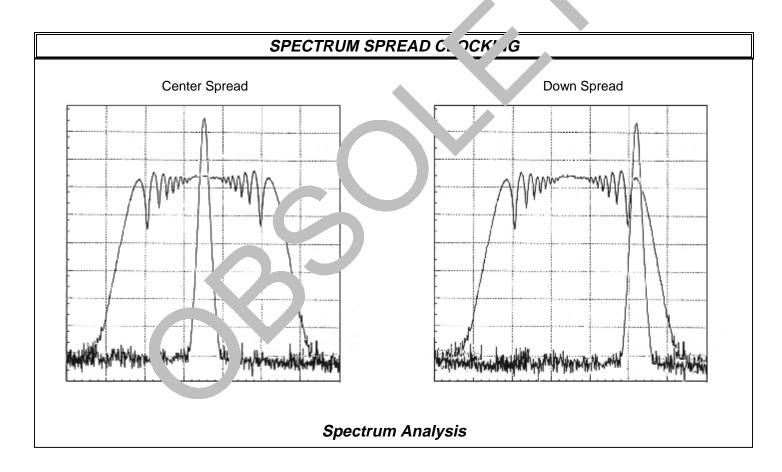

Approved Product

PRODUCT FEATURES

- Supports Pentium[®],Pentium[®]II, M2 & K6 CPUs.
- Supports Mobile Pentium[®] II
- Supports Synchronous and Asynchronous PCI.
- 3 CPU clocks
- 3 AGP clocks
- Up to 12 SDRAM clocks for 3 DIMs
- 6 PCI synchronous clocks
- Optional common or mixed supply mode: (VDD = VDDP = VDDC = 3.3V) or (VDD = VDDP = 3.3V, VDDC = 2.5V)
- < 250ps skew among CPU or SDRAM clocks</p>
- < 250ps skew among PCI clocks</p>
- I²C 2-Wire serial interface
- Programmable registers featuring:
 - Jumperless frequency selection
 - enable/disable each output pin
 - mode as tri-state, test, or normal
- Power Management Capability
- 48 MHz for USB support
- Internal Crystal Load Capacitors
- 48-pin SSÓP package
- Spread Spectrum Technology for EMI reduction

These pins form an on-chip reference	Description			
4 XIN VDD I OSI external parallel resonant crystal (no	Description			
	<u> </u>			
5 XOUT VDD O OSO If an external input refernce is used.				
7 S1 VDDP I, PU - selection S1 control bit (see page1,				
PCI_F VDDP O 1 internally and this pin becomes a low when PCI_STP# (pin 18) is ascerted.				
8 S2 VDDP I, PU - selection S2 control bit (see par				
PCI0 VDDP O 1 internally and this pin becomes a low				
15 PCI5 VDDP O 1 If SW15 is high (def with internal	ion is se. / pin2 (SW15) at powerup. al pull-up), men this pin is a PCI5 output.			
SDin VDDP I,PU 1 generated SDRAM ck rurce.	ge 11), then pin 15 is an input for externally			
	PCI frequencies. Powered by VDDP.			
25 MODE VDDS I, PU - selecting the direction of ping & a pull-up) that bits are SDPAM(10:1	ower up, this pin is an input 'MODE' for 18. when MODE is set high (default, internal 11) outputs. When MODE is low (see app note uts for power management purposes.			
internally, d this in becomes an	ee fig.1, p.4), the input selection is latched a AGP0 clock output. (see table1, page1)			
46, 47 AGP(1:2) VDDA O 1 These pins e AGP clock outputs.	(see table1, page1)			
44, 43, 41 CPU(0:2) VDDC O 1 Low skew h st clock outputs. (see f	frequency table 1, page1.)			
38,37,35,34,32, SDRAM(0:7) VDDS C 1 ow skew DRAM clock outputs. TI 31,29, 28, 40 SDRAM_FB	hey are powered by VDDS.			
18,17,20, 21 (8:11) SDRAM(8:11) clock outputs.	n 'MODE' (pin25) is set high, they are			
CPU_STP# PCI_STP# VDDS PU If CPU_STP# is asserted Low, then If PCI_STP# is asserted Low, then If AGP_STP# is asserted Low, then If AGP_STP# is asserted Low, then	PCI(0:4) are stopped in low state. a AGP(0:2) are stopped in low state en VCO's crystal and buffers are stopped in low			
2 SW15 VDD I, PU - direction of pin 15. (see page1, and	ee fig.1, page 4), the input selection is latched			
S0 VDDS I, PU - This is a bidirectional pin. During present selection S0 control bit (see page 1)	ower up, this pin is an input for frequency & app note on page 11).			
internally and this becomes a 48 Mr				
PU from the I2C bus and outputs an ac	. This bidirectional pin receives data streams cknowledge for valid data following Philips I ² C			
slave device standard.				



