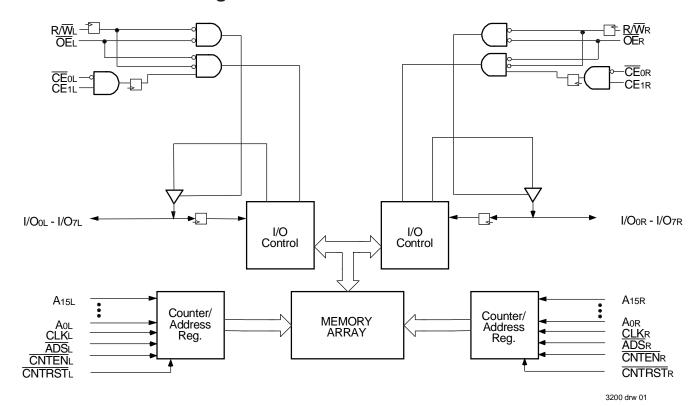


HIGH-SPEED 64K x 8 SYNCHRONOUS DUAL-PORT STATIC RAM

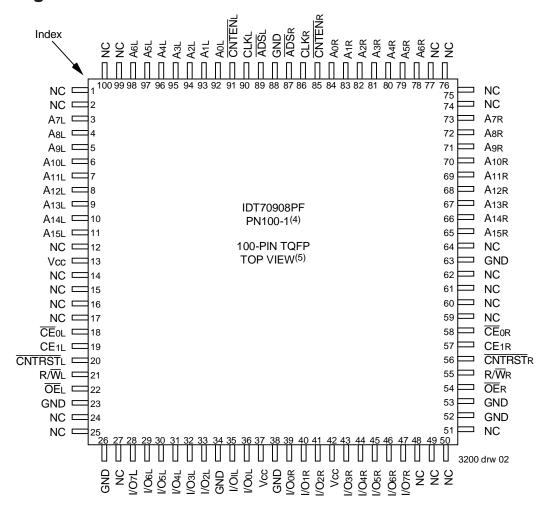

PRELIMINARY IDT70908S/L

Features:

- True Dual-Ported memory cells which allow simultaneous access of the same memory location
- High-speed clock to data access
 - Commercial: 20/25/30ns (max.)
- Low-power operation
 - IDT70908S
 - Active: 950mW (typ.) Standby: 5mW (typ.)
 - IDT70908L
 - Active: 950mW (typ.) Standby: 1mW (typ.)
- Flow-Through output mode.
- Counter enable and reset features
- Dual chip enables allow for depth expansion without additional logic

- Full synchronous operation on both ports
 - 4ns setup to clock and 1ns hold on all control, data, and address inputs
 - Data input, address, and control registers
 - Fast 20ns clock to data out
 - Self-timed write allows fast cycle time
 - 25ns cycle time, 40MHz operation
- Separate upper-byte and lower-byte control for multiplexed bus and bus matching compatibility
- * TTL- compatible, single 5V (±10%) power supply
- Industrial temperature range (-40°C to +85°C) is available for selected speeds
- Available in 84-pin Pin Grid Array (PGA) and 100-pin Thin Quad Flatpack (TQFP) packages

Functional Block Diagram


JUNE 1999

The IDT70908 is a high-speed 64K x 8 bit synchronous Dual-Port

RAM. The memory array utilizes Dual-Port memory cells to allow simultaneous access of any address from both ports. Registers on control, data, and address inputs provide minimal setup and hold times. The timing latitude provided by this approach allows systems to be designed with very short cycle times.

With an input data register, the IDT70908 has been optimized for applications having unidirectional or bidirectional data flow in bursts. An automatic power down feature, controlled by \overline{CE}_0 and CE₁, permits the on-chip circuitry of each port to enter a very low standby power mode. Fabricated using IDT's CMOS high-performance technology, these devices typically operate on only 950mW of power.

Pin Configurations (1,2,3)

- 1. All Vcc pins must be connected to power supply.
- All GND pins must be connected to ground supply.
- 3. Package body is approximately 14mm x 14mm x 1.4mm.
- This package code is used to reference the package diagram.
- 5. This text does not indicate orientation of the actual part-marking.

