

PC Clock Generator for Pentium® and Pentium® II with 440LX Chipset and 3 DIMMs

Approved Product

	_	1107	1		~~
uu	, ,, ,		FEA	<i></i>	
-n	$\omega \omega$	u_{GI}		1 I U I	$^{\prime}$

- Supports Pentium[®] & Pentium[®] II using the 440LX chipset.
- 4 CPU / AGP clocks.
- Up to 12 SDRAM clocks for 3 DIMs.
- 7 PCI synchronous clocks.
- Optional common or mixed supply mode:
- (VDD = VDDP = VDDC = 3.3V) or
- (VDD = VDDP = 3.3V, VDDC = 2.5V)
- Supports Power Management
- < 250ps skew CPU and SDRAM clocks.
- < 250ps skew among PCI clocks.
- I²C 2-Wire serial interface
- Programmable registers featuring:
 - enable/disable each output pin
 - mode as tri-state, test, or normal
- 2 IOAPIC clocks for multiprocessor support.
- 48-pin SSOP package

FREQUENCY TABLE						
SEL	CPU	PCI				
0	60.0	30.0				
1	66.6	33.3				

PS# =: PCI_STOP, CS# = CPU_STOP,

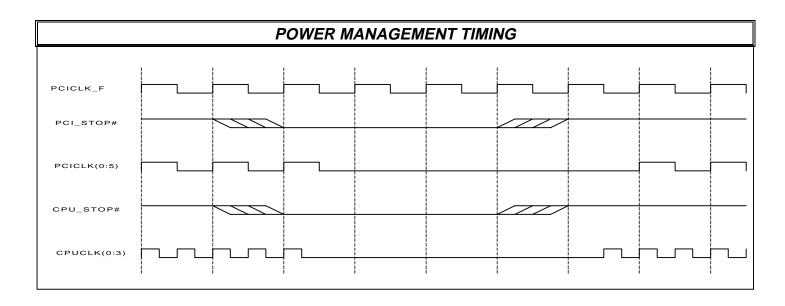
PD# = PWR_DWN

I'C Clock Generator for Pentium® and Pentium® II with 440LX Chipset and 3 DIMMs

Approved Product

[
				PIN E	DESCRIPTION
PIN No.	Pin Name	PWR	I/O	TYPE	Description
4	Xin	VDD	I	OSC1	On-chip reference oscillator input pin. Requires either an external parallel resonant crystal (nominally 14.318 MHz) or externally generated reference signal
5	Xout	VDD	0	OSC1	O-chip reference oscillator output pin. Drives an external parallel resonant crystal when an externally generated reference signal is used, is left unconnected
26	SEL	-	I	PADI4 PU	Frequency select input pins. See frequency select table on page 1.This pin has an internal pull-up
2	REF	Vdd	0	BUF	Buffered output of on-chip reference oscillator.
44, 42, 41, 40	CPU(1:4)	VDDC	0	BUF	Clock outputs. CPU frequency table specified.
24	SDCLK	-	I/O	PADI4 PU	serial clock of I ² C 2-wire control interface. Has internal pull-up resistor.
23	SDATA	-	I/O	PADI4 PU	serial data of I ² C 2-wire control interface. Has internal pull-up resistor.
8, 10, 11, 12, 13, 15	PCICLK(1:6)	VDDP	0	BUF	A PCI clock outputs. See frequency select table on page 1.
7	PCIF_F	VDDP	0	BUF	PCI clock output that does not stop until in power down mode. It is synchronous with other PCI clocks.
47, 46	IOAPIC(1:2)	VDDC	0	BUF	Two Buffered outputs of 14.3MHZ for multiprocessor support. They are powered by VDDP
38, 37, 35. 34. 32, 21, 20, 18, 17	SDRAM (1:5) (9:12)	VDDP	0	BUF	If MODE=1, this pin is a Synchronous DRAM DIMs clock output powered by VDDP.
28	SDRAM6	VDDP	0	BUF	If MODE=1, this pin is a Synchronous DRAM DIMs clock output powered by VDDP.
	PS#	-	I	PAD	If MODE=0, this pin is a PS# input signal, where a low level stops the PCI clocks. It has an internal pull-up.
31	SDRAM5	VDDP	0	BUF	If MODE=1, this pin is a Synchronous DRAM DIMs clock output powered by VDDP.
	PD#	-	I	PAD PU	If MODE=0, and SEL=1 this pin is a PS# input signal, where a low level stops the PCI clocks. It has an internal pull-up.
	SDRAM6	VDDP		BUF	If MODE=1, this pin is a Synchronous DRAM DIMs clock output powered by VDDP.
29	CS#	-		PAD PU	If MODE=0, and SEL=1 this pin is a CS# input signal, where a low level stops the CPU (the SDRAM clocks will stay active). It has an internal pull-up.
3, 9, 16, 22, 27, 33, 39, 45	MODE	-	Р	PAD PU	This pin controls the functionality of pins 28, 29 and 31 and enables Tristate mode. See Frequency Table on page 1 for functionality discription. It has an internal pull-up. see note 1
3, 9, 16, 22, 27, 33, 39, 45	VSS	-	Р	-	Ground pins for all power supplies,
1	VDD	-	Р	-	Power supply pins for fixed clocks and core logic
42, 48	VDDC	-	Р	-	Power supply pins for 2.5V/3.3V CPU and IOAPIC clock pins.
36, 30, 14, 19, 6	VDDP		Р	-	Power supply pins for 3.3V PCI and SDRAM clock clock pins.