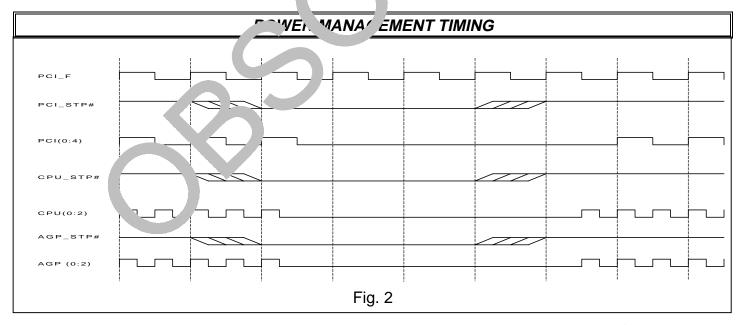
Approved Product

PIN DESCRIPTION (Cont.)								
Pin Number	Pin Name	PWR	I/O	TYPE	Description			
3, 9, 16, 22, 27, 33, 39, 45	VSS	-	PWR		Common ground pins.			
1	VDD	-	PWR		Power supply for pins 2 and 4			
6,14	VDDP	-	PWR		Power supply for pins 7,8,10,11,12,13 and 15			
19,30,36	VDDS	-	PWR		Power supply for pins 17, 18, 20, 21, 23,24, 25, 26, 28, 29, 31, 32, 34, 35, 37, 40, and 38			
42	VDDC	-	PWR		Power supply for CPU pins 41,43, and 44. May be connected to 3.3v or 2.5v.			
48	VDDA	-	PWR	-	Power supply for pins 46 and 47			

NOTE: 'PU' indicates an internal pull-up (> $100k\Omega$) is attached to that pin.

A bypass capacitor (0.1 μ F) should be placed as close as possible to each VDD, VDDP, VDDS . C, and VDD. it if these bypass capacitors are not close to the pins their high frequency filtering characteristic will be canced by a lead induction of the traces.

SPECTRUM SPREADING SELECTION TABLE									
Rested Frequency				Down Spreading	n Spreading (frequencies in MHz)				
in MHz		SS	6W=0			•	SSW=1		
desired (actual)	F Min	F Center	F Max	Spread	F Min	F Center	F Max	Spread	
50 (50.11)	49.24	49.59	49.94	-1.40%	48.91	49.59	50.27	-2.80%	
60 (60.00)	59.37	59.72	60.07	-1.16%	59.03	59.72	60.41	-2.33%	
66.8 (66.82)	66.01	66.36	66.71	-1.05%	65.67	66.36	6 5	-2.11%	
75 (75.00)	74.39	74.74	75.09	-0.94%	74.04	74.74	5.44	-1.87%	
83.3 (83.18)	81.78	82.12	82.46	-0.84%	81.44	82.12	82.80	-1.68%	
90 (90.00)	89.39	89.75	90.11	-0.80%	89.06	89.75	90.4	-1.54%	
100 (99.88)	98.20	98.54	98.88	-0.70%	97.85	98.5	7 _3	1.41%	
Rested Frequency				Center Spreading	g (frequency in M'				
in MHz		SS	6W=0	•	SSW=1				
desired (actual)	F Min	F Center	F Max	Spread	F Min	F Center	F Max	Spread	
50 (50.11)	49.62	49.97	50.32	+/- 0.70%	49.25	49.97	-0.66	+/- 1.38%	
60 (60.00)	59.75	60.10	60.45	+/- 0.58%	50 1	60.10	L .79	+/- 1.15%	
66.8 (66.82)	66.39	66.74	67.09	+/- 0.52%	J.05	هر 56.74	67.43	+/- 1.04%	
75 (75.00)	74.78	75.13	75.48	+/- 0.47%	, 13	75.13	75.83	+/- 0.93%	
83.3 (83.18)	83.16	83.51	83.86	+/- 0.42%	82.	83.51	84.20	+/- 0.83%	
90 (90.00)	89.75	90.11	90.47	+/- 0.40%	89.41	90 1	90.80	+/- 0.77%	
100 (99.88)	99.59	99.94	100.29	+/- 0. ~%	99.24	J.94	100.64	+/- 0.70%	



