

FULL SIZE D.I.L.

M3261 thru M3263 M3271 thru M3273 M3281 thru M3283

HALF SIZE D.I.L.

H3261 thru H3263 H3271 thru H3273 H3281 thru H3283

Tristate VCXOs Thru-Hole, 5V, Jitter is 20 ps Pk-Pk

These 5 volt thru hole VCXO models feature jitter of 20 ps, peak-to-peak., using fundamental crystals without multipliers They are available for the first time in a variety of off-the-shelf models, in full size (M) and half size (H) packages. with and without gull wing. Users have a choice of many off-the-shelf 5V thru-hole models. Diverse combinations of pull, control voltage and frequency deviation are available, accommodating a wide variety of filtering and driving circuitry. The tristate function facilitates diagnostic ATE testing, or facilitates choice of clock speed under software control. All VCXOs are tested and guaranteed

CONNECTIONS

Full Size		
Pin	1.	Not used
Pin	2.	Control Voltage, V _C
Pin	5.	Tristate
Pin	7.	Ground & Case
Pin	8.	Output
Pin	9.	Not used
Pin	14.	+5V, V _{DD}

Half Size		
Pin	1.	Control Voltage, V _C
Pin	2.	Tristate
Pin	4.	Ground & Case
Pin	5.	Output
Pin	8.	+5V, V _{DD}

3 MHz to 175 MHz SUPER-LOW JITTER 20 ps PEAK-PEAK

These 5V VCXOs generate an HCMOS/TTL frequency output which is controlled by an input control voltage. The end-point voltage/frequency parameters are defined, as is the center frequency.

CAPTURE RANGE

The Frequency-Capture range is equal to the (Center-Frequency \pm the Frequency Deviation), because every MF VCXO is ATE-tested to meet the Frequency-Deviation over the temperature range. Frequency Capture specification includes all effects of temperature and supply voltage. It is not necessary to make additional capture allowances.

FEATURES

- · Tristate is standard
- Jitter is specified
- Frequency from 3 MHz to 175 MHz
- Capture-range is fully defined, under all conditions
- Start-up time less than 5 ms.
- · Half size or full size DIL package
- · Choice of thru-hole or gull wing

VOLTAGE CONTROLLED OSCILLATORS HCMOS, 0° TO 70°C

Tristate, 5V

Thru-Hole/Gull Wing

3 MHz to 175 MHz Super-Low Jitter 20 ps Peak-to-Peak FULL SIZE D.I.L. M3261 thru M3263 M3271 thru M3273 M3281 thru M3283

HALF SIZE D.I.L.

H3261 thru H3263 H3271 thru H3273 H3281 thru H3283

Center Frequency is at 2.5V with ±50 ppm stability

MODEL	Control Voltage (Volts)	Frequency Deviation (ppm)	Guaranteed Capture Range (ppm)	Control Voltage at Center Frequency	Center Frequency Stability (ppm)
3261	0.5 to 4.5	± 75 to 150	± 75	2.5	. 20 hm
3262	0.5 to 4.5	± 100 to 200	± 100	2.5	± 30, typ ± 50. max
3263	0.5 to 4.5	± 150 to 300	± 150	2.5	± DU, IIIdX

Center Frequency is at 2.5V with ±25 ppm stability

MODEL	Control Voltage (Volts)	Frequency Deviation (ppm)	Guaranteed Capture Range (ppm)	Control Voltage at Center Frequency	Center Frequency Stability (ppm)
3271	0.5 to 4.5	± 75 to 150	± 75	2.5	. 20 tup
3272	0.5 to 4.5	± 100 to 200	± 100	2.5	± 20, typ ± 25. max
3273	0.5 to 4.5	± 150 to 300	± 150	2.5	I ZJ, IIIdA

Center Frequency is at 2.5V with ±20 ppm stability

MODEL	Control Frequency Voltage Deviation (Volts) (ppm)		Guaranteed Capture Range (ppm)	Control Voltage at Center Frequency	Center Frequency Stability (ppm)	
3281	0.5 to 4.5	± 75 to 150	± 75	2.5	. 1E han	
3282	0.5 to 4.5	± 100 to 200	± 100	2.5	± 15, typ ± 20, max	
3283	0.5 to 4.5	± 150 to 300	± 150	2.5	I ZU, IIIdA	