PC Clock Generator for Pentium® and Pentium® II with 440LX Chipset and 3 DIMMs


Approved Product

POWER MANAGEMENT FUNCTIONS

All clocks can be individually enabled or stopped via the 2-wire control interface. All clocks are stopped in the low state. All clocks maintain a valid high period on transitions from running to stopped and on transitions from stopped to running when the chip was not powered down. On power up, the VCOs will stabilize to the correct pulse widths within about 0.2 mS. The CPU, and PCI clocks transition between running and stopped by waiting for one positive edge on PCICLK_F followed by a negative edge on the clock of interest, after which high levels of the output are either enabled or disabled.

When MODE=0 and SEL=1, pins 26 and 27 are inputs PCI_STOP# and CPU_STOP# respectively (when MODE=1, these functions are not available). A particular output is enabled only when both the serial interface and these pins indicate that it should be enabled. The device clocks may be disabled according to the following table in order to reduce power consumption. All clocks are stopped in the low state. All clocks maintain a valid high period on transitions from running to stopped. On low to high transitions of PWR_DWN#, external circuitry should allow 0.2 mS for the VCOs to stabilize prior to assuming the clock periods are correct. The CPU and PCI clocks transition between running and stopped by waiting for one positive edge on PCICLK_F followed by a negative edge on the clock of interest, after which high levels of the output are either enabled or disabled.

CPU_STOP#	PCI_STOP#	PWR_DWN#	CPUCLK	PCICLK	OTHER CLKs	XTAL & VCOs
Х	Х	0	LOW	LOW	LOW	OFF
0	0	1	LOW	LOW	RUNNING	RUNNING
0	1	1	LOW	RUNNING	RUNNING	RUNNING
1	0	1	RUNNING	LOW	RUNNING	RUNNING
1	1	1	RUNNING	RUNNING	RUNNING	RUNNING

PC Clock Generator for Pentium® and Pentium® II with 440LX Chipset and 3 DIMMs

Approved Product

2-WIRE I²C CONTROL INTERFACE

The 2-wire control interface implements a write only slave interface. The IMISC673 cannot be read back. Sub-addressing is not supported, thus all preceding bytes must be sent in order to change one of the control bytes. The 2-wire control interface allows each clock output to be individually enabled or disabled.

