF26 = ^b0011010;

RF27 = ^b0011011;

RF28 = ^b0011100;

RF29 = ^b0011101;

RF30 = ^b0011110;

RF31 = ^b0011111;

RF32 = ^b0100000;

RF33 = ^b0100001;

RF34 = ^b0100010;

RF35 = ^b0100011;

RF36 = ^b0100100;

RF37 = ^b0100101;

RF38 = ^b0100110;

RF39 = ^b0100111;

RF40 = ^b0101000;

RF41 = ^b0101001;

RF42 = ^b0101010;

RF43 = ^b0101011;

RF44 = ^b0101100;

RF45 = ^b0101101;

RF46 = ^b0101110;

RF47 = ^b0101111;

RF48 = ^b0110000;

RF49 = ^b0110001;

RF50 = ^b0110010;

RF51 = ^b0110011;

RF52 = ^b0110100;

RF53 = ^b0110101;

RF54 = ^b0110110;

RF55 = ^b0110111;

RF56 = ^b0111000;

RF57 = ^b0111001;

RF58 = ^b0111010;

RF59 = ^b0111011;

RF60 = ^b0111100;

RF61 = ^b0111101;

RF62 = ^b0111110;

RF63 = ^b0111111;

RF64 = ^b1000000;

RF65 = ^b1000001;

RF66 = ^b1000010;

RF67 = ^b1000011;

RF68 = ^b1000100;

RF69 = ^b1000101;

RF70 = ^b1000110;

RF71 = ^b1000111;

RF72 = ^b1001000;

Table A-1. i960® Jx Processor DRAM Controller ABEL File (Sheet 4 of 15)

A AP-712

A-5

RF73 = ^b1001001;

RF74 = ^b1001010;

RF75 = ^b1001011;

RF76 = ^b1001100;

RF77 = ^b1001101;

RF78 = ^b1001110;

RF79 = ^b1001111;

RF80 = ^b1010000;

RF81 = ^b1010001;

RF82 = ^b1010010;

RF83 = ^b1010011;

RF84 = ^b1010100;

RF85 = ^b1010101;

RF86 = ^b1010110;

RF87 = ^b1010111;

RF88 = ^b1011000;

RF89 = ^b1011001;

RF90 = ^b1011010;

RF91 = ^b1011011;

RF92 = ^b1011100;

RF93 = ^b1011101;

RF94 = ^b1011110;

RF95 = ^b1011111;

RF96 = ^b1100000;

RF97 = ^b1100001;

RF98 = ^b1100010;

RF99 = ^b1100011;

RF100 = ^b1100100;

“***

“ DRAM STATE ASSIGNMENTS

“***

state_diagram DRAM_STATES

state IDLE: “ wait for a DRAM access or refresh request

 if(DRAM_REF) then REF5 “ If refresh true begin refresh states

 else

 if(DRAMACC & !DRAM_REF) then WAIT3 “ If DRAM access true continue to next state

 else

 IDLE; “ Stay in IDLE state until refresh or DRAM access occurs

state WAIT3: “ Tw, wait state 3

 if(W_nR) then WAIT1 “ If a write skip the next state for 2,1,1,1 profile

 else

 WAIT2; “ was a read so go to WAIT2 for 3,1,1,1 profile

state WAIT2: “ Tw, wait state 2

 goto WAIT1;

Table A-1. i960® Jx Processor DRAM Controller ABEL File (Sheet 5 of 15)

AP-712 A

A-6

state WAIT1: “ Tw, wait state 1

 goto DATA;

state DATA: “ Td, Data State

 if (nBLAST) then WAIT1 “ Burst not complete go to WAIT1 for 1 wait state

 else

 RECOVER; “ Burst complete goto recovery state

state RECOVER: “ Recovery State

 goto IDLE;

state REF5:

 goto REF4; “ Begin Dram Refresh, nCAS asserted coming into this state

state REF4:

 goto REF3; “ Refresh State, nRAS asserted in phase 1

state REF3:

 goto REF2; “ Refresh State, nCAS deasserted in phase 1

state REF2:

 goto REF1; “ Refresh State, nRAS deasserted in phase 2

state REF1:

 goto REF0; “

state REF0:

 if(DRAMACC) then WAIT3 “ Dram Access occured during refresh go to WAIT3 state

 else

 goto IDLE; “ No Dram Access pending go to IDLE state

“““

“nRAS0 F/F, looks at Bank 0

“““

state_diagram nRAS0

 state SET_LOW:

 if((DRAM_STATES == RECOVER) & PH1) then SET_HI

 else

 if((DRAM_STATES == REF2) & PH2) then SET_HI

 else

 SET_LOW;

 state SET_HI:

 if((DRAM_STATES == REF4) & PH1) then SET_LOW

 else

 if((DRAM_STATES == WAIT3) & PH1 & !DRAM_BANK) then SET_LOW

 else

 SET_HI;

