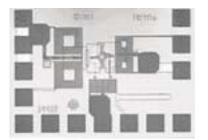
TAVE CORPORATION

GaAs MMIC SUB-HARMONICALLY PUMPED MIXER 25 - 40 GHz

FEBRUARY 2001 v00.1200


Features

Sub-Harmonically Pumped (x2) LO

Input IP3: Up to +18 dBm

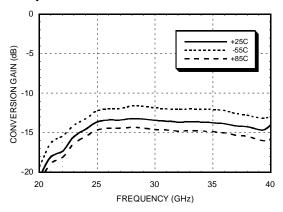
2LO/RF Isolation: 42 to 52 dB

Small Size: 0.97 mm²

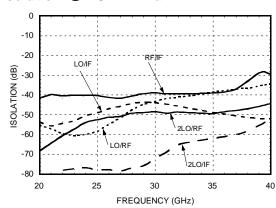
General Description

The HMC330 MMIC is a broadband double balanced sub-harmonically pumped passive mixer that may be used as an upconverter or downconverter. The mixer requires no external matching or bias. This design was optimized to provide better 1dB compression performance as compared to the HMC266 under the same LO drive levels. The HMC330 provides greater than 38 dB LO to RF and 2LO to RF isolation performance. Measurements were made with the chip mounted and ribbon bonded into in a 50-ohm microstrip test fixture that contains 5-mil alumina substrates between the chip and K-connectors. Measured data includes the parasitic effects of the assembly. RF connections to the chip were made with 0.076 mm (3-mil) ribbon bond with minimal length < 0.31mm (<12 mil).

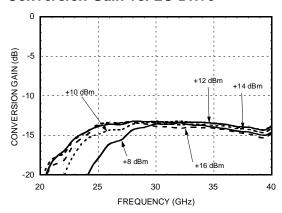
Guaranteed Performance, LO Drive= +14 dBm, -55 to + 85 deg C

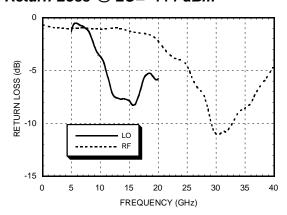

Parameter		IF= 2.5 GHz		Units
	Min.	Тур.	Max.	
Frequency Range, RF		25 - 40		GHz
Frequency Range LO		12.5 - 20		GHz
Frequency Range, IF		2 - 4		GHz
Conversion Loss		13	17	dB
Noise Figure (SSB)		13	17	dB
2LO to RF Isolation	40	48		dB
LO to RF Isolation	30	38		dB
2LO to IF Isolation	50	60		dB
RF to IF Isolation	27	37		dB
LO to IF Isolation	38	48		dB
IP3 (Input)	13	17		dBm
1 dB Compression (Input)	+4	+8		dBm
Local Oscillator Drive Level		10 ~ 16		

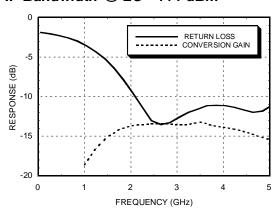
12 Elizabeth Drive, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Web Site: www.hittite.com

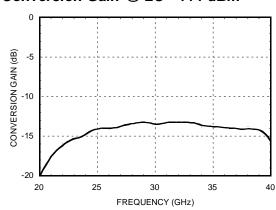


v00.1200 February 2001


Conversion Gain vs. Temperature @ LO= +14 dBm

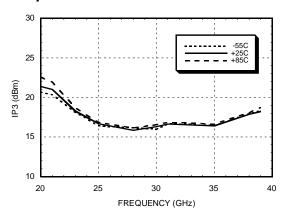

Isolation @ LO = +14 dBm


Conversion Gain vs. LO Drive

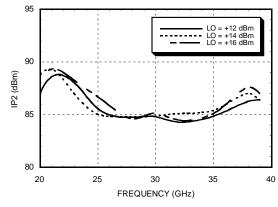

Return Loss @ LO= +14 dBm

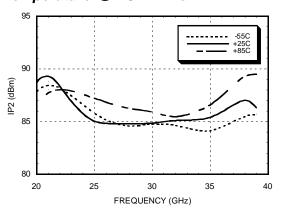
IF Bandwidth @ LO= +14 dBm

Upconverter Performance
Conversion Gain @ LO= +14 dBm

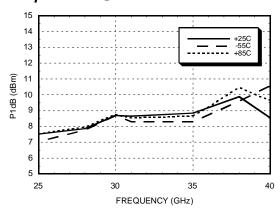


FEBRUARY 2001 V00.1200


Input IP3 vs. LO Drive

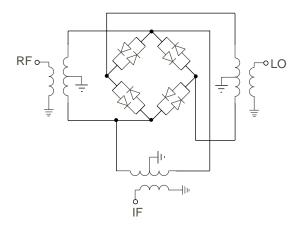

Input IP3 vs. Temperature @ LO= +14 dBm

Input IP2 vs. LO Drive

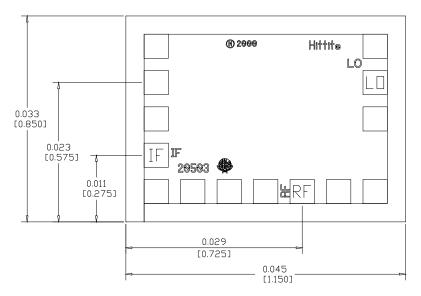

Input IP2 vs.
Temperature @ LO= +14 dBm

MXN Spurious Outputs as a Down Converter

	nLO						
mRF	± 5	± 4	± 3	± 2	± 1	0	
-3							
-2	71						
-1	71	44	61				
0				35	5		
1				Х	61	26	
2		75	85				
3							
RF= 30.5 GHz @ -10 dBm							
LO= 14 GHz @ +14 dBm							
All values in dBc below the IF							