Approved Product

POWER MANAGEMENT FUNCTIONS

When MODE=0, the device supports power management and pins 17, 18, 20 and 21 are inputs CPU_STP#, PCI_STP#, AGP_STP# AND PWR_DWN# respectively (when MODE=1, these functions are not available). A particular output is enabled only when both the I²C serial interface and these pins indicate that it should be enabled. The clocks may be disabled according to the following table in order to reduce power consumption. All clock are stopped in the low state. All clocks maintain a valid high period on transitions from running to stopped. The CPL PCI, and AGP clocks transition between running and stopped by waiting for one positive edge on PCI_F followed and a negative edge on the clock of interest, after which high levels of the output are either enabled or disabled. See fig. 2 be Pro-

CPU_STP#	AGP_STP#	PCI_STP#	PWR_DWN#	CPU	AGP	PCI	iER CLK	XTAL & VCO
X	Х	Х	0	LOW	l ∩W	, w	LOW	OFF
0	0	0	1	LOW	LOW	LO	RUNNING	RUNNING
0	0	1	1	LOW	LOV'	RUNNING	RUNNING	RUNNING
0	1	0	1	LOW	'IP' .NG	LOW	RUNNING	RUNNING
0	1	1	1	LOW	RL VING	RUNNING	RUNNING	RUNNING
1	0	0	1	RL 'NING	LO.	LOW	RUNNING	RUNNING
1	0	1	1	RUNi 'G	LOW	RUNNING	RUNNING	RUNNING
1	1	0	1	r 'NINC	P NNING	LOW	RUNNING	RUNNING
1	1	1	1	RUN _i VG	RUNNING	RUNNING	RUNNING	RUNNING

Please note that all clocks can also be individually (asynchronously) enabled or stopped via the 2-wire I²C control interface. In this case all clocks are stopped in the low stat.

Approved Product

2-WIRE I'C CONTROL INTERFACE

The 2-wire control interface implements a write only slave interface. The device cannot be read back. Sub-addressing is not supported, thus all <u>preceding bytes must be sent</u> in order to change one of the control bytes. The 2-wire control interface allows each clock output to be individually enabled or disabled. 100 Kbits/second (standard mode) data transfer is supported.

During normal data transfer, the SDATA signal only changes when the SCLK signal is low, and is able when SCLK is high. There are two exceptions to this. A high to low transition on SDATA while SCLK is high a used to indicate the start of a data transfer cycle. A low to high transition on SDATA while SCLK is high indicates are end a data transfer cycle. Data is always sent as complete 8-bit bytes, after which an acknowledge is generated. A fire byte of a transfer cycle is a 7-bit address with a Read/Write bit as the LSB. Data is transferred MSB first.

The device will respond to writes to 10 bytes (max) of data to address **D2** by generating to acknowled (low) signal on the SDATA wire following reception of each byte. The device will not respond to any other control interface conditions. Previously set control registers are retained.

SERIAL CONTROL REGISTARS

NOTE: The Pin# column lists the affected pin number where applicable. The @ 'o c' amn gives the state at true power up. Bytes are set to the values shown only on true power up and not when \ PWR_DWN# pin is activated.

Following the acknowledge of the Address Byte (D2), two address byte must byte must be sent:

- 1) "Command Code" byte, and
- 2) "Byte Count" byte.

Although the data (bits) in these two bytes are considere "don't care" hey <u>must be sent and will be acknowledged.</u>

After the Command Code and the Count bytes have been "cknowled" ad, the below described sequence (Byte 0, Byte 1, Byte 2,) will be valid and acknowledged.

Byte 0: Frequency, Function Select Regist

Bit	@Pup	Pin#	Desc ptio.					
7	0	*	SS' bit. Se Spread Spectrum Modulation Width, 0 = Narrow Modulation,					
			1=V _V 3 M dulation. See tables on page 4.					
6	0	*	(for equencable selection by software via I ² C)					
5	0	*	Si or fix by table selection by software via I ² C)					
4	0		S0 (to frequency table selection by software via I ² C)					
3	0		0 = fre lency is selected by hardware (device pins)					
			1 = er bles frequency selection via software (I ² C byte 0)					
2	0	*	enter spreading (when Spread Spectrum mode is enabled)					
			1 = Down spreading (when Spread Spectrum mode is enabled)					
1	0	*	0 = Spread Spectrum disabled					
			1 = Spread Spectrum enabled					
0	0		0 = Running					
			1 = All clock outputs tristate					

Approved Product

SERIAL CONTROL REGISTERS (Cont.)