Table A-1. i960® Jx Processor DRAM Controller ABEL File (Sheet 6 of 15)

A AP-712

A-7

“““

“RAS1 F/F, looks at Bank 1

“““

state_diagram nRAS1

 state SET_LOW:

 if((DRAM_STATES == RECOVER) & PH1) then SET_HI

 else

 if((DRAM_STATES == REF2) & PH2) then SET_HI

 else

 SET_LOW;

 state SET_HI:

 if((DRAM_STATES == REF4) & PH1) then SET_LOW

 else

 if((DRAM_STATES == WAIT3) & PH1 & DRAM_BANK) then SET_LOW

 else

 SET_HI;

“““

“ MUX F/F

“““

state_diagram MUX

 state SET_HI:

 if((DRAM_STATES == RECOVER) & PH1) then SET_LOW “ deassert MUX

 else

 SET_HI;

 state SET_LOW:

 if((DRAM_STATES == WAIT3) & PH2) then SET_HI “ assert MUX

 else

 SET_LOW;

Table A-1. i960® Jx Processor DRAM Controller ABEL File (Sheet 7 of 15)

AP-712 A

A-8

“““

“ Burst Address generated from A3:2,

“““

state_diagram BURST_ADDR

STATE SA0:

 if(!nADS & !A3 & A2) then SA1 “ load A3:2 address

else

 if(!nADS & A3 & !A2) then SA2 “ load A3:2 address

else

 if(!nADS & A3 & A2) then SA3 “ load A3:2 address

else

 if(nADS & !nREADY) then SA1 “ increment A3:2 address

else

 SA0; “ hold A3:2 address

STATE SA1:

 if(!nADS & !A3 & !A2) then SA0 “load A3:2 address

else

 if(!nADS & A3 & !A2) then SA2 “load A3:2 address

else

 if(!nADS & A3 & A2) then SA3 “load A3:2 address

else

 if(nADS & !nREADY) then SA2 “increment A3:2 address

else

 SA1; “hold A3:2 address

STATE SA2:

 if(!nADS & !A3 & !A2) then SA0 “load A3:2 address

else

 if(!nADS & !A3 & A2) then SA1 “load A3:2 address

else

 if(!nADS & A3 & A2) then SA3 “load A3:2 address

else

 if(nADS & !nREADY) then SA3 “increment A3:2 address

else

 SA2; “hold A3:2 address

STATE SA3:

 if(!nADS & !A3 & !A2) then SA0 “load A3:2 address

else

 if(!nADS & !A3 & A2) then SA1 “load A3:2 address

else

 if(!nADS & A3 & !A2) then SA2 “load A3:2 address

else

 SA3; “hold A3:2 address

Table A-1. i960® Jx Processor DRAM Controller ABEL File (Sheet 8 of 15)

A AP-712

A-9

“““

“Write Enable F/F, asserts when MUX asserts; Deasserts when CAS goes invalid

“““

state_diagram nWE

 state SET_LOW:

 if((DRAM_STATES == DATA) & !nBLAST) then SET_HI “ deassert write enable

 else

 SET_LOW;

 state SET_HI:

 if((DRAM_STATES == WAIT3) & W_nR) then SET_LOW “ assert write enable

 else

 SET_HI;

“““

“ DRAM_BANK specifies which bank will be used (BANK 0 = !AD20) or (BANK 1 = AD20).

“ For 2Mb simm decode AD20, 8Mb SIMM decode AD22, 32 Mb SIMM decode AD24.

“ All other SIMM sizes only one bank is possible and nRAS1:

“ 0 will have to be modified to reflect this.

“ The default used in this design is a 2Mb SIMM which decodes AD20.