Pin Configurations^(1,2,3) (con't.)

	63	61	60	58	55	54	51	48	46	45	42
11	A7R	A9R	A10R	A12R	A15R	NC	NC	CNT RSTR	ŌĒR	GND	NC
	66	64	62	59	56	49	50	47	44	43	40
10	A4R	A6R	A8R	A11R	A14R	CE1R	CE ₀ R	R/WR	GND	NC	I/O6R
	67	65			57	53	52			41	39
09	AзR	A5R			A13R	GND	NC			I/O7R	I/O5R
	69	68						ı		38	37
08	A1R	A2R			33						I/O3R
	72	71	73								34
07	CLKR	CNT ENR	ADSR	IDT70908G						I/O1R	
	75	70	74		G84-3 ⁽⁴⁾ 32					31	36
06	ADSL	A0R	GND		_	4-PIN PO			GND	Vcc	Vcc
	76	77 CNIT	78		TC	OP VIEW	/(5)		28	29	30
05	CLKL	CNT ENL	AoL						GND	I/O1L	I/OoL
	79	80								26	27
04	A1L	A ₂ L								I/O ₃ L	I/O ₂ L
	81	83			7	11	12			23	25
03	A3L	A5L			A13L	Vcc	NC			I/O6L	I/O4L
	82	1	2	5	8	10	14	17	20	22	24
02	A4L	A7L	A8L	A11L	A14L	NC	CE ₀ L	R/WL	GND	I/O7L	I/O5L
	84	3	4	6	9	15	13	16	18	19	21
01	A6L	A9L	A10L	A12L	A15L	CE1L	NC	CNT RSTL	ŌĒL	GND	NC
1	Α	В	С	D	Е	F	G	Н	J	K	L
/										32	00 drw 03
INDEX											

NOTES:

- 1. All Vcc pins must be connected to power supply.
- 2. All GND pins must be connected to ground supply.
- 3. Package body is approximately 1.12in x 1.12in x .16in
- 4. This package code is used to reference the package diagram.
- 5. This text does not indicate orientation of the actual part-marking.

Pin Names

Left Port	Right Port	Names			
ŒL, CE1L	CER, CE1R	Chip Enable			
R/WL	R/WR	Read/Write Enable			
ŌĒL	ŌĒR	Output Enable			
A0L - A15L	A0R - A15R	Address			
I/O ₀ L - I/O ₇ L	I/O ₀ R - I/O ₇ R	Data Input/Output			
CLKL	CLKR	Clock			
ĀDSL	ADS R	Address Strobe			
CNTENL	<u>CNTEN</u> R	Counter Enable			
CNTRSTL	CNTRSTR	Counter Reset			
V	CC	Power			
Gl	ND	Ground			

Truth Table I—Read/Write and Enable Control^(1,2,3)

ŌĒ	CLK	Œ	CE ₁	R/W	I/O ₀₋₇	Mode
Х	↑	Η	Х	Х	High-Z	Deselected
Х	↑	Х	L	Х	High-Z	Deselected
Х	↑	L	Ι	L	Din	Write
L	↑	L	Ι	Н	Douт	Read
Н	Х	L	Η	Х	High-Z	Outputs Disabled

3200 tbl 02

NOTES:

- 1. "H" = VIH, "L" = VIL, "X" = Don't Care.
- 2. ADS, CNTEN, CNTRST = X.
- 3. $\overline{\text{OE}}$ is an asynchronous input signal.

