# HCS161MS # Radiation Hardened Synchronous Counter September 1995 #### **Features** - 3 Micron Radiation Hardened SOS CMOS - Total Dose 200K RAD (Si) - SEP Effective LET No Upsets: >100 MEV-cm<sup>2</sup>/mg - Single Event Upset (SEU) Immunity < 2 x 10<sup>-9</sup> Errors/Bit-Day (Typ) - Dose Rate Survivability: >1 x 10<sup>12</sup> RAD (Si)/s - Dose Rate Upset >10<sup>10</sup> RAD (Si)/s 20ns Pulse - Cosmic Ray Upset Immunity 2 x 10<sup>-9</sup> Error/Bit Day (Typ) - Latch-Up Free Under Any Conditions - Military Temperature Range: -55°C to +125°C - Significant Power Reduction Compared to LSTTL ICs - DC Operating Voltage Range: 4.5V to 5.5V - · Input Logic Levels - VIL = 0.3 VCC Max - VIH = 0.7 VCC Min - Input Current Levels Ii ≤ 5μA at VOL, VOH ## Description The Intersil HCS161MS is a Radiation Hardened 4-Input Binary; synchronous counter featuring asynchronous reset and look-ahead carry logic. The HCS161 has an active-low master reset to zero, $\overline{\text{MR}}$ . A low level at the synchronous parallel enable, $\overline{\text{SPE}}$ , disables counting and allows data at the preset inputs (p0 - p3) to load the counter. The data is latched to the outputs on the positive edge of the clock input, CP. The HCS161MS has two count output, IC. The terminal count output indicates a maximum count for one clock pulse and is used to enable the next cascaded stage to count. The HCS161MS utilizes advanced CMOS/SOS technology to achieve high-speed operation. This device is a member of radiation hardened, high-speed, CMOS/SOS Logic Family. The HCS161MS is supplied in a 16 lead Ceramic flatpack (K suffix) or a SBDIP Package (D suffix). #### **Pinouts** 16 LEAD CERAMIC DUAL-IN-LINE METAL SEAL PACKAGE (SBDIP) MIL-STD-1835 CDIP2-T16 TOP VIEW 16 LEAD CERAMIC METAL SEAL FLATPACK PACKAGE (FLATPACK) MIL-STD-1835 CDFP4-F16 TOP VIEW ## Ordering Information | PART NUMBER | TEMPERATURE RANGE | SCREENING LEVEL | PACKAGE | |----------------|-------------------|-----------------------------|--------------------------| | HCS161DMSR | -55°C to +125°C | Intersil Class S Equivalent | 16 Lead SBDIP | | HCS161KMSR | -55°C to +125°C | Intersil Class S Equivalent | 16 Lead Ceramic Flatpack | | HCS161D/Sample | +25°C | Sample | 16 Lead SBDIP | | HCS161K/Sample | +25°C | Sample | 16 Lead Ceramic Flatpack | | HCS161HMSR | +25°C | Die | Die | # Functional Diagram TRUTH TABLE | | | | INP | UTS | | | оиті | PUTS | |----------------|----|----|-------|-------|-------|----|-------|------| | OPERATING MODE | MR | СР | PE | TE | SPE | Pn | Qn | TC | | Reset (Clear) | L | X | X | X | X | X | L | L | | Parallel Load | Н | | Х | Х | I | I | L | L | | | Н | | Х | Х | I | h | Н | (a) | | Count | Н | | h | h | h (c) | Х | Count | (a) | | Inhibit | Н | Х | I (b) | Х | h (c) | Х | qn | (a) | | | Н | Х | Х | I (b) | h (c) | Х | qn | L | H = High Level, L = Low Level, X = Immaterial, \_\_\_\_ = Transition from low to high #### Storage Temperature Range (TSTG)...-65°C to +150°C Lead Temperature (Soldering 10sec)...+265°C Junction Temperature (TJ)...+175°C ESD Classification...Class 1 CAUTION: As with all semiconductors, stress listed under "Absolute Maximum Ratings" may be applied to devices (one at a time) without resulting in permanent damage. This is a stress rating only. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. The conditions listed under "Electrical Performance Characteristics" are the only conditions recommended for satisfactory device operation. ## **Operating Conditions** #### TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS | | | (NOTE 1) | GROUP<br>A SUB- | | LIM | IITS | | |-----------------------------------|--------|------------------------------------------------------|-----------------|----------------------|-------------|------|-------| | PARAMETER | SYMBOL | CONDITIONS | GROUPS | TEMPERATURE | MIN | MAX | UNITS | | Quiescent Current | ICC | VCC = 5.5V,<br>VIN = VCC or GND | 1 | +25°C | - | 40 | μΑ | | | | VIIV = VCC OI GIVD | 2, 3 | +125°C, -55°C | - | 750 | μΑ | | Output Current<br>(Sink) | IOL | VCC = 4.5V, VIH = 4.5V,<br>VOUT = 0.4V, VIL = 0V | 1 | +25°C | 4.8 | - | mA | | (Ollik) | | VOOT = 0.4V, VIL = 0V | 2, 3 | +125°C, -55°C | 4.0 | - | mA | | Output Current<br>(Source) | IOH | VCC = 4.5V, VIH = 4.5V,<br>VOUT = VCC -0.4V, | 1 | +25°C | -4.8 | - | mA | | (Gource) | | VIL = 0V | 2, 3 | +125°C, -55°C | -4.0 | - | mA | | Output Voltage Low | VOL | VCC = 4.5V, VIH = 3.15V,<br>IOL = 50μA, VIL = 1.35V | 1, 2, 3 | +25°C, +125°C, -55°C | - | 0.1 | V | | | | VCC = 5.5V, VIH = 3.85V,<br>IOL = 50μA, VIL = 1.65V | 1, 2, 3 | +25°C, +125°C, -55°C | - | 0.1 | V | | Output Voltage High | VOH | VCC = 4.5V, VIH = 3.15V,<br>IOH = -50μA, VIL = 1.35V | 1, 2, 3 | +25°C, +125°C, -55°C | VCC<br>-0.1 | - | V | | | | VCC = 5.5V, VIH = 3.85V,<br>IOH = -50μA, VIL = 1.65V | 1, 2, 3 | +25°C, +125°C, -55°C | VCC<br>-0.1 | - | V | | Input Leakage<br>Current | IIN | VCC = 5.5V, VIN = VCC or GND | 1 | +25°C | - | ±0.5 | μΑ | | Current | | GIAD | 2, 3 | +125°C, -55°C | - | ±5.0 | μΑ | | Noise Immunity<br>Functional Test | FN | VCC = 4.5V,<br>VIH = 0.70(VCC),<br>VIL = 0.30(VCC) | 7, 8A, 8B | +25°C, +125°C, -55°C | - | - | - | #### NOTES: - 1. All voltages reference to device GND. - 2. For functional tests, VO ≥ 4.0V is recognized as a logic "1", and VO ≤ 0.5V is recognized as a logic "0". TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS | | | (NOTES 1, 2) | GROUP<br>A SUB- | | LIM | IITS | | |-----------|--------------|--------------|-----------------|---------------|-----|------|-------| | PARAMETER | SYMBOL | CONDITIONS | GROUPS | TEMPERATURE | MIN | MAX | UNITS | | CP to Qn | TPHL<br>TPLH | VCC = 4.5V | 9 | +25°C | 2 | 34 | ns | | | IFEII | | 10, 11 | +125°C, -55°C | 2 | 39 | ns | | CP to TC | TPHL<br>TPLH | VCC = 4.5V | 9 | +25°C | 2 | 37 | ns | | | 11 211 | | 10, 11 | +125°C, -55°C | 2 | 42 | ns | | TE to TC | TPHL<br>TPLH | VCC = 4.5V | 9 | +25°C | 2 | 23 | ns | | | 11 211 | | 10, 11 | +125°C, -55°C | 2 | 26 | ns | | MR to Qn | TPHL | VCC = 4.5V | 9 | +25°C | 2 | 41 | ns | | | | | 10, 11 | +125°C, -55°C | 2 | 45 | ns | | MR to TC | TPHL | VCC = 4.5V | 9 | +25°C | 2 | 46 | ns | | | | | 10, 11 | +125°C, -55°C | 2 | 51 | ns | ## NOTES: - 1. All voltages referenced to device GND. - 2. AC measurements assume RL = $500\Omega$ , CL = 50pF, Input TR = TF = 3ns, VIL = GND, VIH = VCC. TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS | | | | | | LIM | IITS | | |-------------------------------|--------------|----------------------|-------|---------------|-----|------|-------| | PARAMETER | SYMBOL | CONDITIONS | NOTES | TEMPERATURE | MIN | MAX | UNITS | | Capacitance Power Dissipation | CPD | VCC = 5.0V, f = 1MHz | 1 | +25°C | - | 54 | pF | | Dissipation | | | 1 | +125°C, -55°C | - | 84 | pF | | Input Capacitance | CIN | VCC = 5.0V, f = 1MHz | 1 | +25°C | - | 10 | pF | | | | | 1 | +125°C | - | 10 | pF | | Output Transition Time | TTHL<br>TTLH | VCC = 4.5V | 1 | +25°C | - | 15 | ns | | Timo | TILIT | | 1 | +125°C | - | 22 | ns | #### NOTE: TABLE 4. DC POST RADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS | | | (NOTES 1, 2) | | | RAD | | |----------------------------|--------|---------------------------------------------------|-------------|------|------|-------| | PARAMETER | SYMBOL | CONDITIONS | TEMPERATURE | MIN | MAX | UNITS | | Quiescent Current | ICC | VCC = 5.5V, VIN = VCC or GND | +25°C | - | 0.75 | mA | | Output Current (Sink) | IOL | VCC = 4.5V, VIN = VCC or GND,<br>VOUT = 0.4V | +25°C | 4.0 | - | mA | | Output Current<br>(Source) | IOH | VCC = 4.5V, VIN = VCC or GND,<br>VOUT = VCC -0.4V | +25°C | -4.0 | - | mA | <sup>1.</sup> The parameters listed in Table 3 are controlled via design or process parameters. Min and Max Limits are guaranteed but not directly tested. These parameters are characterized upon initial design release and upon design changes which affect these characteristics. TABLE 4. DC POST RADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued) | | | (NOTES 1, 2) | | | RAD | | |-----------------------------------|--------|-----------------------------------------------------------------------|-------------|-------------|-----|-------| | PARAMETER | SYMBOL | CONDITIONS | TEMPERATURE | MIN | MAX | UNITS | | Output Voltage Low | VOL | VCC = 4.5V and 5.5V, VIH = 0.70(VCC),<br>VIL = 0.30(VCC), IOL = 50μA | +25°C | - | 0.1 | V | | Output Voltage High | VOH | VCC = 4.5V and 5.5V, VIH = 0.70(VCC),<br>VIL = 0.30(VCC), IOH = -50μA | +25°C | VCC<br>-0.1 | - | V | | Input Leakage Current | IIN | VCC = 5.5V, VIN = VCC or GND | +25°C | - | ±5 | μΑ | | Noise Immunity<br>Functional Test | FN | VCC = 4.5V, VIH = 0.70(VCC),<br>VIL = 0.30(VCC), (Note 3) | +25°C | - | - | - | | CP to Qn | TPHL | VCC = 4.5V | +25°C | 2 | 39 | ns | | | TPLH | VCC = 4.5V | +25°C | 2 | 39 | ns | | CP to TC | TPHL | VCC = 4.5V | +25°C | 2 | 43 | ns | | | TPLH | VCC = 4.5V | +25°C | 2 | 43 | ns | | TE to TC | TPHL | VCC = 4.5V | +25°C | 2 | 27 | ns | | | TPLH | VCC = 4.5V | +25°C | 2 | 27 | ns | | MR to Qn | TPHL | VCC = 4.5V | +25°C | 2 | 45 | ns | | MR to TC | TPHL | VCC = 4.5V | +25°C | 2 | 51 | ns | ## NOTES: - 1. All voltages referenced to device GND. - 2. AC measurements assume RL = $500\Omega$ , CL = 50pF, Input TR = TF = 3ns, VIL = GND, VIH = 3V. - 3. For functional tests, VO ≥ 4.0V is recognized as a logic "1", and VO ≤ 0.5V is recognized as a logic "0". TABLE 5. BURN-IN AND OPERATING LIFE TEST, DELTA PARAMETERS (+25°C) | PARAMETER | GROUP B<br>SUBGROUP | DELTA LIMIT | |-----------|---------------------|----------------| | ICC | 5 | 12μΑ | | IOL/IOH | 5 | -15% of 0 Hour | ## **TABLE 6. APPLICABLE SUBGROUPS** | CONFORMANCI | E GROUPS | METHOD | GROUP A SUBGROUPS | READ AND RECORD | |----------------------------|--------------------------------|-------------|---------------------------------------|------------------------------| | Initial Test (Preburn-In) | | 100%/5004 | 1, 7, 9 | ICC, IOL/H | | Interim Test I (Postburn- | ln) | 100%/5004 | 1, 7, 9 | ICC, IOL/H | | Interim Test II (Postburn- | -ln) | 100%/5004 | 1, 7, 9 | ICC, IOL/H | | PDA | | 100%/5004 | 1, 7, 9, Deltas | | | Interim Test III (Postburn | Interim Test III (Postburn-In) | | 1, 7, 9 | ICC, IOL/H | | PDA | | 100%/5004 | 1, 7, 9, Deltas | | | Final Test | | 100%/5004 | 2, 3, 8A, 8B, 10, 11 | | | Group A (Note 1) | | Sample/5005 | 1, 2, 3, 7, 8A, 8B, 9, 10, 11 | | | Group B | roup B Subgroup B-5 | | 1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas | Subgroups 1, 2, 3, 9, 10, 11 | | | Subgroup B-6 | Sample/5005 | 1, 7, 9 | | | Group D | Group D | | 1, 7, 9 | | ## NOTE: 1. Alternate Group A testing in accordance with Method 5005 of MIL-STD-883 may be exercised. ## **TABLE 7. TOTAL DOSE IRRADIATION** | CONFORMANCE | | TE | ST | READ AND | RECORD | |--------------------|--------|---------|----------|----------|------------------| | GROUPS | METHOD | PRE RAD | POST RAD | PRE RAD | POST RAD | | Group E Subgroup 2 | 5005 | 1, 7, 9 | Table 4 | 1, 9 | Table 4 (Note 1) | ## NOTE: 1. Except FN test which will be performed 100% Go/No-Go. ## TABLE 8. STATIC AND DYNAMIC BURN-IN TEST CONNECTIONS | | | | | OSCIL | LATOR | | | |---------------------------------------------|-------------------------------------------|---------------------|------------------------------------------|-------|-------|--|--| | OPEN | GROUND | 1/2 VCC = 3V ± 0.5V | $\text{VCC} = 6\text{V} \pm 0.5\text{V}$ | 50kHz | 25kHz | | | | STATIC BURN-IN I TE | STATIC BURN-IN I TEST CONDITIONS (Note 1) | | | | | | | | 11 - 15 | 1 - 10 | - | 16 | - | - | | | | STATIC BURN-IN II T | EST CONNECTIONS (Note | e 1) | | | | | | | 11 - 15 | 8 | - | 1 - 7, 9, 10, 16 | - | - | | | | DYNAMIC BURN-IN I TEST CONNECTIONS (Note 2) | | | | | | | | | - | 4, 6, 8 | 11 - 15 | 1, 3, 5, 7, 9, 10, 16 | 2 | - | | | ## NOTES: - 1. Each pin except VCC and GND will have a resistor of $10 K\Omega \pm 5\%$ for static burn-in. - 2. Each pin except VCC and GND will have a resistor of 1K $\!\Omega\pm5\%$ for dynamic burn-in. **TABLE 9. IRRADIATION TEST CONNECTIONS** | OPEN | GROUND | VCC = 5V ± 0.5V | |---------|--------|------------------| | 11 - 15 | 8 | 1 - 7, 9, 10, 16 | NOTE: Each pin except VCC and GND will have a resistor of 47K $\Omega$ $\pm$ 5% for irradiation testing. Group E, Subgroup 2, sample size is 4 dice/wafer 0 failures. #### HCS161MS ## Intersil Space Level Product Flow - 'MS' Wafer Lot Acceptance (All Lots) Method 5007 (Includes SEM) GAMMA Radiation Verification (Each Wafer) Method 1019, 4 Samples/Wafer, 0 Rejects 100% Nondestructive Bond Pull, Method 2023 Sample - Wire Bond Pull Monitor, Method 2011 Sample - Die Shear Monitor, Method 2019 or 2027 100% Internal Visual Inspection, Method 2010, Condition A 100% Temperature Cycle, Method 1010, Condition C, 10 Cycles 100% Constant Acceleration, Method 2001, Condition per Method 5004 100% PIND, Method 2020, Condition A 100% External Visual 100% Serialization 100% Initial Electrical Test (T0) 100% Static Burn-In 1, Condition A or B, 24 hrs. min., +125°C min., Method 1015 100% Interim Electrical Test 1 (T1) 100% Delta Calculation (T0-T1) 100% Static Burn-In 2, Condition A or B, 24 hrs. min., +125°C min., Method 1015 100% Interim Electrical Test 2 (T2) 100% Delta Calculation (T0-T2) 100% PDA 1, Method 5004 (Notes 1and 