<u>Byte 1</u>: **CPU**, **SIO**, **USB Clock Register** (1 = enable, 0 = Stopped)

Bit	@Pup	Pin#	Description
7	1	26	48 Mhz enable/Stopped
6	1	•	Reserved
5	1	ı	0 = TEST Mode. 1 = Normal Opero.
4	1	1	Reserved
3	1	ı	Reserved
2	1	41	CPUCLK2 enable/Stoppe
1	1	43	CPUCLK1 enable/Stop _k 1
0	1	44	CPUCLK0 enable/Stoppeu.

Byte 2: PCI Clock Register (1 = enable, 0 = Stopped)

Bit	@Pup	Pin#	Descr tion
7	1	-	Rese ed
6	1	7	PCI_ anable/Stor ed
5	1	15	15 e. ble/Stor ed
4	1	13	PCI4 enap. upped
3	1	12	PC ble/Stopped
2	1	11	√Cl2 er ble/Stopped
1	1	3	PCI1 / able/Stopped
0	1		enable/Stopped

Byte 3: SDRAM Clock Registe (= ena' e, 0 = Stopped)

Bit	@Pup	F. J.	Description			
7	1	28	SDRAM7 enable/Stopped			
6	1	29	SDRAM6 enable/Stopped			
5	1	31	SDRAM5 enable/Stopped			
4		32	SDRAM4 enable/Stopped			
3	1	34	SDRAM3 enable/Stopped			
2	1	35	SDRAM2 enable/Stopped			
1	1	37	SDRAM1 enable/Stopped			
0	1	38	SDRAM0 enable/Stopped			

Approved Product

SERIAL CONTROL REGISTERS (Cont.)

Byte 4: Additional SDRAM Clock Register (1 = enable, 0 = Stopped)

Bit	@Pup	Pin#	Description		
7	1	25	AGP0 enable/Stopped		
6	Х	-	Reserved		
5	Х	-	Reserved		
4	Х	-	Reserved		
3	1	17	SDRAM11 enable/Stopped		
2	1	18	SDRAM10 enable/Stopped		
1	1	20	SDRAM9 enable/Stopped		
0	1	21	SDRAM8 enable/Stopped		

Byte 5: Peripheral Control (1 = enable, 0 = Stopped)

Bit	@Pup	Pin#	Description
7	1	-	Reserved for IMI test. Mus. a. (to 1 for normal
			device operal. (VR)
6	х	-	Reserved
5	Х	-	Resr. ea
4	1	47	AG 1 enable/5 opec
3	1	-	Re rved for IN test Must be set to 1 for normal device
			ope tion. (DT1)
2	1	-	Reser of for all test Must be set to 1 for normal
			dovice operation. (DT0)
1	1	4	AGP2 enable/stopped
0	1	2	REF_nable/Stopped

TEST MODE FUNCTION ABLE RLED VIA I'C BYTE 1 BIT 5)

Function		Outputs				
Description	¬;PL \	PCI	SDRAM	Ref	IOAPIC	
Test Mode) V/2	XIN/4	XIN/2	XIN	XIN	
Normal	sec able	see table	CPU	14.318	14.318	

Approved Product

MAXIMUM RATINGS

Voltage Relative to VSS:

Voltage Relative to VDD:

Storage Temperature:

Operating Temperature:

Maximum Power Supply:

-0.3V

0.3V

-65°C to + 150°C

0°C to +70°C

This device contains circuit to protect the inputs against damage due to high static oltages or electric field; however, precautic is shown be taken to avoid application of any vivage in the arrival maximum rated voltages to its circuit. In profit of operation, Vin and Vout shown be constrained in a range:

VSS
'in or Vout)<VDD

Unused is just must always be tied to an appropriate logic vage level (either vas or VDD).

