

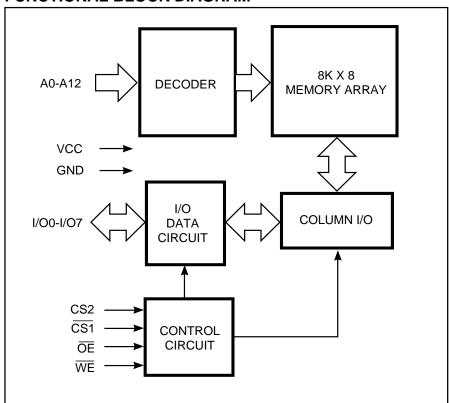
8K x 8 LOW POWER CMOS STATIC RAM

MAY 1999

FEATURES

- CMOS low power operation
 - 400 mW (max.) operating
 - 25 mW (max.) standby
- Automatic power-down when chip is deselected
- TTL compatible interface levels
- Single 5V power supply
- Fully static operation: no clock or refresh required
- · Three-state outputs
- Two Chip Enables (CS1 and CS2) for simple memory expansion
- Industrial temperature available

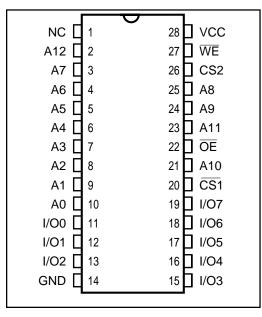
DESCRIPTION


The *ISSI* IS62C64 is a low power, 8,192-word by 8-bit static RAM. It is fabricated using *ISSI*'s high-performance CMOS technology.

When $\overline{\text{CS1}}$ is HIGH or CS2 is LOW (deselected), the device assumes a standby mode at which the power dissipation is reduced to 25 μW (typical) with CMOS input levels.

Easy memory expansion is provided by using two Chip Select inputs, $\overline{\text{CS1}}$ and CS2. The active LOW Write Enable ($\overline{\text{WE}}$) controls both writing and reading of the memory.

The IS62C64 is packaged in the JEDEC standard 28-pin SOP surface mount packages.


FUNCTIONAL BLOCK DIAGRAM

ISSI reserves the right to make changes to its products at any time without notice in order to improve design and supply the best possible product. We assume no responsibility for any errors which may appear in this publication. © Copyright 1999, Integrated Silicon Solution, Inc.

PIN CONFIGURATION 28-Pin SOP

PIN DESCRIPTIONS

A0-A12	Address Inputs
CS1	Chip Select 1 Input
CS2	Chip Select 2 Input
ŌĒ	Output Enable Input
WE	Write Enable Input
I/O0-I/O7	Input/Output
Vcc	Power
GND	Ground

TRUTH TABLE

Mode	WE	CS1	CS2	ŌĒ	I/O Operation	Vcc Current
Not Selected	Х	Н	Х	Х	High-Z	ISB1, ISB2
(Power-down)	Χ	X	L	X	High-Z	ISB1, ISB2
Output Disabled	Н	L	Н	Н	High-Z	Icc1, Icc2
Read	Н	L	Н	L	D оит	Icc1, Icc2
Write	L	L	Н	Х	Din	Icc1, Icc2

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
TBIAS	Temperature Under Bias	-55 to +125	°C
Тѕтс	Storage Temperature	-65 to +150	°C
Рт	Power Dissipation	1.0	W
Іоит	DC Output Current (LOW)	20	mA

Note:

 Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE

Range	Ambient Temperature	Vcc
Commercial	0°C to +70°C	5V ± 10%
Industrial	–40°C to +85°C	5V ± 10%

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

Symbol	Parameter	Test Conditions		Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = Min., Iон = -1.0 mA		2.4	_	V
Vol	Output LOW Voltage	Vcc = Min., IoL = 2.1 mA		_	0.4	V
ViH	Input HIGH Voltage			2.2	Vcc + 0.5	V
VIL	Input LOW Voltage(1)			-0.5	0.8	V
lu	Input Leakage	GND ≤ Vin ≤ Vcc	Com. Ind.	-2 -10	2 10	μΑ
ILO	Output Leakage	GND ≤ Vouт ≤ Vcc, Outputs Disabled	Com. Ind.	-2 -10	2 10	μΑ

Notes:

POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

Symbol	Parameter	Test Conditions		-45 Min.	ns Max.		ns Max.	Unit
lcc1	Vcc Operating Supply Current	Vcc = Max., lout = 0 mA, f = 0	Com. Ind.	_	65 75	_	65 75	mA
Icc2	Vcc Dynamic Operating Supply Current	Vcc = Max., lout = 0 mA, f = fmax	Com. Ind.	_	90 100	_	80 90	mA
ISB1	TTL Standby Current (TTL Inputs)	Vcc = Max., VIN = VIH or VIL $\overline{CE1} \ge V$ IH or $CE2 \le V$ IL, $f = 0$	Com. Ind.	_	20 30	_	20 30	mA
ISB2	CMOS Standby Current (CMOS Inputs)	$\label{eq:controller} \begin{split} & \frac{\text{Vcc} = \text{Max.,}}{\text{CE1}} \geq \text{Vcc} - 0.2\text{V,}\\ & \text{CE2} \leq 0.2\text{V,}\\ & \text{Vin} \geq \text{Vcc} - 0.2\text{V, or}\\ & \text{Vin} \leq 0.2\text{V, f} = 0 \end{split}$	Com. Ind.	_	5 10	_	5 10	mA