2) 100% Dynamic Burn-In, Condition D, 240 hrs., +125°C or Equivalent, Method 1015 100% Interim Electrical Test 3 (T3) 100% Delta Calculation (T0-T3) 100% PDA 2, Method 5004 (Note 2) 100% Final Electrical Test 100% Fine/Gross Leak, Method 1014 100% Radiographic, Method 2012 (Note 3) 100% External Visual, Method 2009 Sample - Group A, Method 5005 (Note 4) 100% Data Package Generation (Note 5) #### NOTES: - 1. Failures from Interim electrical test 1 and 2 are combined for determining PDA 1. - 2. Failures from subgroup 1, 7, 9 and deltas are used for calculating PDA. The maximum allowable PDA = 5% with no more than 3% of the failures from subgroup 7. - 3. Radiographic (X-Ray) inspection may be performed at any point after serialization as allowed by Method 5004. - 4. Alternate Group A testing may be performed as allowed by MIL-STD-883, Method 5005. - 5. Data Package Contents: - Cover Sheet (Intersil Name and/or Logo, P.O. Number, Customer Part Number, Lot Date Code, Intersil Part Number, Lot Number, Quantity). - · Wafer Lot Acceptance Report (Method 5007). Includes reproductions of SEM photos with percent of step coverage. - GAMMA Radiation Report. Contains Cover page, disposition, Rad Dose, Lot Number, Test Package used, Specification Numbers, Test equipment, etc. Radiation Read and Record data on file at Intersil. - X-Ray report and film. Includes penetrometer measurements. - · Screening, Electrical, and Group A attributes (Screening attributes begin after package seal). - Lot Serial Number Sheet (Good units serial number and lot number). - Variables Data (All Delta operations). Data is identified by serial number. Data header includes lot number and date of test. - The Certificate of Conformance is a part of the shipping invoice and is not part of the Data Book. The Certificate of Conformance is signed by an authorized Quality Representative. # **AC Timing Diagrams** #### **AC VOLTAGE LEVELS** | PARAMETER | нсѕ | UNITS | |-----------|------|-------| | VCC | 4.50 | V | | VIH | 4.50 | V | | VS | 2.25 | V | | VIL | 0 | V | | GND | 0 | V | ## **AC Load Circuit** All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time withou notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com ## Sales Office Headquarters ## NORTH AMERICA Intersil Corporation 7585 Irvine Center Drive Suite 100 Irvine, CA 92618 TEL: (949) 341-7000 FAX: (949) 341-7123 Intersil Corporation 2401 Palm Bay Rd. Palm Bay, FL 32905 TEL: (321) 724-7000 FAX: (321) 724-7946 EUROPE Intersil Fur Intersil Europe Sarl Ave. William Graisse, 3 1006 Lausanne Switzerland TEL: +41 21 6140560 FAX: +41 21 6140579 ASIA Inters Intersil Corporation Unit 1804 18/F Guangdong Water Building 83 Austin Road TST, Kowloon Hong Kong TST, Kowloon Hong Kong TEL: +852 2723 6339 FAX: +852 2730 1433 ## Die Characteristics ## **DIE DIMENSIONS:** 104 x 86 mils 2650 x 2190mm ## **METALLIZATION:** Type: AlSi Metal Thickness: 11kÅ ± 1kÅ ## **GLASSIVATION:** Type: SiO<sub>2</sub> Thickness: 13kÅ ± 2.6kÅ ## **WORST CASE CURRENT DENSITY:** $< 2.0 \times 10^5 \text{A/cm}^2$ ## **BOND PAD SIZE:** 100μm x 100μm 4 x 4 mils ## Metallization Mask Layout ## HCS161MS NOTE: The die diagram is a generic plot from a similar HCS device. It is intended to indicate approximate die size and bond pad location. The mask series for the HCS161 is TA14346A.