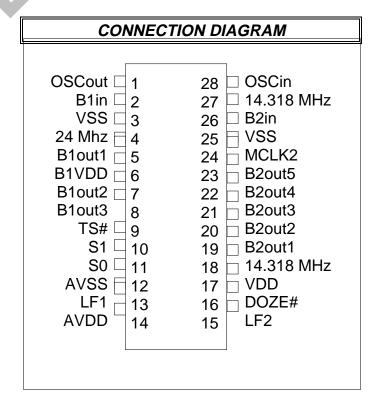


Approved Product

PRODUCT FEATURES

- Supports PentiumTM asynchronous PCI system board designs using mobile Triton core logic
- Integrates system clocks and distribution buffers
- Operates from 5V or 3.3V supply
- Separate B1 buffer VDD supports mixed 5V/3.3V outputs
- Doze and power down low power operating modes
- 60 mA buffer switching current
- 28 Pin SSOP package for minimum board space


FREQUENCY SELECTION						
S1	S0	MCLK				
		DOZE# = 1	P LE# 7			
0	0	66.66	33.3			
0	1	50	33.3			
1	0	60	33.3			
1	1	1	23.3			

APPLICATIONS

Two 3.3V operating odes support new low voltage components on the CPU bus. Operating the B1OUT* buffers at 3.3V (1VDF) and routing the CPU clock through Book districtions as 3.7 signal to the CPU bus. 60mA on hing current provided at the B1out* buffers operated at 3 volts.

Br buffers can distribute the CPU signal at 3.3V if the bre logic VDD and B1VDD=3.3V. With this contration, the CPU signal can be distributed to 8 traces with up to 2 planar loads per trace.

Approved Product

PIN DESCRIPTION

OSCin OSCout- These pins form an on-chip reference oscillator when connected to terminals of an external parallel resonant crystal (nominally 14.318 MHz). OSCin may also serve as input for an externally generated reference signal.

S0 and S1- Standard frequency select inputs. These inputs control the high speed MCLK2, frequency selection. All these inputs have internal pull-ups. MCLK2 switches smoothly to changes in these inputs.

The output frequency selection is shown on page 1.

MCLK2 - Master clock output. Programmable output frequencies can be selected using S0-S1 inputs.

DOZE# - DOZE control pin. When DOZE# is nigh, the clock chip operates in the standard mode. We en this pin goes low, output frequencies are switch to the preprogrammed DOZE frequencies. Switching DOZE frequencies occurs smoothly to all we tracking internal PLL. This pin has an internal pull-

B1in and B2in - On-chip by inputs. These and have internal pull-up.

B1out - Buffered outputs in. Sw ching current and output high level con. "led B1VDD.

B2out - Buffered outputs of B2 buffer. Switching current and output high level or arolled by VDD.

24 MHz - SIO clock utput

TS# - Logic w on this put * states all PLL outputs if S1=S0 = .gic igh. PLL's stopped to reduce power and all circuitry reset. Other states of S1 and S0 put circ in a test moo. This pin has an internal pull-up.

1.318 Az- 14.318 MHz output. Buffered output from on the reference oscillator or externally provided reference.

LF1 and LF2 - These are the phase detector outputs for the lock generators. They are single-ended, tristate put for use as loop error signal. A 0.1uF capacitor to ground should be connected from this pin to form the loop filter. Grounding LF puts PLL in low power mode.

VSS- Circuit ground

VDD- Positive power supply

AVDD- Analog positive power supply

AVSS- Analog circuit ground

B1VDD - 3.3V/5V logic level control for B1out buffers. B1VDD \leq VDD.

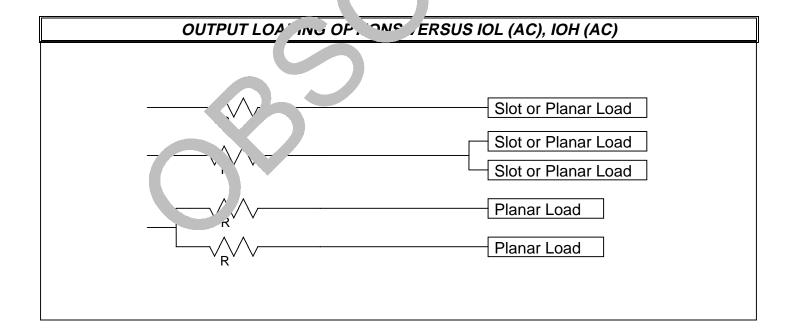
Approved Product

MAXIMUM RATINGS

Voltage Relative to VSS -0.3VVoltage Relative to VDD 0.3VAmbient Temperature: $-0^{\circ}C$ to $+70^{\circ}C$ Storage Temperature: $-65^{\circ}C$ to $+150^{\circ}C$ Maximum Power Supply: 7V This device contains circuitry to protect the inputs against damage due to high static voltages or electric field; however, precaution should be taken to avoid application of any voltage higher than the maximum rated voltages to this freuit. Or proper operation, Vin and Vout should for a contained to the range:

√SS<(Vin \ Vou+ \ VDD

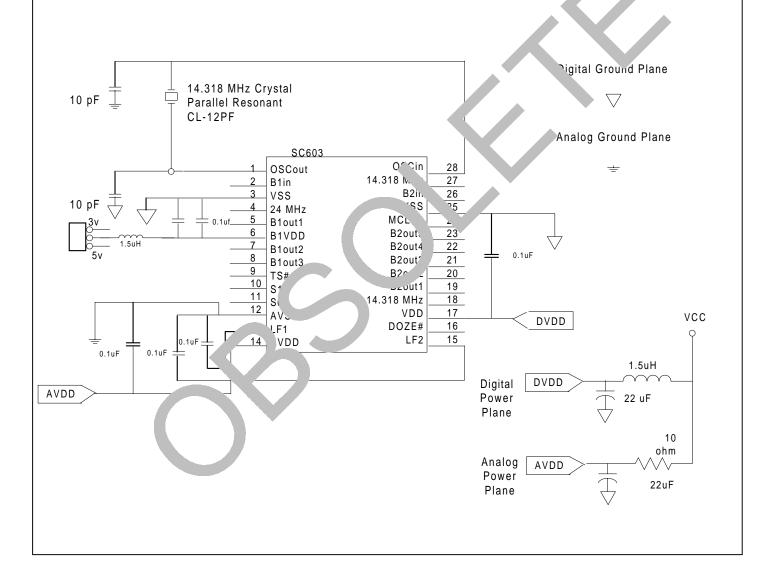
Unused in St. st always Led to an appropriate logic voltage level ("ther VSS or VDD).


ELECTRICAL CHAR/ TERV TICS Characteristic Symbol Min Typ Max nits **Conditions** Input Low Voltage VIL 8.0 Vuc VIH Input High Voltage 2.0 Vdc All Inputs Input Low Current with Pull IIL TS#, S0-S1 Inputs uA 5 up or Pull-down ±50 IIH 5 TS#, S0-S1 Inputs uΑ Input High Current with Pull-up or Pull-down ±50 Output Low Voltage 8.0 All Outputs IOL = 12 mAOutput High Voltage Vdc All Outputs JΗ 2.4 IOH=12mA Tri-State Leakage June. 107 LF1 and LF2 10 uΑ Dynamic Suppl Current NC. 30 MCLK2 = 50 MHzmΑ TS# = low, S1=S0= HighStatic Supply current ICC(PD) 300 иΑ Short Circuit Curi ' 25 **ISC** mΑ

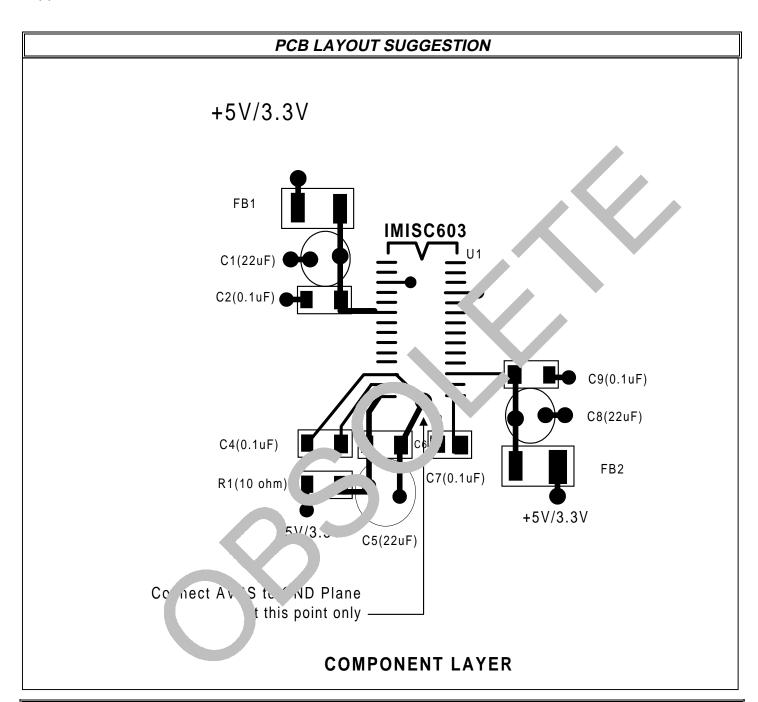
AVDD = VDD = $5V \pm 10\%$, B1VDD = $3.3v \pm 10\%$ TA = 0° C to $+70^{\circ}$ C

