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INTRODUCTION
It is widely accepted that system failures and down time

claim a heavy toll in terms of cost and performance. When a
system crashes, unrecoverable data may be lost. Even in the
best case, the user suffers a great deal of inconvenience.
Erroneous data or loss of data integrity is a major cause of
system failure. Hence system designers are constantly trying
to minimize the occurrence of errors in their systems.

Data errors commonly occur in storage devices such as
RAM, disks and magnetic tapes. Hence error handling schemes
are commonly aimed at protecting the data in these devices.
Dynamic memory is, in particular, highly susceptible to errors.
As we move towards systems with larger memories, data
protection schemes become increasingly relevant because
the error rate is found to increase with the memory size. Till
recently parity has been the traditional method of data protec-
tion. Parity, however, has several drawbacks: it masks out
even bit errors, it cannot locate the bit in error and beyond a
certain buswidth it can become inefficient. These factors have
lead to the development of a new breed of devices for data
protection. Error Detection and Correction circuits (EDCs or
EDACs) are today’s response to the growing need for greater
data reliability.They afford a greater level of protection than
that offered by parity, by using a higher order error correction
code (Modified Hamming code).

Implementing error detection & correction in a system in-
volves not just the hardware to perform the error checking but
also extra memory for storage of “checkbits”, which are the basis
of error detection and correction. An EDC may add some
overhead to a system in terms of speed and cost. This is,
however, compensated by a significant improvement in
system performance. The following Figures underline this point:

Given a 4M x 64 DRAM memory with an FIT(Failure in time)
specification of 2521:

MTBF (mean time between failures) without
EDC = 1.76 years
MTBF with single-bit error correcting 64-bit
EDC = 3935.4 years

The Figures given here are merely a guideline for compari-
son of the two cases and will depend entirely on the DRAM
used and the memory configuration.

 Thus EDC can be looked upon as a sophisticated parity
system with the capacity to correct. Two primary functions are
performed by an EDC unit within the framework of the memory
read and write cycles - during a memory read, errors are
detected and/or corrected and during a memory write, checkbits
are generated.
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Choosing the Right EDC
EDC considerably upgrades reliability but, as mentioned

earlier, there is a certain amount of overhead associated with
implementing EDC. This is because of the checkbit memory
required and the nanoseconds it adds to the main memory
cycle times. The checkbit overhead can be minimized by
increasing the size of the data word used to generate the
checkbits. The table below illustrates this point and shows
how parity compares with EDC for various data word sizes.

Assuming a distance-of 4 Hamming code for the EDC and
byte parity:

 As an example, consider a 32-bit EDC and a 64-bit EDC.
We see from the table above, the former requires 7 checkbits

DATA WORD PARITY BITS EDC CHECKBITS
SIZE   REQUIRED   REQUIRED

16  2 6
32 4 7
64  8 8
128  16 9

2596 tbl 01

for each 32-bit data word. Hence every 64 bits of data requires
7+7=14 checkbits in memory. A 64-bit EDC on the other hand
requires only 8 checkbits to provide single bit error correction
and dual bit error detection. Thus, as far as checkbit efficiency
goes, a 64-bit EDC is better than a 32-bit EDC. One other
advantage of a wider EDC is that less checkbit memory
implies a lower error rate in checkbit memory. Going after
even wider EDCs seems tempting in this light, but a compro-
mise has to be made because of two factors.

Prevalent system bus widths impose a practical limitation
on how wide a bus can get. It is fairly common nowadays,
however, to see a 64-bit memory bus and hence a 64-bit EDC
is often easily accomodated. An EDC that is wider than the
memory bus needs additional control and logic circuitry to
integrate the EDC with the memory system. The greater this
difference in (EDC and memory) bus widths, the more com-
plex is this interface. Also, the error handling capacity effec-
tively decreases as the EDC bus gets wider because the same
level of protection (1 bit correction,2 bit detection) is provided
for a wider word. Two 32-bit EDCs provide this for each 32-bit
word, which allows correction of some 2-bit errors and detec-
tion of some 4-bit errors for each 64-bit word. Thus, constraints
for a given system determine the optimum trade-off.

NOTE: See appendix for further details on calculation of MTBFs.
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49C466 Operation and Features

By the nature of its function, the EDC is concerned with data
transfers between the processor and memory. The IDT 49C466
has a flowthrough architecture which permits transparent data
flow through the EDC. The 49C466 also increases checkbit
efficiency by providing two 64-bit wide bidirectional data
buses.