“ If using a different SIMM size replace AD20 with the respective address bit

““

state_diagram DRAM_BANK

 state SET_HI:

 if(!nADS & AD31 & !AD30 & AD29 & !AD28 & !AD20)then SET_LOW “Bank0 sel

 else

 SET_HI;

 state SET_LOW:

 if(!nADS & AD31 & !AD30 & AD29 & !AD28 & AD20) then SET_HI “Bank1 sel

 else

 SET_LOW;

“““

“ DRAM Refresh Request F/F

“ When refresh counter = 98, REFRESH_SYNC is set. DRAM_REF is cleared upon leaving

“ the refresh states of DRAM_STATES state machine

“““

state_diagram DRAM_REF

 state SET_HI:

 if(DRAM_STATES == REF0) then SET_LOW “ Refresh states are complete

 else

 SET_HI;

 state SET_LOW:

 if(REFRESH_SYNC) then SET_HI “ Refresh required

 else

 SET_LOW;

Table A-1. i960® Jx Processor DRAM Controller ABEL File (Sheet 9 of 15)

AP-712 A

A-10

“““

“ Latch DRAM access

“““

state_diagram LATCH_ACC

 state SET_HI:

 if(DRAM_STATES == DATA) then SET_LOW “in DRAM state machine deassert

 else

 SET_HI;

 state SET_LOW:

 if(!nADS & AD31 & !AD30 & AD29 & !AD28) then SET_HI “DRAM access occurred

 else

 SET_LOW;

“““

“ DRAM Refresh counter

“ The counter uses a 7.3728 MHz clock (COM_CLK). After 98 clocks (13.3 us) a refresh

“ request (REFRESH_SYNC) bit is set.

“““

state_diagram REFRESH

STATE RF0:

 if(!DRAMREF) then RF1

else

 RF0;

STATE RF1:

 goto RF2;

STATE RF2:

 goto RF3;

STATE RF3:

 goto RF4;

STATE RF4:

 goto RF5;

STATE RF5:

 goto RF6;

STATE RF6:

 goto RF7;

STATE RF7:

 goto RF8;

STATE RF8:

 goto RF9;

STATE RF9:

 goto RF10;

STATE RF10:

 goto RF11;

STATE RF11:

 goto RF12;

STATE RF12:

 goto RF13;

Table A-1. i960® Jx Processor DRAM Controller ABEL File (Sheet 10 of 15)

A AP-712

A-11

STATE RF13:

 goto RF14;

STATE RF14:

 goto RF15;

STATE RF15:

 goto RF16;

STATE RF16:

 goto RF17;

STATE RF17:

 goto RF18;

STATE RF18:

 goto RF19;

STATE RF19:

 goto RF20;

STATE RF20:

 goto RF21;

STATE RF21:

 goto RF22;

STATE RF22:

 goto RF23;

STATE RF23:

 goto RF24;

STATE RF24:

 goto RF25;

STATE RF25:

 goto RF26;

STATE RF26:

 goto RF27;

STATE RF27:

 goto RF28;

STATE RF28:

 goto RF29;

STATE RF29:

 goto RF30;

STATE RF30:

 goto RF31;

STATE RF31:

 goto RF32;

STATE RF32:

 goto RF33;

STATE RF33:

 goto RF34;

STATE RF34:

 goto RF35;

STATE RF35:

 goto RF36;

STATE RF36:

 goto RF37;

STATE RF37:

 goto RF38;

Table A-1. i960® Jx Processor DRAM Controller ABEL File (Sheet 11 of 15)

AP-712 A

A-12

STATE RF38:

 goto RF39;

STATE RF39:

 goto RF40;

STATE RF40:

 goto RF41;

STATE RF41:

 goto RF42;

STATE RF42:

 goto RF43;

STATE RF43:

 goto RF44;

STATE RF44:

 goto RF45;

STATE RF45:

 goto RF46;

STATE RF46:

 goto RF47;

STATE RF47:

 goto RF48;

STATE RF48:

 goto RF49;

STATE RF49:

 goto RF50;

STATE RF50:

 goto RF51;

STATE RF51:

 goto RF52;

STATE RF52:

 goto RF53;

STATE RF53:

 goto RF54;

STATE RF54:

 goto RF55;

STATE RF55:

 goto RF56;

STATE RF56:

 goto RF57;

STATE RF57:

 goto RF58;

STATE RF58:

 goto RF59;

STATE RF59:

 goto RF60;

STATE RF60:

 goto RF61;

STATE RF61:

 goto RF62;

Table A-1. i960® Jx Processor DRAM Controller ABEL File (Sheet 12 of 15)

A AP-712

A-13

STATE RF62:

 goto RF63;

STATE RF63:

 goto RF64;

STATE RF64:

 goto RF65;

