August 2002 FN3591.5 ## Quad, 125MHz Video Current Feedback Amplifier The HA5025 is a wide bandwidth high slew rate quad amplifier optimized for video applications and gains between 1 and 10. It is a current feedback amplifier and thus yields less bandwidth degradation at high closed loop gains than voltage feedback amplifiers. The low differential gain and phase, 0.1dB gain flatness, and ability to drive two back terminated 75Ω cables, make this amplifier ideal for demanding video applications. The current feedback design allows the user to take advantage of the amplifier's bandwidth dependency on the feedback resistor. The performance of the HA5025 is very similar to the popular Intersil HA-5020. ### **Pinout** #### Features | Wide Unity Gain Bandwidth | |--------------------------------------| | • Slew Rate | | • Input Offset Voltage | | • Differential Gain 0.03% | | Differential Phase | | Supply Current (per Amplifier) 7.5mA | | • ESD Protection | | | ### · Guaranteed Specifications at ±5V Supplies ## **Applications** - · Video Gain Block - · Video Distribution Amplifier/RGB Amplifier - · Flash A/D Driver - · Current to Voltage Converter - · Medical Imaging - · Radar and Imaging Systems - · Video Switching and Routing ### Ordering Information | PART NUMBER | TEMP.
RANGE (°C) | PACKAGE | PKG.
NO. | | | |-------------|--|------------|-------------|--|--| | HA5025IP | -40 to 85 | 14 Ld PDIP | E14.3 | | | | HA5025IB | -40 to 85 | 14 Ld SOIC | M14.15 | | | | HA5025EVAL | High Speed Op Amp DIP Evaluation Board | | | | | #### **Absolute Maximum Ratings** | Voltage Between V+ and V- Terminals | |--| | DC Input Voltage (Note 3) ±V _{SUPPLY} | | Differential Input Voltage | | Output Current (Note 4)Short Circuit Protected | | ESD Rating (Note 3) | Human Body Model (Per MIL-STD-883 Method 3015.7). . 2000V ## **Operating Conditions** | Temperature Range | -40°C to 85°C | |--------------------------------|---------------| | Supply Voltage Range (Typical) | ±4.5V to ±15V | #### **Thermal Information** | θ_{JA} (°C/W) | |--------------------------------------| | 90 | | 120 | | 175°C | |) 150 ⁰ C | | ^o C to 150 ^o C | | 300°C | | | CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. #### NOTES: - Maximum power dissipation, including output load, must be designed to maintain junction temperature below 175°C for die, and below 150°C for plastic packages. See Application Information section for safe operating area information. - 2. θ_{JA} is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details. - 3. The non-inverting input of unused amplifiers must be connected to GND. - 4. Output is protected for short circuits to ground. Brief short circuits to ground will not degrade reliability, however, continuous (100% duty cycle) output current should not exceed 15mA for maximum reliability. ## **Electrical Specifications** V_{SUPPLY} = ±5V, R_F = 1k Ω , A_V = +1, R_L = 400 Ω , $C_L \le$ 10pF, Unless Otherwise Specified | PARAMETER | TEST CONDITIONS | (NOTE 9) TEST LEVEL | TEMP. | MIN | TYP | MAX | UNITS | |--|---|---------------------|----------|------|--|------|--------------------| | INPUT CHARACTERISTICS | | <u>'</u> | <u>I</u> | | | 1 | | | Input Offset Voltage (V _{IO}) | | Α | 25 | - | 8.0 | 3 | mV | | | | Α | Full | - | - | 5 | mV | | Delta V _{IO} Between Channels | | Α | Full | - | 1.2 | 3.5 | mV | | Average Input Offset Voltage Drift | | В | Full | - | 5 | - | μV/ ^o C | | V _{IO} Common Mode Rejection Ratio | Note 5 | Α | 25 | 53 | - | - | dB | | | | Α | Full | 50 | 0.8 - 1.2 5 3 - 0 - 5 - 5 - 3 4 10 6 10 - | - | dB | | V _{IO} Power Supply Rejection Ratio | $\pm 3.5 \text{V} \le \text{V}_{\text{S}} \le \pm 6.5 \text{V}$ | Α | 25 | 60 | - | - | dB | | | | Α | Full | 55 | - | - | dB | | Input Common Mode Range | Note 5 | Α | Full | ±2.5 | - | - | V | | Non-Inverting Input (+IN) Current | | Α | 25 | - | 3 | 8 | μΑ | | | | Α | Full | - | - | 20 | μΑ | | +IN Common Mode Rejection | Note 5 | Α | 25 | - | - | 0.15 | μ A /V | | $(+I_{BCMR} = \frac{1}{+R_{IN}})$ | | Α | Full | - | - | 0.5 | μA/V | | +IN Power Supply Rejection | $\pm 3.5 \text{V} \le \text{V}_{\text{S}} \le \pm 6.5 \text{V}$ | А | 25 | - | - | 0.1 | μ A /V | | | | А | Full | - | - | 0.3 | μ A /V | | Inverting Input (-IN) Current | | Α | 25, 85 | - | 4 | 12 | μΑ | | | | Α | -40 | - | 10 | 30 | μΑ | | Delta - IN BIAS Current Between Channels | | А | 25, 85 | - | 6 | 15 | μΑ | | | | Α | -40 | - | 10 | 30 | μΑ | | -IN Common Mode Rejection | Note 5 | А | 25 | - | - | 0.4 | μ A /V | | | | А | Full | - | - | 1.0 | μ A /V | | -IN Power Supply Rejection | $\pm 3.5 \text{V} \le \text{V}_{\text{S}} \le \pm 6.5 \text{V}$ | Α | 25 | - | - | 0.2 | μ A /V | | | | Α | Full | - | - | 0.5 | μ A /V | | Input Noise Voltage | f = 1kHz | В | 25 | - | 4.5 | - | nV/√ Hz | # **Electrical Specifications** V_{SUPPLY} = ± 5 V, R_F = $1k\Omega$, A_V = +1, R_L = 400Ω , $C_L \le 10pF$, Unless Otherwise Specified **(Continued)** | PARAMETER | TEST CONDITIONS | (NOTE 9) TEST LEVEL | TEMP. | MIN | ТҮР | MAX | UNITS | |--|---|---------------------|-------|-------|-------|-----|--------------------| | +Input Noise Current | f = 1kHz | В | 25 | - | 2.5 | - | pA/√Hz | | -Input Noise Current | f = 1kHz | В | 25 | - | 25.0 | - | pA/√ Hz | | TRANSFER CHARACTERISTICS | | | | | | | | | Transimpedance | Note 11 | Α | 25 | 1.0 | _ | - | ΜΩ | | | | Α | Full | 0.85 | - | - | ΜΩ | | Open Loop DC Voltage Gain | R _L = 400Ω, V _{OUT} = ±2.5V | Α | 25 | 70 | - | - | dB | | | | Α | Full | 65 | - | - | dB | | Open Loop DC Voltage Gain | $R_L = 100\Omega, V_{OUT} = \pm 2.5V$ | Α | 25 | 50 | - | - | dB | | | | Α | Full | 45 | - | - | dB | | OUTPUT CHARACTERISTICS | | <u>I</u> | | I | | | II. | | Output Voltage Swing | $R_L = 150\Omega$ | Α | 25 | ±2.5 | ±3.0 | - | V | | | | Α | Full | ±2.5 | ±3.0 | - | V | | Output Current | $R_L = 150\Omega$ | В | Full | ±16.6 | ±20.0 | - | mA | | Output Current, Short Circuit | $V_{IN} = \pm 2.5V, V_{OUT} = 0V$ | Α | Full | ±40 | ±60 | - | mA | | POWER SUPPLY CHARACTERISTICS | | 11 | | | | | 1 | | Supply Voltage Range | | Α | 25 | 5 | - | 15 | V | | Quiescent Supply Current | | Α | Full | - | 7.5 | 10 | mA/Op Amp | | AC CHARACTERISTICS (A _V = +1) | - | 1 | | | | | 1 | | Slew Rate | Note 6 | В | 25 | 275 | 350 | - | V/μs | | Full Power Bandwidth | Note 7 | В | 25 | 22 | 28 | - | MHz | | Rise Time | Note 8 | В | 25 | - | 6 | - | ns | | Fall Time | Note 8 | В | 25 | - | 6 | - | ns | | Propagation Delay | Note 8 | В | 25 | - | 6 | - | ns | | Overshoot | | В | 25 | - | 4.5 | - | % | | -3dB Bandwidth | V _{OUT} = 100mV | В | 25 | - | 125 | - | MHz | | Settling Time to 1% | 2V Output Step | В | 25 | - | 50 | - | ns | | Settling Time to 0.25% | 2V Output Step | В | 25 | - | 75 | - | ns | | AC CHARACTERISTICS (A _V = +2, R _F = 6819 | Ω) | 11 | | | | | 1 | | Slew Rate | Note 6 | В | 25 | - | 475 | - | V/μs | | Full Power Bandwidth | Note 7 | В | 25 | - | 26 | - | MHz | | Rise Time | Note 8 | В | 25 | - | 6 | - | ns | | Fall Time | Note 8 | В | 25 | - | 6 | - | ns | | Propagation Delay | Note 8 | В | 25 | - | 6 | - | ns | | Overshoot | | В | 25 | - | 12 | - | % | | -3dB Bandwidth | V _{OUT} = 100mV | В | 25 | - | 95 | - | MHz | | Settling Time to 1% | 2V Output Step | В | 25 | - | 50 | - | ns | | Settling Time to 0.25% | 2V Output Step | В | 25 | - | 100 | - | ns | | Gain Flatness | 5MHz | В | 25 | - | 0.02 | - | dB | | | 20MHz | В | 25 | - | 0.07 | - | dB | | AC CHARACTERISTICS (A _V = +10, R _F = 38 | 3Ω) | | • | • | | • | • | | Slew Rate | Note 6 | В | 25 | 350 | 475 | - | V/µs | | Full Power Bandwidth | Note 7 | В | 25 | 28 | 38 | - | MHz | #### **Electrical Specifications** V_{SUPPLY} = ±5V, R_F = 1k Ω , A_V = +1, R_L = 400 Ω , $C_L \le$ 10pF, Unless Otherwise Specified **(Continued)** | TEST CONDITIONS | (NOTE 9) TEST LEVEL | TEMP. | MIN | TYP | MAX | UNITS | | |--------------------------|--|---|--|--|---|--|--| | Note 8 | В | 25 | - | 8 | - | ns | | | Note 8 | В | 25 | - | 9 | - | ns | | | Note 8 | В | 25 | - | 9 | - | ns | | | | В | 25 | - | 1.8 | - | % | | | V _{OUT} = 100mV | В | 25 | - | 65 | - | MHz | | | 2V Output Step | В | 25 | - | 75 | - | ns | | | 2V Output Step | В | 25 | - | 130 | - | ns | | | VIDEO CHARACTERISTICS | | | | | | | | | $R_L = 150\Omega$ | В | 25 | - | 0.03 | - | % | | | R _L = 150Ω | В | 25 | - | 0.03 | - | Degrees | | | | Note 8 Note 8 Note 8 V _{OUT} = 100mV 2V Output Step 2V Output Step R _L = 150Ω | TEST LEVEL Note 8 B Note 8 B Note 8 B Note 8 B B B VOUT = 100mV B 2V Output Step B 2V Output Step B RL = 150Ω B | TEST CONDITIONS TEST LEVEL TEMP. (°C) Note 8 B 25 Note 8 B 25 Note 8 B 25 Vout 8 B 25 VOUT = 100mV B 25 2V Output Step B 25 2V Output Step B 25 RL = 150Ω B 25 | TEST CONDITIONS TEST LEVEL TEMP. (°C) MIN Note 8 B 25 - Note 8 B 25 - Note 8 B 25 - Vout 8 B 25 - VOUT = 100mV B 25 - 2V Output Step B 25 - 2V Output Step B 25 - R _L = 150Ω B 25 - | TEST CONDITIONS