The error detection & correction operation in the 49C466 is
similar to previous generation IDT devices. A modified Ham-
ming code is used to generate the checkbits and the syndrome
decoding is identical to cascaded mode operation in the 32-bit
EDC, the 49C465. The modified Hamming code used allows
for flagging of all single , dual and three bit errors in the 64-bit
data word. Some three bit errors alias as single bit errors,
however, and may hence be wrongly decoded by the syn-
drome decoding logic (MERR* may not be asserted). The
code allows for correction of all single bit errors in the data
word.

The 49C466 has five modes of operation. In the normal
mode, two kinds of operations are performed. During a “memory
write”, checkbits are generated based on the data that is
written and during a “memory read” single-bit errors in the data
are corrected. In the detect-only mode, the “memory write”
operation remains the same but during a “memory read” any
errors detected are flagged by ERR and MERR pins. The data
is passed though unaltered. The other three modes are useful
for testing & diagnostic purposes. The EDC mode of operation
is set by the user by loading the mode register through the
system data bus.

Read and write paths are independent of each other in the
49C466. In fact, the device has alternate paths for each of
these (read and write cycles). One path includes the 8/16-
deep data buffer while the other provides a latch in place of this
buffer. WBSEL(Write Buffer Select) and RBSEL(Read Buffer
Select) pins select the output of either the buffer or the latch
(for example - RBSEL=high selects output from the Read
Buffer rather than the MD_OUT latch, WBSEL = 0 selects the
output of the SD_IN latch rather than the Write Buffer).

Memory Write

During a memory write, the EDC generates checkbits
corresponding to the data being written to memory (data flow
from SD bus to MD bus). These are output onto the CBSYN
bus and written to checkbit memory. This is a necessary part
of EDC operation. Unless all checkbits corresponding to the
data in memory have been generated and stored in checkbit
memory, no error checking is possible.

To prevent contention on the SD bus, the SD output buffer
must be disabled, during a memory write. The MD and
checkbit output buffers must be enabled to pass data and
checkbits to memory.

There are several ways that the “write path” can be config-
ured but the maximum “write time” with input and output
latches transparent is 15ns.

Figure 2 illustrates the data path during a write operation.
The alternate write path, where the data is buffered, is shown
in Figure 3 .

Memory Read

A memory read involves checking data from memory for
errors. Given below is a description of what actually takes
place during a “read cycle”.

Data and checkbits from main memory are fed to the EDC.
Checkbits corresponding to the read data are generated
within the EDC. The two sets of checkbits are internally
compared to produce the syndrome word. The EDC then
decodes the syndrome word to check for errors.

The syndrome is also clocked into the syndrome register on
the rising edge of SYNCLK. The syndrome register contents
can be output on the CBSYN bus. The CBSEL pin controls the
output of the CBSYN bus. While CBSEL is low, checkbits
generated during a write are output. When CBSEL is high,
syndrome generated during a read are output. Figure 4 shows
the data path during a normal read operation.

A buffered read operation is illustrated in Figure 5.

Figure 1. Basic Memory Read and Write paths Through the 49C66
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Figure 2. Memory Write without Write Buffer

Figure 3. Memory Write with Write Buffer
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Beside its primary task of error checking, the 49C466
integrates certain other useful functions on chip. It supports
parity checking and generation, partial word writes and diag-
nostics. It provides the user with flexibility by providing 8/16
deep Read and Write buffers and the facility to latch all data
flowing in and out of the part.

The parity generation and checking capability in the 49C466
is very useful in checking the integrity of the data being written
to memory. Parity checking is done on data from the system
side. The parity bits are input on the EDC P0-7 pins. Parity is
then generated for the input system data and a comparison of
this and the input parity bits is carried out internally. The result
of this comparison is reflected in the PERR pin output (a
discrepancy asserts PERR ). Parity bits are also generated for
data read from memory and output on the P0-7 pins once
again. The parity type (odd or even) is selected using the
PSEL pin. The PERR signal does not affect any of the other
circuitry in the device and hence the user may safely ignore
the parity feature if his system does not support parity.

PARTIAL WORD WRITES
The 49C466 supports “partial word writes” or “byte merging”.

These refer to write operations involving words shorter than 64
bits such as a byte write. Partial word writes are handled in the
49C466 by the byte multiplexer. The 49C466 has eight BE (byte
enable) control pins. These control the byte multiplexer and
enable the system data output buffer. When a BE input is high,
it selects a byte from the MD “write back path” shown in Figure
3 and Figure 4 rather than the normal EDC write path. Each BE
input is AND-ed with the SOE signal and the result determines
which byte is output on the SD bus. A BE pin that is low disables
the SD output buffer for the particular byte referenced and
selects a byte from the write buffer or SD_in latch rather than one
from the MD write back path.