ELECTRICAL CHARACTERISTIC								
Characteristic	Symbol	Min	Тур	Мах	Units	Conditions		
Input Low Voltage	VIL	-		8	V	-		
Input High Voltage	VIH	2.0	-	- 1	√dc	-		
Input Low Current	IIL			-66	μA			
Input High Current	IIH			5	μA			
Tri-State leakage Current	loz	-		10	μA			
Dynamic Supply Current	ldd		- T	350	mA	@100 MHz, 3.3 V		
Static Supply Current		-		3	mA	@ powerdown, Active		
Short Circuit Current	ISC	25	-	-	mA	1 output at a time - 30 seconds		
VDD =	$VDD = \nabla F = VD_1 = 3.3V \pm 5\%, VDDC = 2.5 \pm 5\%, TA = 0^{\circ}C \text{ to } +70^{\circ}C$							

SWITCHING CHARACTERISTICS							
Characteristic	Symbol	Min	Тур	Max	Units	Conditions	
Output Duty Cycle	-	45	50	55	%	Measured at 1.5V	
CPU/SDRAM to PCI Offset	tOFF	1	-	4	ns	Load· PU = 20pF measured @1.25V PN = 20pF measured @1.5V PN = 20pF measured @1.5V	
Skew (CPU-CPU), (PCI-PCI), (AGP-AGP), (SDRAM-SDRAM), (AGP-PCI)	tSKEW1	-	-	250	ps	Load: CPU = 20pF measured @1.25V CI = 30pF measured @1.5V AGP = 20pF measured @1.5V SDRAM = 30pF measured @1.5V	
Skew (CPU-SDRAM)	tSKEW2	-		500		Load: CPU = 20pF measured @1.25V SDRAM = 30pF measured @1.5V	
ΔPeriod Adjacent Cycles	ΔΡ		-	<u>+</u> 25	ps	-	
Propagation Delay SDin to SDRAM(0:11)	tPD		4	6	nS	SDRAM ouputs loaded @ 30pF, measured @1.5V	
VDD =	VDDF - VDL	0S = 3.3		VDDC = 2	2.5 ± 5%,	TA = 0°C to +70°C	

TB4L1 TYPE P' TER CHARACT .RISTICS FOR AGP(0:2), SDRAM (0:11, FB), AND REFO								
Characteristic Min Typ Max Units Conditions								
Pull-Up Current Min	IC I _{min}	18	-	23	mA	Vout = VDD5V		
Pull-Up Current '	کH _{max}	44	-	64	mA	Vout = 1.5 V		
Pull-Down Cur ant Min	IOL _{min}	13	-	25	mA	Vout = 0.4 V		
Pull-Down Cu. Int Max	Pull-Down Cu. ant Max IOL _{max} 50 - 70 mA Vout = 1.5 V							
Rise/Fall Time (0.4 V - 0 V) TRF 0.4 - 1.6 nS Load : Min = 10 pF, Max = 20pF								
$VDD = VDDP = VDDS = 3.3V \pm 5\%, VDDC = 2.5 \pm 5\%, TA = 0^{\circ}C \text{ to } +70^{\circ}C$								

Low EMI Clock Generator for ALI-M1541 for Socket 7 with AGP Boards and Mobile Pentium®II Designs. Approved Product

BT5LP1 TYPE BUFFER CHARACTERISTICS FOR 48MHz								
Characteristic	Symbol	Min	Тур	Max	Units	Conr' ions		
Pull-Up Current Min	IOH _{min}	13	-	17	mA	v ut = VDD5V		
Pull-Up Current Max	IOH _{max}	30	-	44	mA	Vout 1.5V		
Pull-Down Current Min IOL _{min} 13 - 19 m/ ut = 0.4V								
Pull-Down Current Max	Pull-Down Current Max IOL _{max} 32 - 44 NA Vout = 1.5 V							
Rise/Fall Time @ (0.4 V - 2.4 V)								
VDD = VDDP = VDDS =3.3V + 5%, VDDC = 2, +5%, TA = 0°C to +70°C								

TB4L1_V TYPE BUFFER CHAPACTERISTICS CPU (0:2							
Characteristic Symbol Min Typ 'ax Ur 'ts Conditions							
Pull-Up Current Min	IOH _{min}	13		2	mA	Vout = VDD5V	
Pull-Up Current Max	IOH _{max}	2	-	37	mA	Vout = 1.25 V	
Pull-Down Current Min	IOL _{min}	1	-	23	mA	Vout = 0.4 V	
Pull-Down Current Max	Pull-Down Current Max IOL x 50 - 61 mA Vout = 1.5 V						
Rise/Fall Time @ (0.4 V - 2.0 V) 7 (F - 1.6 nS Load : Min = 10 pF, Max = 20pF							
$VDD = VDDP = V_{-} = 3.3V \pm 5\%$, $VDDC = 2.5 \pm 5\%$, $TA = 0^{\circ}C$ to $+70^{\circ}C$							