TEST LEVEL TEMP. (°C) MIN TYP Note 8 B 25 - 8 Note 8 B 25 - 9 Note 8 B 25 - 9 Note 8 B 25 - 9 B 25 - 65 2V Outp = 100mV B 25 - 65 2V Output Step B 25 - 130 R _L = 150Ω B 25 - 0.03 | TEST CONDITIONS TEST LEVEL TEMP. (°C) MIN TYP MAX Note 8 B 25 - 8 - Note 8 B 25 - 9 - Note 8 B 25 - 9 - B 25 - 9 - VOUT = 100mV B 25 - 65 - 2V Output Step B 25 - 75 - 2V Output Step B 25 - 130 - R _L = 150Ω B 25 - 0.03 - | | #### NOTES: - 5. $V_{CM} = \pm 2.5V$. At -40°C Product is tested at $V_{CM} = \pm 2.25V$ because Short Test Duration does not allow self heating. - 6. V_{OUT} switches from -2V to +2V, or from +2V to -2V. Specification is from the 25% to 75% points. 7. FPBW = $$\frac{\text{Slew Rate}}{2\pi V_{\text{PEAK}}}$$; $V_{\text{PEAK}} = 2V$. - 8. R_L = 100Ω, V_{OUT} = 1V. Measured from 10% to 90% points for rise/fall times; from 50% points of input and output for propagation delay. - 9. A. Production Tested; B. Typical or Guaranteed Limit based on characterization; C. Design Typical for information only. - 10. Measured with a VM700A video tester using an NTC-7 composite VITS. - 11. V_{OUT} = ±2.5V. At -40^oC Product is tested at V_{OUT} = ±2.25V because Short Test Duration does not allow self heating. #### Test Circuits and Waveforms FIGURE 1. TEST CIRCUIT FOR TRANSIMPEDANCE MEASUREMENTS V_{IN} V_{IN} V_{IN} V_{OUT} $V_{\text{O$ FIGURE 2. SMALL SIGNAL PULSE RESPONSE CIRCUIT FIGURE 3. LARGE SIGNAL PULSE RESPONSE CIRCUIT #### NOTE: 12. A series input resistor of \ge 100 Ω is recommended to limit input currents in case input signals are present before the HA5025 is powered up. ## Test Circuits and Waveforms (Continued) Vertical Scale: V_{IN} = 100mV/Div., V_{OUT} = 100mV/Div. Horizontal Scale: 20ns/Div. FIGURE 4. SMALL SIGNAL RESPONSE Vertical Scale: V_{IN} = 1V/Div., V_{OUT} = 1V/Div. Horizontal Scale: 50ns/Div. FIGURE 5. LARGE SIGNAL RESPONSE ## **Schematic Diagram** (One Amplifier of Four) ## Application Information ### **Optimum Feedback Resistor** The plots of inverting and non-inverting frequency response, see Figure 8 and Figure 9 in the typical performance section, illustrate the performance of the HA5025 in various closed loop gain configurations. Although the bandwidth dependency on closed loop gain isn't as severe as that of a voltage feedback amplifier, there can be an appreciable decrease in bandwidth at higher gains. This decrease may be minimized by taking advantage of the current feedback amplifier's unique relationship between bandwidth and R_F. All current feedback amplifiers require a feedback resistor, even for unity gain applications, and R_F, in conjunction with the internal compensation capacitor, sets the dominant pole of the frequency response. Thus, the amplifier's bandwidth is inversely proportional to R_F. The HA5025 design is optimized for a 1000Ω R_F at a gain of +1. Decreasing R_F in a unity gain application decreases stability, resulting in excessive peaking and overshoot. At higher gains the amplifier is more stable, so R_F can be decreased in a trade-off of stability for bandwidth. The following table lists recommended R_F values for various gains, and the expected bandwidth. | GAIN