A partial word write or byte merge is analogous to a read-
modify-write cycle. The checkbit word generated by a partial
data word would be incomplete and hence incorrect. Hence
the need to differentiate the “partial word write” case from a
normal write operation. The following steps must be followed
to ensure correct generation of checkbits for the complete 64
bit word :

1. Read the contents of the location being written to.
2. Merge the partial word with these contents forming a

composite 64 bit data word.
3. Generate the 8 checkbits for this composite word.

On account of the dual bus feature of the 49C466, data may
be written to the EDC (from processor/cache) while data is
read from main memory to the EDC. This feature is useful
during partial word writes (writing less than eight bytes) and
can buy some time for the designer for whom each nanosec-
ond counts. The time required to turn the external buses
around must, however, be taken into consideration.

DESIGNING WITH THE 49C466
As typical application examples, we consider 32-bit and 64-

bit processor designs using EDC to protect the slower dy-
namic main memory. On account of its 64-bit data buses, the
49C466 is easily interfaced to 64-bit systems. As mentioned
earlier, providing a 64 bit memory subsystem bus is often
advantageous even in 32 bit processor systems. Thus, even
though the interface between 32- and 64-bit wide buses may
be slightly more complex, it is often worthwhile. Consequently
providing a 64-bit EDC may still be an attractive choice.

Figure 4. Memory Read without Read Buffer
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Figure 5. Memory Read with Read Buffer

R3000 BASED SYSTEM
The MIPS R3000 RISC architecture has attained much

popularity in recent years. Therefore, we discuss here a
design example showing the interface between the 32-bit
R3000 and the 64-bit 49C466. This typical R3000 design
employs 2 data buses. The high speed “processor” data bus
is the interface between processor, caches & buffers while the
slower ‘memory’ data bus links the buffers and I/O devices
(peripherals & memory). Providing two separate buses for the
processor and memory subsystems, in this manner, serves
multiple purposes. It reduces the traffic on each bus and
allows for different speeds and widths on the two buses.

In the design shown, the 49C466 is positioned between the
64-bit memory bus and main memory as in Figure 6. Program-
mable logic is used to generate the control signals for the
49C466 64-bit flowthruEDC. Appropriate control signals from
the R3000 processor provide input to the PAL.

The example considered here does not use the on-chip
read/write buffers of the 49C466 and the device is used in a
non-pipelined mode. External read/write buffers are provided
as the interface between the 32-bit processor bus and the 64-
bit memory bus. A 64-bit wide memory bus demands that an
appropriate scheme for (32-bit) word gathering be devised.
One method of implementing such a scheme is described
here.

On write cycles, two 32-bit words are gathered in the two
external write buffers and the 64-bit word is output to the
memory bus.

Gathering 32-bits words, in this fashion, may not always be
permissible because of requirements that the two 32-bit words
be written to specific, non-sequential locations. Such cases
are treated as partial word writes by the EDC. Each 32-bit
word write is handled as an individual partial word write cycle.

A partial word write cycle requires that the 32-bit word from the
adjoining memory location is read before the whole 64-bit
word is written back to memory.

The two categories of writes - “gathering permissible” and
“gathering not permissible” - are differentiated by comparing
the write addresses generated by the processor for the two
words. This demands that the first write address must be
latched until the next write request is received. If the two
addresses are not consecutive, a partial word write signal is
sent to the PAL. This initiates a partial word write cycle for
writing the first word to the EDC.

To understand this particular situation better, let us con-
sider a case where two write addresses have been compared
and found to be non-sequential. The first write data is buffered
in WBufA and the second one in WBufB. Each of these write
request are treated as “partial word writes” and handled in the
order they were received. In order to support byte access, the
memory must be byte addressable. The contents of

WBufA are output to the SD bus of the 49C466. To perform
the “partial word write” cycle contents of the location address
output from WBufA are simultaneously read

onto the MD bus of the 49C466. Merging of these two 64-
bit wide data words is performed inside the 49C466 and the
merged 64-bit word is output on the 49C466 MD bus and
written back to the same location. When this cycle is complete,
the same thing is done for the second write data which is
stored in WBufB.

During read cycles, the issue of gathering “reads” and
comparing read addresses can be avoided altogether by
always reading a 64-bit word from memory.The required 32
bits are selected and the rest ignored.
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Figure 6. Byte Merge

Details of this scheme, implemented with IDT parts, are
shown in Figures 7 and 8.

The design shown, uses a bus multiplexer, the
IDT49FCT804 to transfer each 32-bit word to the appropriate
SD bus lines (0-31 or 32-63). The write buffer used (IDT
79R3020) buffers both addresses and data. Two bus multi-
plexers are used to create a crossbar type of arrangement, so
that the output of each write buffer can be directed to either the
upper or lower SD lines of the 49C466.