Truth Table II—Address Counter Control(1,2)

Address	Previous Address	CLK	ADS	CNTEN	CNTRST	1/0	Mode
Х	Х	1	Н	Н	L	Dvo(0)	Counter Reset to Address 0
An	Х	1	L ⁽³⁾	Н	Н	DVO(n)	External Address Utilized
Х	An	1	Н	Н	Н	DVO(n)	External Address Blocked—Counter Disabled
Х	An	1	Χ	L ⁽⁴⁾	Н	DVO(n+1)	Counter Enable—Internal Address Generation

NOTES: 3200 tbl 03

- 1. "H" = VIH, "L" = VIL, "X" = Don't Care.
- 2. \overline{CE}_0 , \overline{LB} , \overline{UB} , and \overline{OE} = V_{IL}; CE₁ and R/ \overline{W} = V_{IH}.
- 3. ADS is independent of all other signals including $\overline{\text{CE}}_0$ and $\overline{\text{CE}}_1$.
- 4. The address counter advances if CNTEN = VIL on the rising edge of CLK, regardless of all other signals including CEo and CE1.

Recommended Operating Temperature and Supply Voltage^(1,2)

Grade	Ambient Temperature	GND	Vcc
Commercial	0°C to +70°C	0V	5.0V <u>+</u> 10%
Industrial	-40°C to +85°C	0V	5.0V <u>+</u> 10%

3200 tbl 04

3200 tbl 06

NOTES:

- 1. This is the parameter TA
- Industrial temperature: for specific speeds, packages and powers contact your sales office.

Maximum DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	4.5	5.0	5.5	٧
GND	Ground	0	0	0	V
VIH	Input High Voltage	2.2	_	6.0(1)	V
VIL	Input Low Voltage	-0.5 ⁽²⁾	_	0.8	V

3200 tbl 05

MOTEC

- 1. VTERM must not exceed Vcc + 10%.
- 2. $V_{IL} \ge -1.5V$ for pulse width less than 10ns.

Absolute Maximum Ratings(1)

71355141	o maximi	- tatingo	
Symbol	Rating	Commercial & Industrial	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
TBIAS	Temperature Under Bias	-55 to +125	°C
Тѕтс	Storage Temperature	-55 to +125	°C
Іоит	DC Output Current	50	mA

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- VTERM must not exceed Vcc + 10% for more than 25% of the cycle time or 10ns maximum, and is limited to ≤ 20mA for the period of VTERM ≥ Vcc + 10%.

Capacitance⁽¹⁾

(TA = +25°C, f = 1.0MHz) TQFP Only

Symbol	Parameter	Conditions ⁽²⁾	Max.	Unit
CIN	Input Capacitance	VIN = 3dV	9	pF
Couт ⁽³⁾	Output Capacitance	Vout = 3dV	10	pF

3200 tbl 07

NOTES

- These parameters are determined by device characterization, but are not production tested.
- 3dV references the interpolated capacitance when the input and output switch from 0V to 3V or from 3V to 0V.
- 3. Cout also references Ci/o.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range (Vcc = 5.0V ± 10%)

			7090	8S/L	
Symbol	Parameter	Test Conditions	Min.	Max.	Unit
lu	Input Leakage Current ⁽¹⁾	Vcc = 5.5V, Vin = 0V to Vcc	_	10	μΑ
llo	Output Leakage Current	CE0 = VIH or CE1 = VIL, VOUT = 0V to VCC	_	10	μΑ
Vol	Output Low Voltage	IoL = +4mA	-	0.4	V
Voh	Output High Voltage	IOH = -4mA	2.4	_	V

NOTE:

1. At Vcc ≤ 2.0V input leakages are undefined.

3200 tbl 08

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range $^{(6,7)}$ (vcc = 5V ± 10%)