STATE RF65:

 goto RF66;

STATE RF66:

 goto RF67;

STATE RF67:

 goto RF68;

STATE RF68:

 goto RF69;

STATE RF69:

 goto RF70;

STATE RF70:

 goto RF71;

STATE RF71:

 goto RF72;

STATE RF72:

 goto RF73;

STATE RF73:

 goto RF74;

STATE RF74:

 goto RF75;

STATE RF75:

 goto RF76;

STATE RF76:

 goto RF77;

STATE RF77:

 goto RF78;

STATE RF78:

 goto RF79;

STATE RF79:

 goto RF80;

STATE RF80:

 goto RF81;

STATE RF81:

 goto RF82;

STATE RF82:

 goto RF83;

STATE RF83:

 goto RF84;

STATE RF84:

 goto RF85;

STATE RF85:

 goto RF86;

STATE RF86:

 goto RF87;

Table A-1. i960® Jx Processor DRAM Controller ABEL File (Sheet 13 of 15)

AP-712 A

A-14

STATE RF87:

 goto RF88;

STATE RF88:

 goto RF89;

STATE RF89

 :goto RF90;

STATE RF90:

 goto RF91;

STATE RF91:

 goto RF92;

STATE RF92:

 goto RF93;

STATE RF93:

 goto RF94;

STATE RF94:

 goto RF95;

STATE RF95:

 goto RF96;

STATE RF96:

 goto RF97;

STATE RF97:

 goto RF98;

STATE RF98:

 goto RF0 ;

“““

“ PRE_CAS used for the nCAS3:0 signals to conserve on P-Terms.

“ PRE_CAS is asserted one 2X clock before actual CAS signal asserts. This was done

“ because PRE_CAS is routed through another macrocell to produce nCAS
“ with its associated nBE.

“““

state_diagram nPRE_CAS “nREF_CAS

 state SET_LOW:

 if((DRAM_STATES == REF4) & PH2 & DRAM_REF) then SET_HI “ REF. DEASSERT

 else

 if(DRAM_STATES == DATA) then SET_HI “ CAS DEASSERT

 else

 SET_LOW;

 state SET_HI:

 if((DRAM_STATES == IDLE) & PH1 & DRAM_REF) then SET_LOW “ REF. ASSERT

 else

 if((DRAM_STATES == WAIT2) & !W_nR) #(DRAM_STATES==WAIT1)then SET_LOW

 else

 SET_HI;

Table A-1. i960® Jx Processor DRAM Controller ABEL File (Sheet 14 of 15)

A AP-712

A-15

“““

EQUATIONS

!nREADY := (DRAM_STATES == WAIT1); “ DRAM ready

DRAMACC = LATCHACC # !nADS & AD31 & !AD30 & AD29 & ! AD28; “ Flags DRAM accesses

!nCAS0 := !nPRE_CAS & (!nBE0 # DRAM_REF);

!nCAS1 := !nPRE_CAS & (!nBE1 # DRAM_REF);

!nCAS2 := !nPRE_CAS & (!nBE2 # DRAM_REF);

!nCAS3 := !nPRE_CAS & (!nBE3 # DRAM_REF);

REFRESH_SYNC := (REFRESH == RF98); “ Used to synch refresh counter to 1X clock

“**

“ INITIALIZE CONDITIONS AND CLOCKING

“**

[LATCH_ACC,REFRESH_SYNC,nREADY,DRAMREF,DRAMBANK,BA3,BA2,Q3,Q2,Q1,Q0,nWE_OUT].clk = CLK1X;

[LATCH_ACC, REFRESH_SYNC, DRAMREF, DRAMBANK, BA3, BA2, Q3, Q2, Q1, Q0].re = !nRESET;

[nREADY, nWE_OUT].pr = !nRESET;

[nPRE_CAS, nCAS3, nCAS2, nCAS1, nCAS0, nRAS_1, nRAS_0, MUX_OUT].clk = CLK2X;

[nPRE_CAS, nCAS3, nCAS2, nCAS1, nCAS0, nRAS_1, nRAS_0].pr = !nRESET;

MUX_OUT.re = !nRESET;

[R6, R5, R4, R3, R2, R1, R0].clk = COM_CLK; “ REFRESH COUNTER

[R6, R5, R4, R3, R2, R1, R0].re = !nRESET;

end JXDRAM

Table A-1. i960® Jx Processor DRAM Controller ABEL File (Sheet 15 of 15)