64 BIT SYSTEMS
The 49C466 interface to a 64-bit processor is quite straight-

forward. Intel’s i860 and MIPS’ R4000 are two popular proces-
sors matching this buswidth. Figure 9 shows an i860 based
system with EDC. In the system shown all memory accesses
go through the 49C466. This kind of a setup would ensure
filtering of errors from all memory data accessed. The i860
does not support parity but external parity support circuits (like
the AMD280) enable the user to still take advantage of the
parity feature of the 49C466. This is particularly useful when
caches are employed and some monitoring of data written to
main memory is required.

As mentioned earlier, with the trend to segregate processor
and memory subsystem designs, a 64 bit memory bus is not
unlikely in a 32-bit processor design. In these cases too the
49C466 interface is similar to the one shown above.

MORE EFFECTIVE EDCS
Most present generation EDC units are able to correct only

single bit errors. Given the probability of occurrence of mul-
tiple bit errors, this is, in most cases, sufficient. The ratio of
single bit errors to dual bit errors ranges from 5:1 to 10:1. The
probability of multiple bit soft errors occurring is negligible.

Also additional hardware is required to correct more than one
bit in error. Taking these factors into account, little motivation
to move towards multiple bit error correction can exist at this
point.

Since hard errors are non-random it is possible for hard-
ware to differentiate them from soft errors. Once this is done
it is a simple matter to correct the data provided there is not
more than one soft error present. Given below is a brief
description of how hard errors can be eliminated.

When an error occurs, the error data is latched in the “error
data register” of the 49C466. This data can be read by the
processor in the Error Data Mode. In order to filter out hard
errors, this data should be inverted and written back to the
same location. A subsequent read will serve to identify hard
errors, for due to the hard error, the affected bits remain at their
original logic level.

Consider a case where bits 3,6 and 7 (shown by bold
letters) are affected by hard errors:

Correct Data = 10101001
Error Data (ED) = 01100001
Inverted error data = 10011110
Inverted error data after
subsequent read (SIED) = 01010110
By XOR-ing the Error Data

with the data from the subsequent
read, the bits in (hard) error are
isolated (indicated by zeroes).
(SIED) XOR (ED) = 00110111

 Thus, all that is externally needed to perform this check is
XOR logic.
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MEMORY SCRUBBING
An alternative (or in addition) to putting the EDC directly in

the read/write path, is putting it in the DRAM refresh path. This
ensures that memory is periodically checked for data validity.
This is a good practice as it prevents buildup of single bit errors
at infrequently accessed memory locations. There are, how-
ever, chances of errors slipping through the net in this scheme
when an error occurs between a memory refresh and the next
memory read or write.

CONCLUSIONS
The urge to provide greater value and reliability in today’s

competitive computer systems, is likely to make EDC a
standard feature in the near future. With the continuing trend
towards wider buses, it is only natural to move towards wider
EDCs. This also makes the EDC implementation more effi-
cient. IDT is at the forefront of this new generation of EDCs
with the powerful new 64-bit flowthruEDC, the 49C466. The
49C466 has an edge over it’s competition by providing several
useful features such as byte merge capability, 16 deep buff-
ering, latches, diagnostic registers, parity generation and
checking and competitive detect and correct times. Currently
the device is available in 208 pin PGA and PQFP packages.
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APPENDIX

MTBF Calculations

DRAM manufacturers specify a soft error rates in terms of
FITs (failures in time). Assume a 1M x 1 DRAM with soft error
rate = 252 FITs

Thus,
MTBF for each 1M x 1 DRAM chip =            = 453 years

MTBF for a 4M x 64
memory system (without EDC) =              = 1.76 years

[ A memory system without EDC assumes a system failure
each time a single bit error occurs. This may not be the reality
but this exercise is aimed at showing the difference between
two analogous cases, hence such assumptions are in place.
Failures due to all higher order (dual, three bit, etc.) errors can
be safely ignored in this case due to the overwhelming domi-
nance of single bit errors over other higher order errors. ]

 With EDC, extra memory is required to store checkbits,
hence the number of DRAM chips required for the same
memory system goes up.

Checkbit memory (with 64 bit
EDC) required for the above system =      x 4 x 64 = 32 chips

Total memory system chip count = ( 4 x 64 ) + 32 = 288

So now,
Memory system MTBF =         = 1.57 years

Now if we assume that with EDC, all single bit errors are
corrected, failures due to dual bit errors become dominant.
Neglecting failures due to higher order errors, we get an
approximation of the MTBF using the following formula :

MTBF (with EDC) =
(MTBF without EDC) x √(                                      )

= 1.57 x √(                    ) = 3935.4 years

Thus we see that there is a significant improvement in the
MTBF of a system with EDC.

Figure 11. Flowchart for Read Buffer and
Bus Multiplexer Control During Memory Read
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Figure 10. Flowchart for Write Buffer and Bus Multiplexer Control During Memory Write