DESCRIPTIONS

DESCRIPTIONS	
M3261, H3261,	±75 ppm capture when using using 0.5 to 4.5V control-voltage and 2.5V center with ±50 ppm stability
M3262, H3262,	±100 ppm capture when using using 0.5 to 4.5V control-voltage and 2.5V center with ±50 ppm stability
M3263, H3263,	±150 ppm capture when using using 0.5 to 4.5V control-voltage and 2.5V center with ±50 ppm stability
M3271, H3271, 1	± 75 ppm capture when using using 0.5 to 4.5V control-voltage and 2.5V center with ± 25 ppm stability
M3232, H3232,	±100 ppm capture when using using 0.5 to 4.5V control-voltage and 2.5V center with ±25 ppm stability
M3273, H3273,	±150 ppm capture when using using 0.5 to 4.5V control-voltage and 2.5V center with ±25 ppm stability
M3281, H3281,	±75 ppm capture when using using 0.5 to 4.5V control-voltage and 2.5V center with ±20 ppm stability
M3282, H3282,	±100 ppm capture when using using 0.5 to 4.5V control-voltage and 2.5V center with ±20 ppm stability
M3283, H3283,	±150 ppm capture when using using 0.5 to 4.5V control-voltage and 2.5V center with ±20 ppm stability

ALL OSCILLATORS HAVE INTERNAL BYPASS CAPACITORS

TEST CIRCUIT

VOLTAGE CONTROLLED OSCILLATORS HCMOS, 0° TO 70°C

Tristate, 5V Thru-Hole/Gull Wing

3 MHz to 175 MHz Super-Low Jitter 20 ps Peak-to-Peak FULL SIZE D.I.L.

M3261 thru M3263 M3271 thru M3273 M3281 thru M3283

HALF SIZE D.I.L.

H3261 thru H3263 H3271 thru H3273 H3281 thru H3283

SPECIFICATIONS

Temperature

Operating 0 to 70°C Storage –55 to +125°C

Frequency Stability

 $V_C = 2.5V$ $\pm 20, \pm 25 \text{ or } \pm 50 \text{ ppm, max.}$ as shown in model specification

Input Voltage	MIN. 4.5	TYP 5.0	MAX 5.5	volts
Input Current		30	45	ma
Output Levels (HCMOS) "0" Level, sinking 16 ma. "1" Level, sourcing 10 ma.	V _{DD} 4		0.4	volts volts
Rise and Fall Times, HCMOS From 0.4 to (V _{DD} 4) V (Above 35 MHz)		2.5	4 2	ns ns
$\begin{array}{c} \text{Symmetry} \\ \text{At V}_{\text{DD}}/2 \end{array}$			45/55	percent
Input Impedance, Pin 2., Control Voltage	15	1000		Kohms
Control Voltage Bandwidth	15	20		KHz

Control Voltage

Maximum and minimum as specified for each model.

Jitter

Jitter is less than 20 ps peak-peak, when measured by Tektronix 11801B Digital Storage Oscilloscope with SD-22 Sampling head in Color Statistics mode.

Tristate

"1" Output is On - Pin 5 may float or 2.4V min, sourcing 400µa "0" Output is disabled, tristate, high impedance - Pin 5 requires 0.4V, sinking 400µa

ENVIRONMENTAL SPECIFICATIONS

Temperature Cycle – Not to exceed ±5 ppm change when exposed to 2 hours maximum at each temperature from 0 to 120°C, with 25°C reference **Shock** – 1000 G's, 0.35 ms, 1/2 sine wave, 3 shocks in each plane

Vibration – 10-2000 Hz of .06" d.a. or 20 G's, whichever is less

Humidity - Resistant to 85° R.H. at 85°C

MECHANICAL SPECIFICATIONS

Gross Leak - Each unit checked in 125°C flurocarbon

Fine Leak – Mass spectrometer leak rate less than 2 X 10⁻⁸ atmos, cc/sec of helium

Pins – Kovar, nickel plated with 60/40 solder coat, or 7 microinch gold over nickel

Bend Test – Will withstand two bends of 90° from reference

Header – Steel, with nickel plate, or 7 microinch gold over nickel

Case - Stainless steel, type 304

Marking - Printing is black epoxy ink

Resistance to Solvents - MIL STD 202, Method 215

AGING

3 to 5 ppm, first year, typ. 1 ppm per year thereafter, typ.

Fig. 1 H3263-16.384M with 50pf load

VOLTAGE CONTROLLED OSCILLATORS HCMOS, 0° TO 70°C Tristate, 5V Thru-Hole/Gull Wing 3 MHz to 175 MHz Super-Low Jitter 20 ps Peak-to-Peak FULL SIZE D.I.L. M3261 thru M3263 M3271 thru M3273 M3281 thru M3283

HALF SIZE D.I.L.

H3261 thru H3263 H3271 thru H3273 H3281 thru H3283

FREQUENCY VS. CONTROL VOLTAGE FOR TYPICAL DEVICE

JITTER FOR TYPICAL DEVICE

Fig. 3 Jitter for M3282-77.76 M