34LP1 BUFFER CHARACTERISTICS FOR PCI (0:5,F)								
Characteristic Symbo Min Typ Max Units Conditions								
Pull-Up Current Mir	min	18	-	23	mA	Vout = VDD5V		
Pull-Up Current M	IOH _{max}	44	-	64	mA	Vout = 1.5 V		
Pull-Down Current . 'n	IOL_{min}	18	-	25	mA	Vout = 0.4 V		
Pull-Down Current Ma.	Pull-Down Current Ma. IOL _{max} 50 - 70 mA Vout = 1.5 V							
Rise/Fall Time @ (0.4 V - 2.0 V)	TRF	0.4	-	1.6	nS	Load : Min = 10 pF, Max = 20pF		
$VDD = VDDP = VDDS = 3.3V \pm 5\%, VDDC = 2.5 \pm 5\%, TA = 0^{\circ}C \text{ to } +70^{\circ}C$								

Approved Product

	CRYSTAL AND REFERENCE OSCILLATOR PARAMETERS									
Characteristic	Symbol	Min	Тур	Max	Units	Conditions				
Frequency	Fo	12.00	14.31818	16.00	MHz					
Tolerence	TC	-	-	+/-100	PPM	Ca. ration / ce 1				
	TS	-	-	+/- 100	PPM	stability a -10 to o0C) note 1				
	TA	-	1	5	PPM	Aging (firs 'er @ 25C) note 1				
Mode	OM	-	-	-		, rallell Resonant				
Pin Capacitance	СР		36		pF	Cap itance of XIN and Xout pins to ground (each)				
DC Bias Voltage	V _{BIAS}	0.3Vdd	Vdd/2	0.7Vda						
Startup time	Ts	-	-	30	μS					
Load Capacitance	CL	-	20	-	Ę	the crystals rated load. note 1				
Effective Series resistance (ESR)	R1	-		10	Ohms					
Power Dissipation	DL	-		1.10	mW	note 1				
Shunt Capacitance	СО	-			pF	crystals internal package capacitance (total)				

For maximum accuracy, the total circuit le cump capacitance is the effective capacitance across the crystalpins and includes the device pin capacitance (CP) in parallel with any circuit traces, the clock generator and any on parallel with any circuit load capacitors. Budgeting Calculations

Typical trace capacitance, (< h and) is 4 pF. Locato the crystal is therefore = 2.0 pF Clock generator internal pip apacita for 30 pF, Load to the crystal is therefore = 18.0 pF the total parasitic capacitance vover there are be = 20.0 pF

Note 1: It is recommended but the mand ory that a crystal meets these specifications.

Approved Product

APPLICATION NOTE FOR SELECTION ON BIDIRECTIONAL PINS

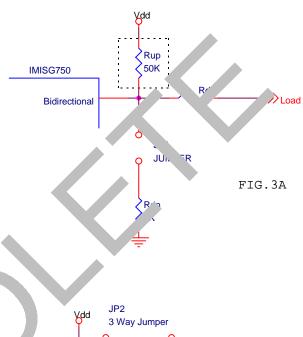

Pins 2, 7, 8, 25 and 26 are Power up bidirectional pins and are used for selecting different functions in this device (see Pin description, Page 2). During power-up of the device, these pins are in input mode (see Fig1, page4), therefore, they are considered input select pins internal to the IC, these pins have a large value pull-up each (250K Ω), therefore, a selection "1" is the default. If the system uses a slow power supply (over 5ms settling time), then it is recommended to use an external Pullup (Rup) in order to insure a high selection. In this case, the designer may choose one of two configurations, see FIG. 3A and Fig. 3B.

Fig. 3A represents an additional pull up resistor $50 \text{K}\Omega$ connected from the pin to the power line, which allows a faster pull to a high level.

If a selection "0" is desired, then a jumper is placed on JP1 to a $5K\Omega$ resistor as implemented as shown in Fig.3A. Please note the selection resistors (Rup, and Rdn) are placed before the Damping resistor (Rd) clo to the pin.