Note:

CAPACITANCE(1,2)

Symbol	Parameter	Conditions	Max.	Unit
Cin	Input Capacitance	VIN = 0V	5	pF
Соит	Output Capacitance	Vout = 0V	7	pF

Notes:

- 1. Tested initially and after any design or process changes that may affect these parameters.
- 2. Test conditions: $T_A = 25^{\circ}C$, f = 1 MHz, $V_{CC} = 5.0V$.

^{1.} $V_{IL} = -3.0V$ for pulse width less than 10 ns.

^{1.} At $f = f_{MAX}$, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.

READ CYCLE SWITCHING CHARACTERISTICS⁽¹⁾ (Over Commercial Operating Range)

		-45	ns	-70	ns		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit	
t RC	Read Cycle Time	45	_	70	_	ns	
t AA	Address Access Time	_	45	_	70	ns	
tона	Output Hold Time	3	_	3	_	ns	
t _{ACS1}	CS1 Access Time	_	45	_	70	ns	
tacs2	CS2 Access Time	_	45	_	70	ns	
t DOE	OE Access Time	_	25	_	35	ns	
tLZOE ⁽²⁾	OS to Low-Z Output	0	_	0	_	ns	
thzoe(2)	OS to High-Z Output	_	20	_	25	ns	
tLZCS1 ⁽²⁾	CS1 to Low-Z Output	3	_	3	_	ns	
tLZCS2 ⁽²⁾	CS2 to Low-Z Output	3	_	3	_	ns	
thzcs(2)	CS1 or CS2 to High-Z Output	_	20	_	25	ns	
t PU ⁽³⁾	CS1 or CS2 to Power-Up	0	_	0	_	ns	
t PD ⁽³⁾	CS1 or CS2 to Power-Down	_	30	_	50	ns	

Notes:

- 1. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1.
- 2. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.
- 3. Not 100% tested.

AC TEST CONDITIONS

Parameter	Unit
Input Pulse Level	0V to 3.0V
Input Rise and Fall Times	5 ns
Input and Output Timing and Reference Level	1.5V
Output Load	See Figures 1 and 2

AC TEST LOADS

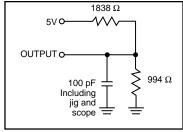


Figure 1.

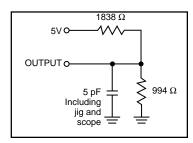
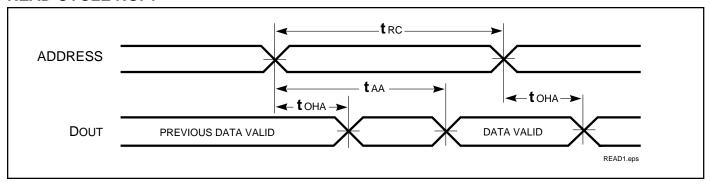
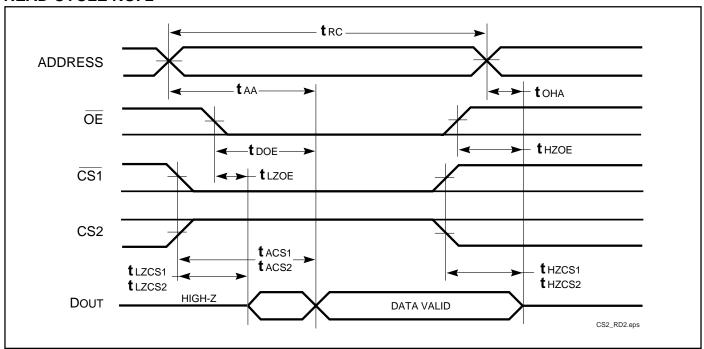



Figure 2.