					70908 Com'l		7090 Com'l		70908 Com'l		
Symbol	Parameter Parameter	Test Condition	Versi	on	Typ. ⁽⁴⁾	Max.	Typ. ⁽⁴⁾	Max.	Тур. (4)	Max.	Unit
lcc	Current	CEL and CER= VIL Outputs Open	COM'L	SL	210 210	390 350	200 200	345 305	190 190	325 285	mA
	(Both Ports Active)	$f = fMAX^{(1)}$	IND	SL			1 1				
ISB1	Standby Current (Both Ports - TTL	CEL = CER = VIH f = fMAX ⁽¹⁾	COM'L	S L	50 50	135 115	50 50	110 90	50 50	110 90	mA
	Level Inputs)		IND	SL							
ISB2	Standby Current (One Port - TTL	$\overline{\underline{C}}\overline{\underline{E}}$ "A" = VL and $\overline{C}\overline{\underline{E}}$ "B" = VH $^{(3)}$	COM'L	S L	140 140	270 240	130 130	230 200	120 120	220 190	mA
	Level Inputs)	Active Port Outputs Open, f=fMAX ⁽¹⁾	IND	SL							
ISB3	Full Standby Current (Both Ports - All	Both Ports CER and CEL ≥ VCC - 0.2V	COM'L	SL	1.0 0.2	15 5	1.0 0.2	15 5	1.0 0.2	15 5	mA
	CMOS Level Inputs)	$VIN \ge VCC - 0.2V \text{ or } VIN \le 0.2V, f = 0^{(2)}$	IND	S L			1 1				
ISB4	Full Standby Current (One Port - All CMOS Level Inputs)	\overline{CE} "A" $\leq 0.2V$ and \overline{CE} "B" $\geq VCC - 0.2V^{(5)}$	COM'L	SL	130 130	245 225	120 120	205 185	110 110	195 175	mA
	Ovico Level Ilipuis)	V IN \geq \overline{V} CC - 0.2 \overline{V} or V IN \leq 0.2 \overline{V} , Active Port Outputs Open, $f = f$ MAX $^{(1)}$	IND	S L					_		

3200 tbl 09

- 1. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency clock cycle of 1/tcyc, using "AC TEST CONDITIONS" at input levels of GND to 3V
- 2. f = 0 means no address, clock, or control lines change. Applies only to input at CMOS level standby.
- 3. Port "A" may be either left or right port. Port "B" is the opposite from port "A".
- 4. $\underline{\text{Vcc}} = 5\text{V}$, $\overline{\text{TA}} = 25\underline{^{\circ}\text{C}}$ for Typ, and are not production tested. $\underline{\text{lcc}} \, \underline{\text{pc}} (f=0) = 150 \text{mA}$ (Typ).
- 5. $\overline{CE}x = V_{IL}$ means $\overline{CE}_{0x} = V_{IL}$ and $CE_{1x} = V_{IH}$
 - $\overline{CE}x$ = VIH means \overline{CE}_0x = VIH or CE1x = VIL
 - $\overline{\text{CE}}\text{x} \le 0.2\text{V}$ means $\overline{\text{CE}}\text{ox} \le 0.2\text{V}$ and $\text{CE}\text{1x} \ge \text{Vcc} 0.2\text{V}$
 - $\overline{CE}x \ge Vcc 0.2V$ means $\overline{CE}ox \ge Vcc 0.2V$ or $CE_1x \le 0.2V$
 - "X" represents "L" for left port or "R" for right port.
- 6. 'X' in part number indicate power rating (S or L).
- 7. Industrial temperature: for other speeds, packages and powers contact your sales office.

AC Test Conditions

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	3ns Max.
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
Output Load	Figures 1,2 and 3

3200 tbl 10

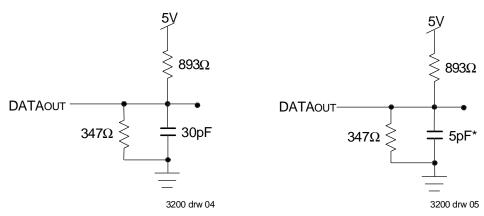


Figure 1. AC Output Test load.

Figure 2. Output Test Load (For tcklz, tckHz, tolz, and toHz).
*Including scope and jig.