Approved Product

SWITCHING CHARACTERISTICS						
Characteristic	Symbol	Min	Тур	Max	Units	Conditions
Output Rise (0.4V - 2.0V) and Fall (2.0V-0.4V) time All Outputs	tTLH, tTHL	-	-	1.5	ns	15 pf Load
Output Duty Cycle		45	50	55	%	Measured at 1.5V
Buffer Propagation Delay tPLH, - 5		ns	∫ pf Lo₂ Measured at 1.5V			
Bin to Bout	tPHL					
Buffer out Skew	tSKEW	-	-	250	ps	15 p oad Masured at 1.5V
All B1 and B2 Buffer Outputs						
ΔPeriod Adjacent Cycles MCLK2	ΔΡ	-	-	±200	ps	-
Jitter Absolute MCLK2	t jab	-	±200	-	DS	-
Input Rise/Fall Time S0-S1		-	-	3	us	-
Switching Current Low:	IOL (AC)	-	60	-	mA	VOL = 1.5V
Switching Current High:	IOH (AC)	-	50	-	r	VOL = 1.5V
$V = 5V \pm 10\%$, B1VDD = 3.3V $\pm 10\%$, TA = 0°C to 70°C						

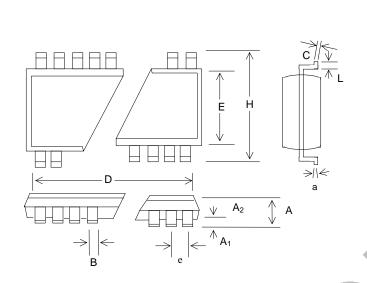


Approved Product

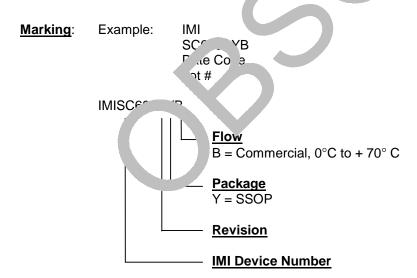

APPLICATION SUGGESTION

- NOTE 1: Connect analog ground (AVSS) to PC Board ground through one point only.
- NOTE 2: Caps connected to pins 6, 14, and 17 should be as close as possible to their VDD pins.
- NOTE 3: If VDD at clock generator ramps up more than 100 MV DC within a 5 us time period from turning disk drive off, etc.). The values of the DVDD and AVDD filter components should be increased.

Approved Product


NOTES

- 1) Power supply bypass cap $(0.1\mu\text{F})$ must be positioned close to VDD pins to be effective.
- 2) LF caps must be low leakage, such as multilayer ceramic Z5U or X7r material.


Approved Product

PACKAGE DRAWING AND DIMENSIONS

28 PIN SSOP OUTLINE DIMENSIONS							
		INCHES			MILLIMETERS		
SYMBOL	MIN	NOM	, X	MIN	NOM	MAX	
Α	0.068	0.073	0.078	1.73	1.86	1.99	
A ₁	0.002	0.0	0.00	0.05	0.13	0.21	
A2	0.066	.068	10	1.65	1.73	1.78	
В	0.010	0.012	15	<u>5</u>	0.30	0.38	
С	0 5	ો.006	0.00	0.13	0.15	0.22	
D	0.397	0. 3	0.407	10.07	10.20	10.33	
E	0.205	0.20ა	0.212	5.20	5.30	5.38	
	0.0256 BSC			0.65 BSC			
	ر301`.	0.307	0.311	7.65	7.80	7.90	
а	0°	4°	8°	0°	4°	8°	
L	0	0.030	0.037	0.55	0.75	0.95	

ORD' KING II TOK. 1 ATION				
Part Number	Package Type		Production Flow	
IMISC603AYB	28 Pin SSOP		mmercial, C 2 to + 70°C	