AC WAVEFORMS

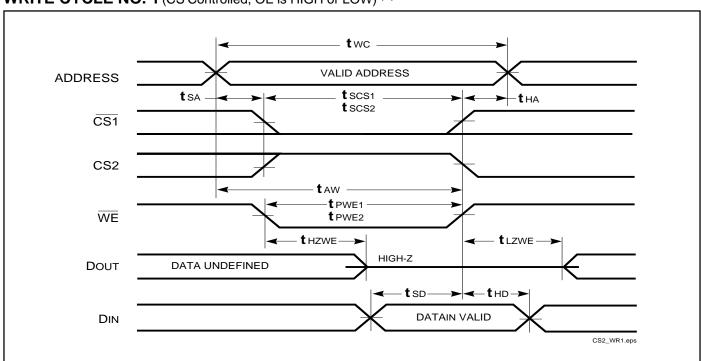
READ CYCLE NO. 1^(1,2)

READ CYCLE NO. 2^(1,3)

Notes:

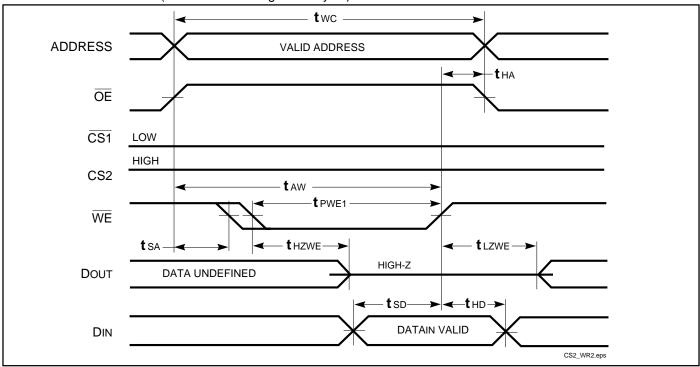
- WE is HIGH for a Read Cycle.
 The device is continuously selected. OE, CS1 = VIL, CS2 = VIH.
 Address is valid prior to or coincident with CS1 LOW and CS2 HIGH transitions.

WRITE CYCLE SWITCHING CHARACTERISTICS(1,3) (Over Commercial Operating Range)

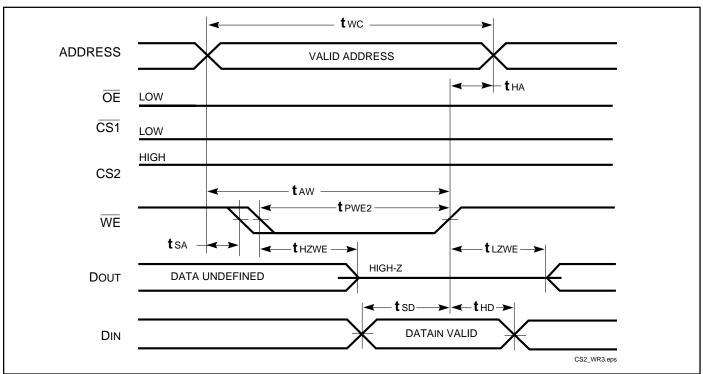

		-45	ns	-70 n	s		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit	
twc	Write Cycle Time	45	_	70	_	ns	
tscs1	CS1 to Write End	35	_	60	_	ns	
tscs2	CS2 to Write End	35	_	60	_	ns	
taw	Address Setup Time to Write End	35	_	60	_	ns	
t HA	Address Hold from Write End	0	_	0	_	ns	
tsa	Address Setup Time	0	_	0	_	ns	
tPWE ⁽⁴⁾	WE Pulse Width	35	_	55	_	ns	
tsp	Data Setup to Write End	25	_	30	_	ns	
t HD	Data Hold from Write End	0	_	0	_	ns	
thzwe ⁽²⁾	WE LOW to High-Z Output	_	20	_	25	ns	
tLZWE ⁽²⁾	WE HIGH to Low-Z Output	0	_	0	_	0 —	ns

Notes:

- 1. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1.
- 2. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.
- 3. The internal write time is defined by the overlap of CS1 LOW, CS2 HIGH and WE LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.
- 4. Tested with OE HIGH.


AC WAVEFORMS

WRITE CYCLE NO. 1 (CS Controlled, OE is HIGH or LOW) (1)


WRITE CYCLE NO. 2 (OE is HIGH During Write Cycle) (1,2)

Notes:

- 1. The internal write time is defined by the overlap of $\overline{\text{CS1}}$ LOW, CS2 HIGH and $\overline{\text{WE}}$ LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.
- 2. I/O will assume the High-Z state if $\overline{OE} = V_{IH}$.

WRITE CYCLE NO. $3(\overline{\text{OE}} \text{ is LOW During Write Cycle})$

IS62C64 ISSI

ORDERING INFORMATION

Commercial Range: 0°C to +70°C

Speed (ns)	Order Part No.	Package
45	IS62C64-45U	330-mil Plastic SOP
70	IS62C64-70U	330-mil Plastic SOP

ORDERING INFORMATION

Industrial Range: -40°C to +85°C

Speed (ns)	Order Part No.	Package
45	IS62C64-45UI	330-mil Plastic SOP
70	IS62C64-70UI	330-mil Plastic SOP

Integrated Silicon Solution, Inc.

2231 Lawson Lane Santa Clara, CA 95054 Tel: 1-800-379-4774

Fax: (408) 588-0806 E-mail: sales@issi.com

www.issi.com