During normal data transfer, the SDATA signal only changes when the SDCLK signal is low, and is stable when SDCLK is high. There are two exceptions to this. A high to low transition on SDATA while SDCLK is high is used to indicate the start of a data transfer cycle. A low to high transition on SDATA while SDCLK is high indicates the end of a data transfer cycle. Data is always sent as complete 8-bit bytes, after which an acknowledge is generated. The first byte of a transfer cycle is a 7-bit address with a Read/Write bit as the LSB. Data is transferred MSB first.

The IMISC673 will respond to writes to 10 bytes (max) of data to address <u>D2</u> by generating the acknowledge (low) signal on the SDATA wire following reception of each byte. The IMISC673 will not respond to any other control interface conditions. Previously set control registers are retained.

SERIAL CONTROL REGISTERS

NOTE: The Pin# column lists the affected pin number where applicable. The @Pup column gives the state at true power up. Bytes are set to the values shown only on true power up, and not when the PWR_DWN# pin is activated.

Following the acknowledge of the Address Byte (D2), two additional bytes must be sent:

- 1) "Command Code " byte, and
- 2) "Byte Count" byte.

Although the data (bits) in these two bytes are considered "don't care", they <u>must be sent and will be</u> acknowledged.

Byte 0: Function Select Register (1 = enable, 0 = Stopped)

Bit	@Pup	Pin#	Description
7	0	*	Reserved, Don't set
6	0	*	Reserved, Don't set
5	0	*	Reserved, Don't set
4	0	*	Reserved, Don't set
3	1	23	48/24 Mhz
2	1	22	48/24 Mhz
1	0		Bit1 Bit0
0	0		1 1 Tri-State
			1 0 Reserved
			0 1 Test Mode
			0 0 Normal

IMPORTANT NOTE

Reserved bits are intended for possible future functions. It is important that they be left at their Power Up logic at all times. Otherwise data sheet specifications cannot be guaranteed.

I²C Clock Generator for Pentium[®] and Pentium[®] II with 440LX Chipset and 3 DIMMs

Approved Product

SERIAL CONTROL REGISTERS (Cont.)

Function Table

Function	Outputs				
Description	CPU	PCI	SDRAM	Ref	IOAPIC
Tri-State	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z
Test Mode	Tclk/2	Tclk/4	Tclk/2	Tclk	Tclk
Normal SEL=1	66	CPU/2	CPU	14.318	14.318
Normal SEL=0	60	CPU/2	CPU	14.318	14.318

Notes:

Byte 1: CPU Clock Register (1 = enable, 0 = Stopped)

Bit	@Pup	Pin#	Description
7	Х	-	Reserved
6	Х	-	Reserved
5	Х	-	Reserved
4	Х	-	Reserved
3	1	40	CPUCLK4 enable/Stopped
2	1	41	CPUCLK3 enable/Stopped
1	1	43	CPUCLK2 enable/Stopped
0	1	44	CPUCLK1 enable/Stopped

Byte 2: PCI Clock Register (1 = enable, 0 = Stopped)

Bit	@Pup	Pin#	Description
7	х	-	Reserved
6	1	7	PCICLK_F enable/Stopped
5	1	15	PCICLK6 enable/Stopped
4	1	14	PCICLK5 enable/Stopped
3	1	12	PCICLK4 enable/Stopped
2	1	11	PCICLK3 enable/Stopped
1	1	10	PCICLK2 enable/Stopped
0	1	8	PCICLK1 enable/Stopped

^{1.} Tclk is a test clock over driven on the Xin input during test mode.

I'C Clock Generator for Pentium® and Pentium® II with 440LX Chipset and 3 DIMMs

Approved Product

SERIAL CONTROL REGISTERS(Cont.)