Input P1dB vs.
Temperature @ LO = +14 dBm

v00.1200 February 2001


Schematic

Absolute Maximum Ratings

RF/IF Input	+13 dBm
LO Drive	+27 dBm
Storage Temperature	-65 to +150 deg C
Operating Temperature	-55 to +125 deg C

Outline Drawing (See Die Handling, Mounting, Bonding Note Page 4-208)

Backside of chip is ground. Connections are not required for unlabeled bondpads.

ALL DIMENSION IN INCHES (MILLIMETERS)
ALL TOLERANCES ARE ±0.025 (0.001)

DIE THICKNESS IS 0.100 (0.004) BACKSIDE IS GROUND

BOND PADS ARE 0.100 (0.004) SQUARE

BOND PAD SPACING, CTR-CTR: 0.150 (0.006)

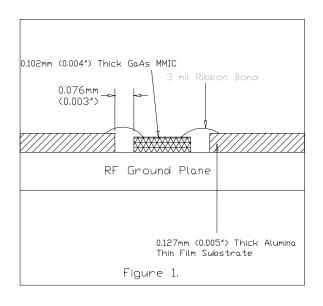
BACKSIDE METALLIZATION: GOLD BOND PAD METALLIZATION: GOLD

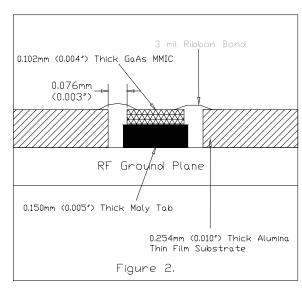
12 Elizabeth Drive, Chelmsford, MA 01824

Phone: 978-250-3343

Fax: 978-250-3373

Web Site: www.hittite.com


Ш



GaAs MMIC SUB-HARMONICALLY PUMPED MIXER 25 - 40 GHz

FEBRUARY 2001 VOO.1200

MIC Assembly Techniques for HMC330

Mounting & Bonding Techniques for Millimeterwave GaAs MMICs

The die should be attached directly to the ground plane eutectically or with conductive epoxy (see HMC general Handling, Mounting, Bonding Note).

50 Ohm Microstrip transmission lines on 0.127mm (5 mil) thick alumina thin film substrates are recommended for bringing RF to and from the chip (Figure 1). If 0.254mm (10 mil) thick alumina thin film substrates must be used, the die should be raised 0.150mm (6 mils) so that the surface of the die is coplanar with the surface of the substrate. One way to accomplish this is to attach the 0.102mm (4 mil) thick die to a 0.150mm (6 mil) thick molybdenum heat spreader (moly-tab) which is then attached to the ground plane (Figure 2).

Microstrip substrates should be brought as close to the die as possible in order to minimize ribbon bond length. Typical die-to-substrate spacing is 0.076mm (3 mils). Gold ribbon of 0.075 mm (3 mil) width and minimal length <0.31 mm (<12 mils) is recommended to minimize inductance on RF, LO & IF ports.

v00.1200 February 2001

Handling Precautions

Follow these precautions to avoid permanent damage.

Cleanliness: Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems.

Static Sensitivity: Follow ESD precautions to protect against \geq ± 250V ESD strikes (see page 8 - 2). Transients: Suppress instrument and bias supply transients while bias is applied. Use shielded signal and bias cables to minimize inductive pick-up.

General Handling: Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers. The surface of the chip has fragile air bridges and should not be touched with vacuum collet, tweezers, or fingers.

Mounting

The chip is back-metallized and can be die mounted with AuSn eutectic preforms or with electrically conductive epoxy. The mounting surface should be clean and flat.

Eutectic Die Attach:

A 80/20 gold tin preform is recommended with a work surface temperature of 255 deg. C and a tool temperature of 265 deg. C. When hot 90/10 nitrogen/hydrogen gas is applied, tool tip temperature should be 290 deg. C.

DO NOT expose the chip to a temperature greater than 320 deg. C for more than 20 seconds. No more than 3 seconds of scrubbing should be required for attachment.

Epoxy Die Attach:

Apply a minimum amount of epoxy to the mounting surface so that a thin epoxy fillet is observed around the perimeter of the chip once it is placed into position.

Cure epoxy per the manufacturer's schedule.

Wire Bonding

Wire bonds of 0.025 mm (1 mil) diameter are recommended. Thermosonic wirebonding with a nominal stage temperature of 150 deg. C and a ball bonding force of 40 to 50 grams or wedge bonding force of 18 to 22 grams is recommended. Use the minimum level of ultrasonic energy to achieve reliable wirebonds. Wirebonds should be started on the chip and terminated on the package or substrate. All bonds should be as short as possible <0.31 mm (12 mils).