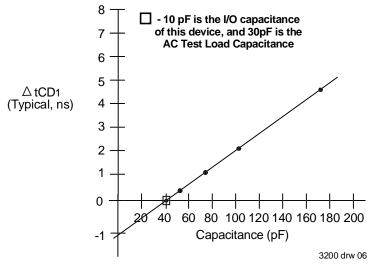
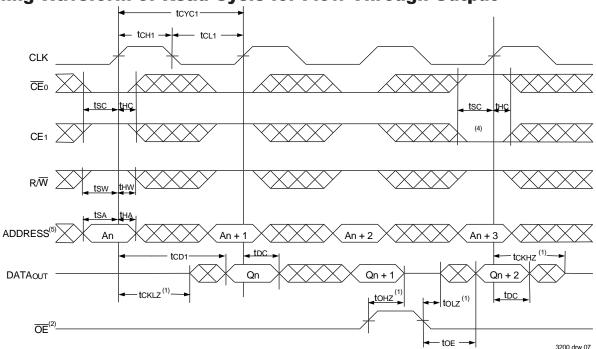


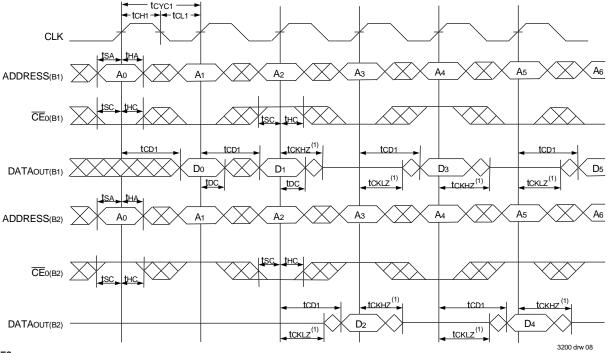
Figure 3. Typical Output Derating (Lumped Capacitive Load).

AC Electrical Characteristics Over the Operating Temperature Range (Read and Write Cycle Timing) $^{(2,3,4)}$

 $(Vcc = 5V \pm 10\%, Ta = 0^{\circ}C \text{ to } +70^{\circ}C)$

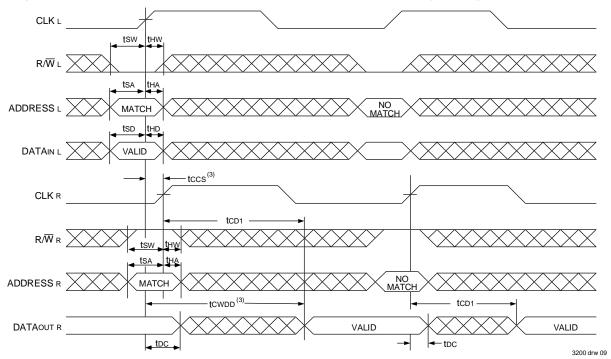

	V ± 10%, TA = 0°C to +70°C)		08X20 I Only		8X25 I Only	7090 Com'	08X30 I Only	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
tcYC1	Clock Cycle Time (Flow-Through) ⁽²⁾	25	_	30		35		ns
tCH1	Clock High Time (Flow-Through) ⁽²⁾	12	_	12		12		ns
ta_1	Clock Low Time (Flow-Through) ⁽²⁾	12	_	12		12		ns
tr	Clock Rise Time	_	3		3		3	ns
tr	Clock Fall Time	_	3	_	3		3	ns
tsa	Address Setup Time	4	_	4		4		ns
tha	Address Hold Time	1	_	1		1		ns
tsc	Chip Enable Setup Time	4	_	4		4		ns
thc	Chip Enable Hold Time	1	_	1		1		ns
tsw	R/W Setup Time	4	_	4		4		ns
tHW	R/W Hold Time	1	_	1		1		ns
tsD	Input Data Setup Time	4	_	4		4		ns
thD	Input Data Hold Time	1	_	1		1		ns
tsad	ADS Setup Time	4	_	4		4		ns
thad	ADS Hold Time	1	_	1		1		ns
tscn	CNTEN Setup Time	4	_	4		4	_	ns
t HCN	CNTEN Hold Time	1	_	1		1	_	ns
tsrst	CNTRST Setup Time	4	_	4		4	_	ns
tHRST	CNTRST Hold Time	1	_	1	_	1	_	ns
toe	Output Enable to Data Valid	_	12	_	12	_	15	ns
toLZ	Output Enable to Output Low-Z ⁽¹⁾	2	_	2		2	_	ns
tonz	Output Disable to Output High-Z ⁽¹⁾	1	7	1	7	1	7	ns
tCD1	Clock to Data Valid (Flow-Through) (2)	_	20	_	25	_	30	ns
toc	Data Output Hold After Clock High	2	_	2	_	2		ns
tckHz	Clock High to Output High-Z (1)	2	9	2	9	2	9	ns
tCKLZ	Clock High to Output Low-Z ⁽¹⁾	2	_	2	_	2		ns
Port-to-Port [Delay	<u> </u>		•	•			
tcwdd	Write Port Clock High to Read Data Delay		40		40		50	ns
tccs	Clock-to-Clock Setup Time	_	15		15		20	ns

