

HMC224MS8

GaAS MMIC MSOP8 T/R SWITCH 5.0 - 6.0 GHz

FEBRUARY 2001 V01.0300

Features

INDUSTRY FIRST LOW COST 5-6 GHz SWITCH

ULTRA SMALL PACKAGE: MSOP8

HIGH INPUT P1dB: +33 dBm

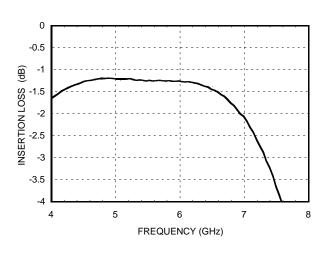
SINGLE POSITIVE SUPPLY: +3 TO +8V

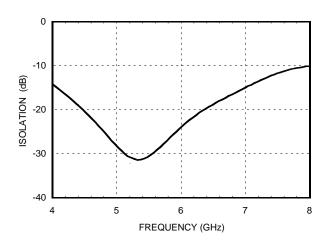
General Description

The HMC224MS8 is a low-cost SPDT switch in an 8-lead MSOP package for use in transmit-receive applications. The device can control signals from 5.0 to 6.0 GHz and is especially suited for 5.2 GHz UNII and 5.8 GHz ISM applications with only 1.2 dB loss. The design provides exceptional power handling performance; input P1dB = +33dBm at 5 Volt bias. RF1 or RF2 is a reflective short when "Off". On-chip circuitry allows single positive supply operation at very low DC current with control inputs compatible with CMOS and most TTL logic families. No DC blocking capacitors are required on RF I/O ports. HMC224MS8 is especially suited for PCMCIA wireless LAN applications.

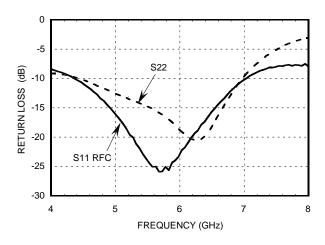
Guaranteed Performance, Vdd = +5 Vdc, 50 Ohm System, -40 to +85 deg C

Pa	Frequency	Min.	Тур.	Max.	Units						
Insertion Loss		5.0 - 6.0 GHz 5.1 - 5.4 GHz 5.4 - 5.9 GHz		1.3 1.2 1.3	1.6 1.5 1.6	dB dB dB					
Isolation		5.0 - 6.0 GHz 5.1 - 5.4 GHz 5.4 - 5.9 GHz	20 26 22	24 31 27		dB dB dB					
Return Loss	RF Common RF1 &RF2	5.0 - 6.0 GHz 5.1 - 5.9 GHz 5.0 - 6.0 GHz 5.1 - 5.9 GHz	11 12 11 11	15 16 14 15		dB dB dB dB					
Input Power for 1dB Compression	0/3V Control 0/5V Control		27 29	31 33		dBm dBm					
Input Third Order Intercept	0/3V Control 0/5V Control	5.0 - 6.0 GHz 5.0 - 6.0 GHz	31 33	35 37		dBm dBm					
Switching Characteristics	tRISE, tFALL (10/90% RF) tON, tOFF (50% CTL to 10/90% RF	5.0 - 6.0 GHz		10 25		nS nS					




HMC224MS8 MSOP8T/R SWITCH 5.0 - 6.0 GHz

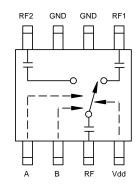
v01.0300 February 2001


Insertion Loss

Isolation

Return Loss

v01.0300



IICROWAVE CORPORATION

HMC224MS8 MSOP8T/R SWITCH 5.0 - 6.0 GHz

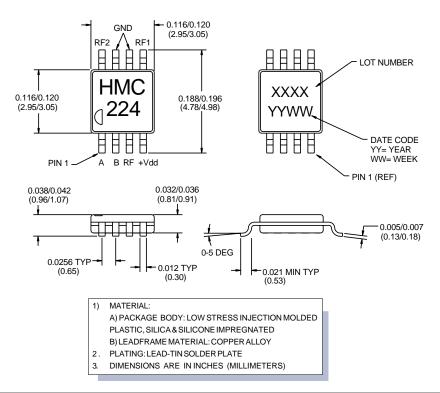
Functional Diagram

FEBRUARY 2001

Absolute Maximum Ratings

Bias Voltage Range (Vdd)	-0.2 to +12 Vdc		
Control Voltage Range (A & B)	-0.2 to +Vdd Vdc		
Storage Temperature	-65 to +150 deg C		
Operating Temperature	-40 to +85 deg C		

Truth Table

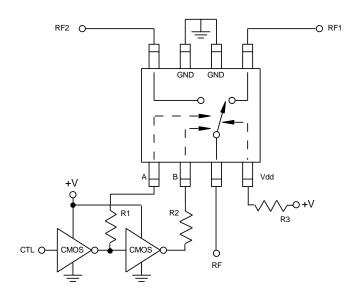

*Control Input Voltage Tolerances are ± 0.2 Vdc

Bias	Control Input *		Bias Current	Control Current	Control Current	Signal Path State	
Vdd (Vdc)	A (Vdc)	B (Vdc)	lvdd (µA)	la (µA)	lb (μΑ)	RF to RF1	RF to RF2
3	0	0	10	-5	-5	OFF	OFF
3	0	Vdd	10	-10	0	ON	OFF
3	Vdd	0	10	0	-10	OFF	ON
5	0	0	45	-22	-23	OFF	OFF
5	0	Vdd	45	-5	-40	ON	OFF
5	Vdd	0	115	-40	-5	OFF	ON

Caution: Do not operate in 1dB compression at power levels above +33 dBm and do not 'hot switch' power levels greater than +23dBm ($V_{\rm dd}$ = +5Vdc).

DC blocks are not required at ports RFC, RF1 and RF2.

Outline



HMC224MS8 MSOP8T/R SWITCH 5.0-6.0 GHz

v01.0300 FEBRUARY 2001

Typical Application Circuit

Notes:

- 1. Control inputs A and B can be driven directly with CMOS logic (HC) with V of 3 to 8 Volts applied to the CMOS logic gates and to pin 4 of the RF switch.
- 2. Set V to 5 Volts and use HCT series logic to provide a TTL driver interface.
- 3. Highest RF signal power capability is achieved with V set to +10V. However, the switch will operate properly (but at lower RF power capability) at bias voltages down to +3V.
- 4. RF ByPass: Do not use RF bypass capacitors on Vdd, A or B ports. Resistors R1, R2, R3 = 100 Ohms should be placed close to the Vdd, A and B ports. Use resistor size 0402 to minimize parasitic inductances and capacitances.
- 5. DC Blocking capacitors are not required for each RF port.
- 6. Evaluation PCB available.

See Page 8 - 4 for Layout Guidelines Application Note.

Web Site: www.hittite.com