Byte 3: SDRAM Clock Register (1 = enable, 0 = Stopped)

Bit	@Pup	Pin#	Description
7	1*	28	SDRAM8 enable/Stopped
6	1*	29	SDRAM7 enable/Stopped
5	1*	31	SDRAM6 enable/Stopped
4	1	32	SDRAM5 enable/Stopped
3	1	34	SDRAM4 enable/Stopped
2	1	35	SDRAM3 enable/Stopped
1	1	37	SDRAM2 enable/Stopped
0	1	38	SDRAM1 enable/Stopped

^{*}This bit acts as a don't care bit when the MODE pin is 0 (logic low) (input mode)

Byte 4: Additional SDRAM Clock Register (1 = enable, 0 = Stopped)

Bit	@Pup	Pin#	Description
7	х	ı	Reserved
6	Х	•	Reserved
5	Х	•	Reserved
4	Х	-	Reserved
3	1	17	SDRAM12 enable/Stopped
2	1	18	SDRAM11 enable/Stopped
1	1	20	SDRAM10 enable/Stopped
0	1	21	SDRAM9 enable/Stopped

Byte 5: Peripheral Control (1 = enable, 0 = Stopped)

Bit	@Pup	Pin#	Description
7	х	-	Reserved
6	Х	-	Reserved
5	1	46	IOAPIC2 enable/Stopped
4	1	47	IOAPIC1 enable/Stopped
3	Х	-	Reserved
2	х	-	Reserved
1	Х	-	Reserved
0	1	2	REF enable/Stopped

I'C Clock Generator for Pentium® and Pentium® II with 440LX Chipset and 3 DIMMs

Approved Product

SERIAL CONTROL REGISTERS(Cont.)

Byte 6: Reserved Register

Bit	@Pup	Pin#	Description
7	х	-	Reserved
6	х	-	Reserved
5	х	-	Reserved
4	Х	-	Reserved
3	Х	-	Reserved
2	Х	-	Reserved
1	х	-	Reserved
0	Х	-	Reserved

MAXIMUM RATINGS

Voltage Relative to VSS:

Voltage Relative to VDD:

Storage Temperature:

Ambient Temperature:

Maximum Power Supply:

-0.3V

0.3V

-65°C to + 150°C

-55°C to +125°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric field; however, precautions should be taken to avoid application of any voltage higher than the maximum rated voltages to this circuit. For proper operation, Vin and Vout should be constrained to the range:

VSS<(Vin or Vout)<VDD

Unused inputs must always be tied to an appropriate logic voltage level (either VSS or VDD).

I²C Clock Generator for Pentium[®] and Pentium[®] II with 440LX Chipset and 3 DIMMs

Approved Product

ELECTRICAL CHARACTERISTICS						
Characteristic	Symbol	Min	Тур	Max	Units	Conditions
Input Low Voltage	VIL	-	-	0.8	Vdc	-
Input High Voltage	VIH	2.0	-	-	Vdc	-
Input Low Current	IIL			-66	μA	
Input High Current	IIH			5	μA	
Tri-State leakage Current	loz	-	-	10	μA	
Dynamic Supply Current	Idd	-	-	90	mA	CPU = 66.6 MHz, PCI = 33.3 Mhz fully loaded
Static Supply Current	Isdd	-	-	150	μA	Power down mode
Short Circuit Current ISC 25 mA 1 output at a time - 30 seconds						
VDD = VDDP =3.3V ±5%, VDDC = 2.5V ±5%, TA = 0°C to +70°C						

SWITCHING CHARACTERISTICS						
Characteristic	Symbol	Min	Тур	Max	Units	Conditions
Output Duty Cycle	-	45	50	55	%	Measured at 1.5V
CPU to PCI Offset	tOFF	1	-	4	ns	20 pf Load on CPU, 30 pF load on PCI, Measured at 1.25 V CPU to 1.5 V PCI
Skew (CPU-CPU,SDRAM- SDRAM,PCI-PCI)	tSKEW1	-	-	350	ps	20 pf Load on CPU, 30 pF load on PCI, Measured at 1.25 V CPU to 1.5 V SDRAM
Skew (CPU-SDRAM)	tSKEW2	-	200* 300**	500* 600**	ps	20 pF CPU, 30 Pf SDRAM load * = VDDC = 3.3V <u>+</u> 5% ** = VDDC = 2.5 <u>+</u> 5%
ΔPeriod Adjacent Cycles	ΔΡ	-	-	<u>+</u> 250	ps	-
Jitter Spectrum 20 dB BWJ 500 KHz Bandwidth from Center						
VDD = VDDP =3.3V ±5%, VDDC = 2.5V ±5%, TA = 0°C to +70°C						