NOTES:

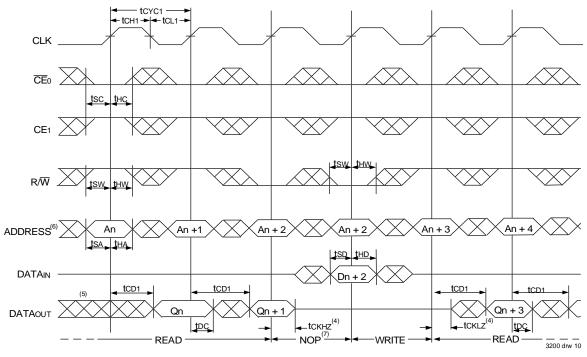

- Transition is measured ±200mV from Low or High-impedance voltage with the Output Test Load (Figure 2).
 This parameter is guaranteed by device characterization, but is not production tested.
- 2. All input signals are synchronous with respect to the clock except for the asynchronous Output Enable (OE).
- 3. 'X' in part number indicates power rating (S or L).
- 4. Industrial temperature: for specific speeds, packages and powers contact your sales office.

3200 tbl 11

Timing Waveform of Read Cycle for Flow-Through Output⁽³⁾

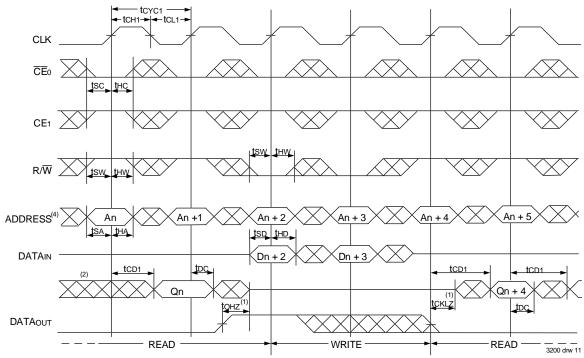


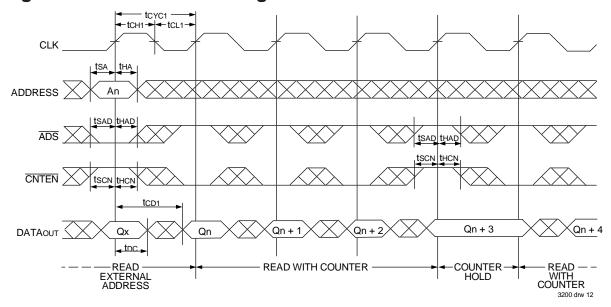
Timing Waveform of a Bank Select Flow-Through Read^(6,7)



- 1. <u>Transition is measured ±200mV from Low or High-impedance voltage with the Output Test Load (Figure 2).</u>
- 2. $\overline{\text{OE}}$ is asynchronously controlled; all other inputs are synchronous to the rising clock edge.
- 3. $\overline{ADS} = V_{IL}$, \overline{CNTEN} and $\overline{CNTRST} = V_{IH}$.
- 4. The output is disabled (High-impedance state) by $\overline{\text{CE}}_0 = \text{V}_{\text{IH}}$ or $\text{CE}_1 = \text{V}_{\text{IL}}$.
- 5. Addresses do not have to be accessed sequentially since \overline{ADS} = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only.
- B1 Represents Bank #1; B2 Represents Bank #2. Each Bank consists of one IDT70908 for this waveform. ADDRESS(B1) = ADDRESS(B2) in this situation.
- 7. $\overline{CE}_{0(B2)}$, \overline{OE} , and $\overline{ADS} = V_{IL}$; R/\overline{W} , \overline{CNTEN} , and $\overline{CNTRST} = V_{IH}$.

