HA13119

Dual 5.5 W Audio Power Amplifier

HITACHI

Description

The HA13119 is power IC designed for car radio and car stereo amplifiers. At 13.2 V to 4 load, this power IC provides output power of 5.5 W with 10 % distortion.

It is easy to design as this IC employs internal each protection circuit and the new small package.

Features

· Low distortion

THD = 0.1% typ

(Po = 0.5 W, f = 100 Hz to 10 kHz)

THD = 1% typ

(Po = 3 W, f = 70 Hz to 40 kHz)

• Internal each protection circuits

Surge protection circuit (more than 50 V)

Thermal shut-down circuit

Ground fault protection circuit

Power supply fault protection circuit

· Low external components count

HA13119

Absolute Maximum Ratings ($Ta = 25^{\circ}C$)

Item	Symbol	Rating	Unit	Note
Operating supply voltage	V _{cc}	18	V	
DC supply voltage	V _{cc} (DC)	26	V	1
Peak supply voltage	V _{cc} (peak)	50	V	2
Output current	lo (peak)	4	Α	3
Power dissipation	P _T	15	W	4
Thermal resistance	j — c	3.5	°C/W	
Junction temperature	Tj	150	°C	
Operating temperature	Topr	-30 to +80	°C	
Storage temperature	Tstg	-55 to +125	°C	

Notes: 1. Value at t = 30 sec.

- 2. Value at width tw = 200 ms and rise time tr = 1 ms.
- 3. Per channel
- 4. Per package

Electrical Characteristics (V $_{CC}$ = 13.2 V, f = 1 kHz, R_{L} = 4 $\,$, Ta = 25 $^{\circ}C)$

1 channel operation

Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Quiescent current	IQ	_	80	160	mA	Vin = 0 V
Input bias voltage	V _B	_	_	10	mV	Vin = 0 V, Rg = 10 k
Voltage gain	G_{v}	48	50	52	dB	Vin = −50 dBm
Voltage gain difference	G _v	_	_	+1.5	dB	Vin = −50 dBm
Output power	Pout	5.0	5.5	_	W	$R_L = 4$ $V_{CC} = 13.2 \text{ V}$
		_	6.5	_		THD = 10 % V_{cc} =14.4 V
Total harmonic distortion	THD	_	0.05	0.5	%	Pout = 1.5 W
Wide band noise	WBN	_	0.6	1.2	mV	Rg = 10 k , BW = 20 Hz to 20 kHz
Supply voltage rejection ratio	SVR	35	50	_	dB	Rg = 600 , f = 500 Hz
Input impedance	Rin	_	33	_	k	f = 1 kHz, Vin = -50 dBm
Roll off frequency	f _L	_	55	_	Hz	$G_v = -3 \text{ dB}$ Low
	f _H	_	50	_	kHz	from f = 1 kHz Ref High
Cross-talk	C.T	40	55	_	dB	Rg = 600 , Vin = –50 dBm

2 channel operation

Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Output power	Pout	_	5.3	_	W	THD = 10 %
Total harmonic distortion	THD	_	0.10	_	%	Pout = 1.5 W

Block Diagram

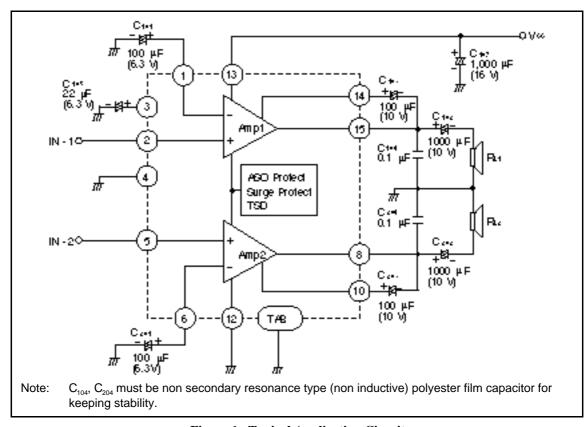


Figure 1 Typical Application Circuit