Fig. 3B represents a single resistor $10K\Omega$ crunected to a 3 way jumper, JP2. When a "1" selection is desir jumper is placed between leads 1 and 3. When a "1" selection is desired, a jumper is placed at tween leads 1 and 2.

If the system power supply is fast \ s \ nan 5r \ settling time), then FIG3A \ \ resistor is not necessar

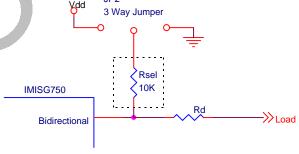
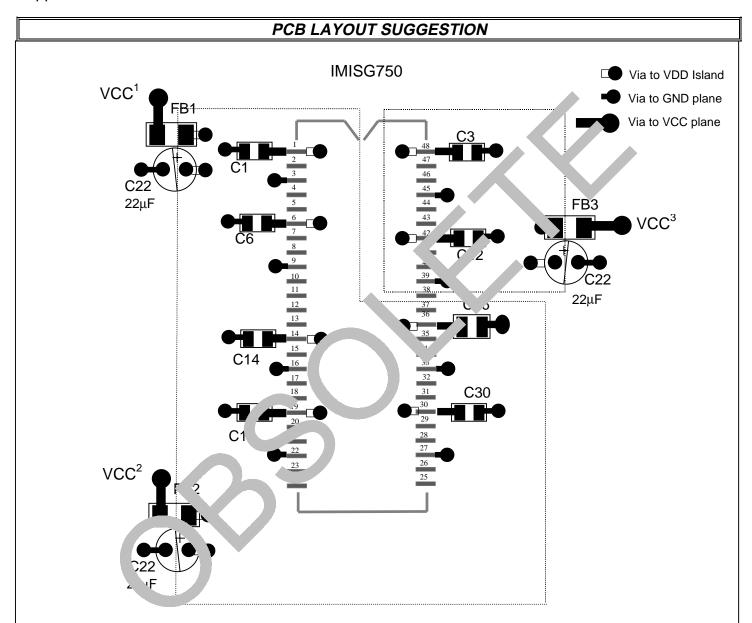
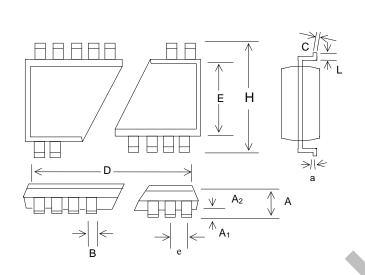



FIG.3B

Approved Product



This is only a layout recommendation for best performance and lower EMI. The designer may choose a different approach but C1, C6, C14, C19, C3, C42, C36 and C30 (all are $0.1\mu F$) should always be used and placed as close as possible to their VDD pins.

Approved Product

PACKAGE DRAWING AND DIMENSIONS

48 PIN SSOP OUTLINE DIMENSIONS								
		INCHES		MILLIMETERS				
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX		
Α	0.095	0 ,2	0.1)	2.41	2.59	2.79		
A ₁	0.008	0. '2	.016	٥.20	0.31	0.41		
A2	ر ٥.٢	0.090	0.095	2.16	2.29	2.41		
b	J.0L	0.010	35	0.203	0.254	0.343		
С	0.005	008	0.010	0.127	0.20	0.254		
J	0.620	0.b.	0.637	15.75	15.88	16.18		
E	0.291	0.295	0.299	7.39	7.49	7.59		
	C	0.0256 BS	С	C	.640 BS	O		
Н	.395	0.408	0.420	10.03	10.36	10.67		
L	0.024	0.030	0.040	0.61	0.76	1.02		
	00	40	8°	0°	40	80		

	01	PERING I	FORMATION		
Part Number	Package Tyr		Production Flow		
IMISG750CYB	48 PIN SS(>	Commercial, 0°C to +70°C			

Note: The ordering part respectively a combination of device number, device revision, package style, and screening as shown be two.

Marking: Example: IM.

SG75 YB
Long Conglet #

IMIS J750CYB
B = Commercial, 0°C to + 70°C

Package
Y = SSOP

Revision

IMI Device Number

NOTE: Purchase of l^2C components of International Microcircuits, Inc. or one of its sublicensed Associated Companies conveys a license under the Phillips l^2C Patent Rights to use these components in an l^2C system, provided that the system conforms to the l^2C Standard Specification as defined by Phillips.