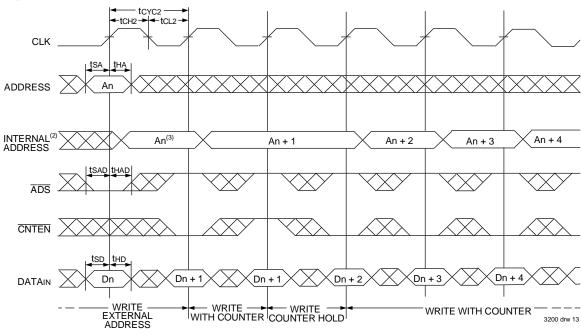
Timing Waveform of Left Port Write to Flow-Through Right Port Read (1,2)


Timing Waveform of Flow-Through Read-to-Write-to-Read $(\overline{OE} = V_{IL})^{(1)}$

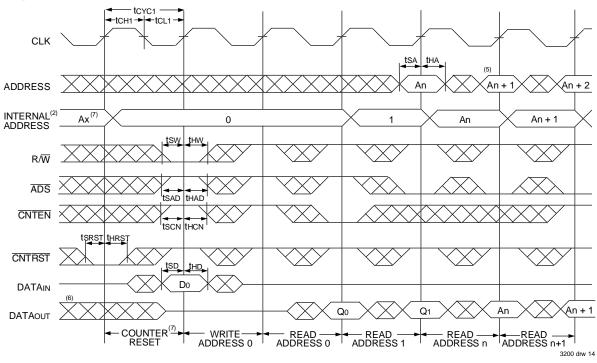

- 1. $\overline{\text{CE}}_0$ and $\overline{\text{ADS}}$ = VIL; CE1, $\overline{\text{CNTEN}}$, and $\overline{\text{CNTRST}}$ = VIH.
- 2. \overline{OE} = V_{IL} for the Right Port, which is being read from. \overline{OE} = V_{IH} for the Left Port, which is being written to.
- 3. If tccs ≤ maximum specified, then data from right port READ is not valid until the maximum specified for tcwpd.

 If tccs > maximum specified, then data from right port READ is not valid until tccs + tcp1, tcwpd does not apply in this case.
- Transition is measured ±200mV from Low or High-impedance voltage with the Output Test Load (Figure 2).
- 5. Output state (High, Low, or High-impedance is determined by the previous cycle control signals.
- 6. Addresses do not have to be accessed sequentially since ADS = ViL constantly loads the address on the rising edge of the CLK; numbers are for reference use only.
- 7. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to gaurantee data integrity.

Timing Waveform of Flow-Through Read-to-Write-to-Read (OE Controlled)(3)



Timing Waveform of Flow-Through Read with Address Counter Advance⁽³⁾



- 1. Transition is measured ±200mV from Low or High-impedance voltage with the Output Test Load (Figure 2).
- 2. Output state (High, Low, or High-impedance is determined by the previous cycle control signals.
- \overline{CE}_0 and $\overline{ADS} = V_{IL}$; CE₁, \overline{CNTEN} , and $\overline{CNTRST} = V_{IH}$.
- 4. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only.