(A _{CL}) | R _F (Ω) | BANDWIDTH
(MHz) | |----------------------------|---------------------------|--------------------| | -1 | 750 | 100 | | +1 | 1000 | 125 | | +2 | 681 | 95 | | +5 | 1000 | 52 | | +10 | 383 | 65 | | -10 | 750 | 22 | ## PC Board Layout The frequency response of this amplifier depends greatly on the amount of care taken in designing the PC board. The use of low inductance components such as chip resistors and chip capacitors is strongly recommended. If leaded components are used the leads must be kept short especially for the power supply decoupling components and those components connected to the inverting input. Attention must be given to decoupling the power supplies. A large value ($10\mu F$) tantalum or electrolytic capacitor in parallel with a small value ($0.1\mu F$) chip capacitor works well in most cases. A ground plane is strongly recommended to control noise. Care must also be taken to minimize the capacitance to ground seen by the amplifier's inverting input (-IN). The larger this capacitance, the worse the gain peaking, resulting in pulse overshoot and possible instability. It is recommended that the ground plane be removed under traces connected to -IN, and that connections to -IN be kept as short as possible to minimize the capacitance from this node to ground. ## **Driving Capacitive Loads** Capacitive loads will degrade the amplifier's phase margin resulting in frequency response peaking and possible oscillations. In most cases the oscillation can be avoided by placing an isolation resistor (R) in series with the output as shown in Figure 6. FIGURE 6. PLACEMENT OF THE OUTPUT ISOLATION RESISTOR, R The selection criteria for the isolation resistor is highly dependent on the load, but 27Ω has been determined to be a good starting value. ## Power Dissipation Considerations Due to the high supply current inherent in quad amplifiers, care must be taken to insure that the maximum junction temperature (T_J, see Absolute Maximum Ratings) is not exceeded. Figure 7 shows the maximum ambient temperature versus supply voltage for the available package styles (PDIP, SOIC). At V_S = ± 5 V quiescent operation both package styles may be operated over the full industrial range of -40°C to 85°C. It is recommended that thermal calculations, which take into account output power, be performed by the designer. FIGURE 7. MAXIMUM OPERATING AMBIENT TEMPERATURE VS SUPPLY VOLTAGE # $\textbf{Typical Performance Curves} \quad V_{SUPPLY} = \pm 5 \text{V}, A_V = +1, R_F = 1 \text{k}\Omega, R_L = 400\Omega, T_A = 25^{\circ}\text{C}, \text{ Unless Otherwise Specified Performance Curves}$ FIGURE 8. NON-INVERTING FREQUENCY RESPONSE FIGURE 10. PHASE RESPONSE AS A FUNCTION OF FREQUENCY FIGURE 12. BANDWIDTH AND GAIN PEAKING