f²C Clock Generator for Pentium® and Pentium® II with 440LX Chipset and 3 DIMMs

Approved Product

TYPE 1 BUFFER CHARACTERISTICS FOR CPUCLK(1:4)						
Characteristic Symbol Min Typ Max Units Conditions						
Pull-Up Current Min	IOH _{min}	-27	-	-	mA	Vout = 1.0 V
Pull-Up Current Max	IOH _{max}	-	-	27	mA	Vout = 2.6 V
Pull-Down Current Min	IOL_{min}	-27	-	-	mA	Vout = 1.2 V
Pull-Down Current Max	IOL _{max}	-	-	27	mA	Vout = 0.3 V
Rise/Fall Time Min TRF _{min} 0.4 nS 20 pF Load Between 0.4 V and 2.0 V						
Rise/Fall Time Max						
VDD = VDDP = 3.3V +5%, VDDC = 2.5V +5%, TA = 0°C to +70°C						

TYPE 2 BUFFER CHARACTERISTICS FOR IOAPIC(1:2)							
Characteristic Symbol Min Typ Max Units Conditions						Conditions	
Pull-Up Current Min	IOH _{min}	-28	-	-	mA	Vout = 1.4 V	
Pull-Up Current Max	IOH _{max}	-	-	28	mA	Vout = 2.7 V	
Pull-Down Current Min	IOL _{min}	-28	-	-	mA	Vout = 1.0 V	
Pull-Down Current Max	IOL _{max}	-	-	28	mA	Vout = 0.2 V	
Rise/Fall Time Min TRF _{min} 0.4 nS 20 pF Load Between 0.4 V and 2.0 V							
Rise/Fall Time Max Between 0.4 V and 2.0 V TRF _{max} 2.0 nS 20 pF Load							
$VDD = VDDP = 3.3V \pm 5\%, VDDC = 2.5V \pm 5\%, TA = 0^{\circ}C to +70^{\circ}C$							

TYPE 4 BUFFER CHARACTERISTICS FOR REF and SDRAM(1:12)							
Characteristic Symbol Min Typ Max Units Conditions				Conditions			
Pull-Up Current Min	IOH _{min}	-46	-	-	mA	Vout = 1.65 V	
Pull-Up Current Max	IOH _{max}	-	-	46	mA	Vout = 3.135 V	
Pull-Down Current Min	IOL _{min}	-53	-	-	mA	Vout = 1.65 V	
Pull-Down Current Max	IOL _{max}	-	-	53	mA	Vout = 0.4 V	
Rise/Fall Time Min TRF _{min} 0.5 nS 30 pF Load Between 0.4 V and 2.4 V						30 pF Load	
Rise/Fall Time Max Between 0.4 V and 2.4 V TRF _{max} 2.0 nS 30 pF Load							
VI	VDD - VDDP -3 3V +5% VDDC - 2 5V +5% TA - 0°C to +70°C						

I'C Clock Generator for Pentium® and Pentium® II with 440LX Chipset and 3 DIMMs

Approved Product

TYPE 5 BUFFER CHARACTERISTICS FOR PCICLK(1:6,F)						
Characteristic Symbol Min Typ Max Units Conditions						Conditions
Pull-Up Current Min	IOH _{min}	-33	-	-	mA	Vout = 1.0 V
Pull-Up Current Max	IOH _{max}	-	-	-33	mA	Vout = 3.135 V
Pull-Down Current Min	IOL _{min}	30	-	-	mA	Vout = 1.95 V
Pull-Down Current Max	IOL _{max}	-	-	38	mA	Vout = 0.4 V
Rise/Fall Time Min Between 0.4 V and 2.4 V	TRF _{min}	0.5	-	-	nS	30 pF Load
Rise/Fall Time Max Between 0.4 V and 2.4 V	TRF _{max}	-	-	2.0	nS	30 pF Load