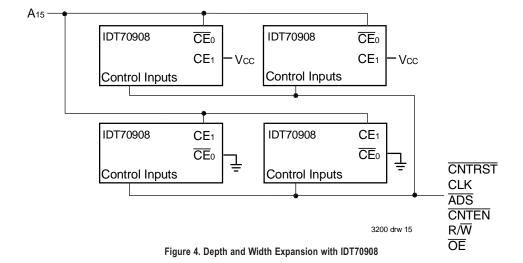
Timing Waveform of Write with Address Counter Advance⁽¹⁾

Timing Waveform of Counter Reset⁽⁴⁾

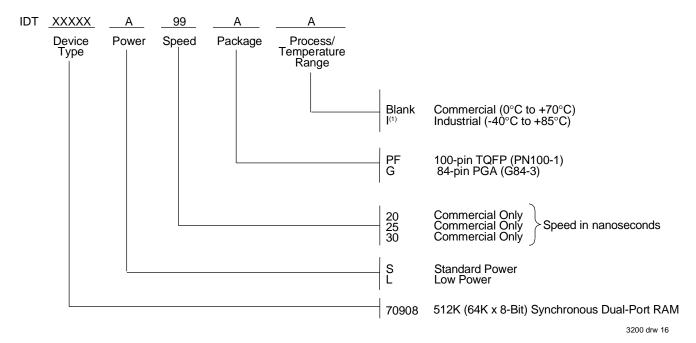
- 1. $\overline{\text{CE}}_0$ and R/ $\overline{\text{W}}$ = V_{IL}; CE₁ and $\overline{\text{CNTRST}}$ = V_{IH}.
- 2. The Internal Address is equal to the External Address when \overline{ADS} = VIL and equals the counter output when \overline{ADS} = VIH.
- 3. CNTEN = V_{IL} advances Internal Address from 'An' to 'An +1'. The transition shown indicates the time required for the counter to advance. The 'An +1'Address is written to during this cycle.
- 4. $\overline{CE}_0 = V_{IL}$; $CE_1 = V_{IH}$.
- 5. Addresses do not have to be accessed sequentially since \overline{ADS} = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only.
- 6. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.
- No dead cycle exists during counter reset. A READ or WRITE cycle may be coincidental with the counter reset. ADDRo will be accessed. Extra cycles are shown here simply for clarification.

Functional Description

The IDT70908 provides a true synchronous Dual-Port Static RAM interface. Registered inputs provide minimal set-up and hold times on address, data, and all critical control inputs. All internal registers are clocked on the rising edge of the clock signal, however, the self-timed internal write pulse is independent of the LOW to HIGH transition of the clock signal.


An asynchronous output enable is provided to ease asynchronous bus interfacing. Counter enable inputs are also provided to stall the operation of the address input registers and data output registers for fast interleaved memory applications.

A HIGH on $\overline{\text{CE}}0$ or a LOW on CE1 for one clock cycle will power down the internal circuitry to reduce static power consumption. Multiple chip enables allow easier banking of multiple IDT70908's for depth expansion configurations. When the Pipelined output mode is enabled, two cycles are required with $\overline{\text{CE}}0$ LOW and CE1 HIGH to reactivate the outputs.


Depth and Width Expansion

The IDT70908 features dual chip enables (refer to Truth Table I) in order to facilitate rapid and simple depth expansion with no requirements for external logic. Figure 4 illustrates how to control the various chip enables in order to expand two devices in depth.

The 70908 can also be used in applications requiring expanded width, as indicated in Figure 4. Since the banks are allocated at the discretion of the user, the external controller can be set up to drive the input signals for the various devices as required to allow for 16-bit or wider applications.

Ordering Information

NOTE:

Industrial temperature range is available.
 For specific speeds, packages and powers contact your sales office.

Preliminary Datasheet:

"PRELIMINARY' datasheets contain descriptions for products that are in early release.

Datasheet Document History:

1/12/99: Initiated datasheet document history

Converted to new format

Cosmetic and typographical corrections
Added additional notes to pin configurations
Page 13 Added Depth and Width Expansion note

6/7/99: Changed drawing format

Page 4 Deleted note 5 for Table II

CORPORATE HEADQUARTERS

2975 Stender Way Santa Clara, CA 95054 for SALES:

800-345-7015 or 408-727-6116

fax: 408-492-8674 www.idt.com for Tech Support: 831-754-4613 DualPortHelp@idt.com

The IDT logo is a registered trademark of Integrated Device Technology, Inc.