VS FEEDBACK RESISTANCE FIGURE 9. INVERTING FREQUENCY RESPONSE FIGURE 11. BANDWIDTH AND GAIN PEAKING VS FEEDBACK RESISTANCE FIGURE 13. BANDWIDTH AND GAIN PEAKING vs LOAD RESISTANCE $\textbf{Typical Performance Curves} \ \ V_{SUPPLY} = \pm 5V, \ A_{V} = +1, \ R_{F} = 1 \\ k\Omega, \ R_{L} = 400 \\ \Omega, \ T_{A} = 25^{o} \\ C, \ Unless \ Otherwise \ Specified \ \textbf{(Continued)}$ FIGURE 14. BANDWIDTH vs FEEDBACK RESISTANCE FIGURE 16. DIFFERENTIAL GAIN vs SUPPLY VOLTAGE FIGURE 18. DISTORTION vs FREQUENCY FIGURE 15. SMALL SIGNAL OVERSHOOT vs LOAD RESISTANCE FIGURE 17. DIFFERENTIAL PHASE vs SUPPLY VOLTAGE FIGURE 19. REJECTION RATIOS vs FREQUENCY $\textbf{Typical Performance Curves} \ \ V_{SUPPLY} = \pm 5 \text{V}, \ A_{V} = +1, \ R_{F} = 1 \text{k}\Omega, \ R_{L} = 400\Omega, \ T_{A} = 25^{O}\text{C}, \ \text{Unless Otherwise Specified} \ \ \textbf{(Continued)}$ FIGURE 20. PROPAGATION DELAY vs TEMPERATURE FIGURE 22. SLEW RATE vs TEMPERATURE FIGURE 24. INVERTING GAIN FLATNESS vs FREQUENCY FIGURE 21. PROPAGATION DELAY vs SUPPLY VOLTAGE FIGURE 23. NON-INVERTING GAIN FLATNESS vs FREQUENCY FIGURE 25. INPUT NOISE CHARACTERISTICS # $\textbf{Typical Performance Curves} \ \ V_{SUPPLY} = \pm 5V, \ A_{V} = +1, \ R_{F} = 1 \\ k\Omega, \ R_{L} = 400 \\ \Omega, \ T_{A} = 25^{o}C, \ Unless \ Otherwise \ Specified \ \textbf{(Continued)}$ FIGURE 26. INPUT OFFSET VOLTAGE vs TEMPERATURE FIGURE 28. -INPUT BIAS CURRENT vs TEMPERATURE FIGURE 30. SUPPLY CURRENT vs SUPPLY VOLTAGE FIGURE 27. +INPUT BIAS CURRENT vs TEMPERATURE FIGURE 29. TRANSIMPEDANCE vs TEMPERATURE FIGURE 31. REJECTION RATIO vs TEMPERATURE $\textbf{Typical Performance Curves} \ \ V_{SUPPLY} = \pm 5 \text{V}, \ A_V = +1, \ R_F = 1 \text{k}\Omega, \ R_L = 400\Omega, \ T_A = 25^{\circ}\text{C}, \ \text{Unless Otherwise Specified} \ \ \textbf{(Continued)}$ FIGURE 32. SUPPLY CURRENT vs DISABLE INPUT VOLTAGE FIGURE 34. OUTPUT SWING vs LOAD RESISTANCE FIGURE 36. INPUT BIAS CURRENT CHANGE BETWEEN CHANNELS vs TEMPERATURE FIGURE 33. OUTPUT SWING vs TEMPERATURE FIGURE 35. INPUT OFFSET VOLTAGE CHANGE BETWEEN CHANNELS vs TEMPERATURE FIGURE 37. CHANNEL SEPARATION vs FREQUENCY ## **Typical Performance Curves** $V_{SUPPLY} = \pm 5V$, $A_V = +1$, $R_F = 1k\Omega$, $R_L = 400\Omega$, $T_A = 25^{\circ}C$, Unless Otherwise Specified (Continued) FIGURE 38. DISABLE FEEDTHROUGH vs FREQUENCY FIGURE 39. TRANSIMPEDANCE vs FREQUENCY FIGURE 40. TRANSIMPEDANCE vs FREQUENCY ## Die Characteristics ### **DIE DIMENSIONS:** 2010μm x 3130μm x 483μm ### **METALLIZATION:** Type: Metal 1: AlCu (1%) Thickness: Metal 1: 8kÅ ±0.4kÅ Metal 2: AlCu (1%) Metal 2: 16kÅ ±0.8kÅ ## SUBSTRATE POTENTIAL (Powered Up): V- ## Metallization Mask Layout ### **PASSIVATION:** Type: Nitride Thickness: 4kÅ ±0.4kÅ ### TRANSISTOR COUNT: 248 ### PROCESS: High Frequency Bipolar Dielectric Isolation ## Dual-In-Line Plastic Packages (PDIP) #### NOTES: - 1. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control. - 2. Dimensioning and tolerancing per ANSI Y14.5M-1982. - 3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95. - 4. Dimensions A, A1 and L are measured with the package seated in JEDEC seating plane gauge GS-3. - D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25mm). - 6. E and $\boxed{e_A}$ are measured with the leads constrained to be perpendicular to datum $\boxed{-C}$. - 7. e_B and e_C are measured at the lead tips with the leads unconstrained. e_C must be zero or greater. - 8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch (0.25mm). - 9. N is the maximum number of terminal positions. - Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 -1.14mm). E14.3 (JEDEC MS-001-AA ISSUE D) 14 LEAD DUAL-IN-LINE PLASTIC PACKAGE | | INC | INCHES | | MILLIMETERS | | | |----------------|-------|--------|----------|-------------|-------|--| | SYMBOL | MIN | MAX | MIN | MAX | NOTES | | | Α | - | 0.210 | - | 5.33 | 4 | | | A1 | 0.015 | - | 0.39 | - | 4 | | | A2 | 0.115 | 0.195 | 2.93 | 4.95 | - | | | В | 0.014 | 0.022 | 0.356 | 0.558 | - | | | B1 | 0.045 | 0.070 | 1.15 | 1.77 | 8 | | | С | 0.008 | 0.014 | 0.204 | 0.355 | - | | | D | 0.735 | 0.775 | 18.66 | 19.68 | 5 | | | D1 | 0.005 | - | 0.13 | - | 5 | | | Е | 0.300 | 0.325 | 7.62 | 8.25 | 6 | | | E1 | 0.240 | 0.280 | 6.10 | 7.11 | 5 | | | е | 0.100 | BSC | 2.54 | BSC | - | | | e _A | 0.300 | BSC | 7.62 BSC | | 6 | | | e _B | - | 0.430 | - | 10.92 | 7 | | | L | 0.115 | 0.150 | 2.93 | 3.81 | 4 | | | N | 1 | 4 | 1 | 9 | | | Rev. 0 12/93 ## Small Outline Plastic Packages (SOIC) #### NOTES: - Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95. - 2. Dimensioning and tolerancing per ANSI Y14.5M-1982. - Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side. - 4. Dimension "E" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side. - 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area. - 6. "L" is the length of terminal for soldering to a substrate. - 7. "N" is the number of terminal positions. - 8. Terminal numbers are shown for reference only. - The lead width "B", as measured 0.36mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch). - 10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact. M14.15 (JEDEC MS-012-AB ISSUE C) 14 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE | | INC | HES | MILLIMETERS | | | |--------|--------|----------------|-------------|----------------|-------| | SYMBOL | MIN | MAX | MIN | MAX | NOTES | | Α | 0.0532 | 0.0688 | 1.35 | 1.75 | - | | A1 | 0.0040 | 0.0098 | 0.10 | 0.25 | - | | В | 0.013 | 0.020 | 0.33 | 0.51 | 9 | | С | 0.0075 | 0.0098 | 0.19 | 0.25 | - | | D | 0.3367 | 0.3444 | 8.55 | 8.75 | 3 | | Е | 0.1497 | 0.1574 | 3.80 | 4.00 | 4 | | е | 0.050 | 0.050 BSC | | BSC | - | | Н | 0.2284 | 0.2440 | 5.80 | 6.20 | - | | h | 0.0099 | 0.0196 | 0.25 | 0.50 | 5 | | L | 0.016 | 0.050 | 0.40 | 1.27 | 6 | | N | 1 | 4 | 14 | | 7 | | α | 0° | 8 ⁰ | 0° | 8 ⁰ | - | Rev. 0 12/93 All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.