 $VDD = VDDP = 3.3V \pm 5\%$, $VDDC = 2.5V \pm 5\%$, $TA = 0^{\circ}C$ to $+70^{\circ}C$

	CRYSTAL AND REFERENCE OSCILLATOR PARAMETERS								
Characteristic	Symbol	Min	Тур	Max	Units	Conditions			
Frequency	Fo	12.00	14.31818	16.00	MHz				
Tolerence	TC	-	-	+/-100	PPM	Calibration note 1			
	TS	-	-	+/- 100	PPM	Stability (Ta -10 to +60C) note 1			
	TA	-	ı	5	PPM	Aging (first year @ 25C) note 1			
Mode	ОМ	-	-	-		Parallell Resonant			
Pin Capacitance	СР		6		pF	Capacitance of XIN and Xout pins to ground (each)			
DC Bias Voltage	V _{BIAS}	0.3Vdd	Vdd/2	0.7Vdd	V				
Startup time	Ts	-	-	30	μS				
Load Capacitance	CL	-	20	-	pF	the crystals rated load. note 1			
Effective Series resonant resistance	R1	-	-	40	Ohms				
Power Dissipation	DL	-	-	0.10	mW	note 1			
Shunt Capacitance	СО	-		8	pF	crystals internal package capacitance (total)			

For maximum accuracy, the total circuit loading capacitance should be equal to CL. This loading capacitance is the effective capacitance across the crystal pins and includes the device pin capacitance (CP) in parallel with any circuit traces, the clock generator and any onboard discrete load capacitors.

Budgeting Calculations

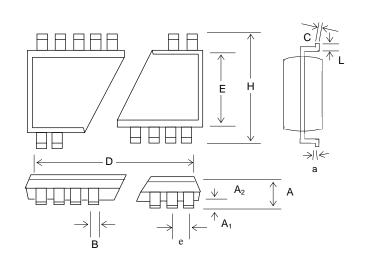
Typical trace capacitance, (< half inch) is 4 pF, Load to the crystal is therefore

Clock generator internal pin capacitance of 36 pF, Load to the crystal is therefore

External crystal loading capacitors (connect to ground)

15.0 pF

the total parasitic capacitance would therefore be

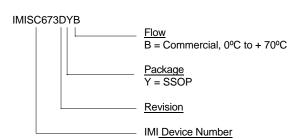

Note 1: It is recommended but not manditory that a crystal meets these specifications.

I'C Clock Generator for Pentium® and Pentium® II with 440LX Chipset and 3 DIMMs

Approved Product

PACKAGE DRAWING AND DIMENSIONS

48	48 PIN SSOP OUTLINE DIMENSIONS								
		INCHES		MILLIMETERS					
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX			
Α	-	-	0.110	0	0	2.79			
A ₁	0.008	0.012	0.016	0.20	0.30	0.41			
A2	0.085	0.090	0.095	2.16	2.29	2.41			
b	0.008	0.010	0.013	0.20	0.25	0.33			
С	0.006	0.008	0.010	0.15	0.20	0.25			
D	-	0.625	0.637	-	15.88	16.18			
Е	0.291	0.295	0.299	7.39	7.49	7.59			
е		0.025 BS0			0.64 BSC	;			
Н	0.395	0.408	0.420	10.03	10.36	10.67			
L	0.025	0.030	0.040	0.64	0.76	1.02			
а	00	5°	80	00	5°	80			


ORDERING INFORMATION						
Part Number	Package Type	Production Flow				
IMISC673DYB	48 PIN SSOP	Commercial, 0°C to +70°C				

<u>Note</u>: The ordering part number is formed by a combination of device number, device revision, package style, and

screening as shown below.

Marking: Example: IM

SC673DYB Date Code, Lot #

Purchase of I²C components of International Microcircuits, Inc. or one of its sublicensed Associated Companies conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.