AP-712 A

A-16

Table A-2. Signal and Product Term Allocation

OUTPUT MACROCELLS BURIED MACROCELLS

Signal Product Terms Signal Product Terms

nRAS_1 4 nPRECAS 8

nRAS_0 4 DRAMREF 2

nWE_OUT 2 LATCH_ACC 5

MUX_OUT 2 DRAM_ACC 2

BA3 3 DRAMBANK 6

BA2 3 REFRESH_SYNC 1

nREADY 1 Q3 3

nCAS_3 2 Q2 4

nCAS_2 2 Q1 5

nCAS_1 2 Q0 5

nCAS_0 2 R6 3

R5 7

R4 6

R3 5

R2 4

R1 5

R0 6

A AP-712

Index-1

A
ACCESS state machine 3
access state machine 2
ADDRMUX state machine 5

B
burst capabilities 1

C
clock generation 3

skew 3
termination 3

D
down counter (eight-bit synchronous) 3
DRAM

burst buses 1
early write cycles 1
page mode 1

DRAM controller
block diagram 2
overview 2

DRAM design
address path logic 4
SIMMs 4

F
Frequencies 1

I
IDLE state 2

M
multiplexers

2-to-1 (74F257) 4

P
PENDING state machine 3, 5

R
RASE state machine 6
RASO state machine 6
RDEN signal 5, 6
REFREQ signal 3, 5
refresh requests

generating 3
priorities 3

S
signals

RDEN 5, 6
REFREQ 3, 5
WRE 6

SIMMs 1
termination 4

state machine
ACCESS 3
ADDRMUX 5
PENDING 3, 5
RASE 6
RASO 6

state machines
ACCESS 2
quad word read 6, 9

states
IDLE state 2

W
wait state profiles 3
WRE signal 6

	COVER
	CONTENTS
	1.0 INTRODUCTION
	1.1 Design Goals
	1.2 i960 Jx Processor Bus/Core Frequencies
	1.3 Page Mode DRAM SIMM
	1.4 Burst Capabilities for 32-Bit Bus

	2.0 BASIC DRAM CONTROLLER
	2.1 Control Logic
	2.1.1 Refresh Logic
	2.1.2 Clock Generation
	2.1.3 Wait State Profile

	2.2 Address MUX
	2.3 Address Latch Path
	2.4 SIMMS

	3.0 STATE MACHINES AND SIGNALS
	3.1 LATCH_ACC State Machine
	3.2 DRAM_ACC Signal
	3.3 DRAM_BANK State Machine
	3.4 MUX State Machine
	3.5 BURST_ADDR State Machine
	3.6 REFRESH State Machine
	3.7 REFRESH_SYNC Signal
	3.8 DRAM_REF State Machine
	3.9 nPRE_CAS State Machine
	3.10 nCAS3:0 Signals
	3.11 nRAS0 State Machine
	3.12 nRAS1 State Machine
	3.13 nREADY Signal
	3.14 nWE State Machine

	4.0 DRAM CONTROLLER ACCESS FLOW
	4.1 Single-Word Access
	4.2 Quad-Word Access
	4.3 Refresh Cycles

	5.0 CONCLUSION
	6.0 RELATED INFORMATION
	APPENDIX A ABEL FILE
	FIGURES
	Figure 1. Quad-Word Write Request with 2,1,1,1 Wait State Profile
	Figure 2. Basic DRAM Controller State Machine
	Figure 3. i960 ® Jx Processor DRAM Controller
	Figure 4. DRAM Address Multiplexers
	Figure 5. Address Latches
	Figure 6. DRAM_STATES State Machine
	Figure 7. Single-Word Read and Write State Diagram (A2 = 1)
	Figure 8. Single Word Read Timing Diagram
	Figure 9. Single Word Write Timing Diagram
	Figure 10. Quad-Word Read and Write State Diagram
	Figure 11. 3, 1, 1, 1 Quad-Word Read Timing Diagram
	Figure 12. 2, 1, 1, 1 Quad-Word Write Timing Diagram
	Figure 13. Refresh State Diagram
	Figure 14. Refresh Timing Diagram (No Pending DRAM Request)
	Figure 15. Refresh Timing Diagram (With Pending DRAM Request)

	TABLES
	Table 1. i960 ® Jx Processor’s Possible DRAM Wait State Combinations
	Table A-1. i960 ® Jx Processor DRAM Controller ABEL File
	Table A-2. Signal and Product Term Allocation

