

Preliminary

8-Channel Serial to Parallel Converter with High Voltage Push-Pull Outputs, POL, Hi-Z, and Short Detect

Ordering Information

	Recommended	Package Option 24 Lead SOW			
Device	Operating V _{PP} Max				
HV513	250V	HV513WG			

Features

- □ HVCMOS, technology
- ☐ Operating voltage of 250V
- ☐ Shift register speed 8MHz @ V_{DD}=5V
- 8 latch data outputs
- Output polarity and blanking
- □ CMOS compatible inputs
- Output short circuit detect
- Output high-Z control

Applications

- □ Piezoelectric transducer driver
- Weaving applications

General Description

The device consists of an 8-bit shift register, 8 latches, and control logic to perform polarity select and blanking of the outputs. Data is shifted through the shift register on the low to high transition of the clock. A data output buffer is provided for cascading devices. Operation of the shift register is not affected by the \overline{LE} , \overline{BL} , \overline{POL} , or the $\overline{HI-Z}$ control inputs. Transfer of data from the shift register to the latch occurs when \overline{LE} is high. The data in the latch is stored when \overline{LE} goes low. A $\overline{HI-Z}$ pin is provided to set all the outputs in a high-Z state.

All outputs have a short circuit detection circuit that is activated when the voltage drop across any output transistor is excessive. Under normal operation, this output will briefly pulse low during output transistions; see Short Circuit Timing Diagram for details.

All outputs have break-before-make circuitry to reduce crossover current during output state changes.

The POL, BL, LE, and HIZ inputs have an internal pull up resistor.

Absolute Maximum Ratings*

Supply Voltage, V _{DD}	-0.5V to 6V
Supply Voltage, V _{PP}	V _{DD} to 270V
Logic input levels	-0.5V to $V_{\rm DD}$ +0.5V
Ground current	0.3A
High voltage supply current	0.25A
Continuous total power dissipation	750mW
Operating temperature range	-40°C to +85°C
Storage temperature range	-65°C +150°C

^{*} All voltages are referenced to device ground.

DC Electrical Characteristics (Over operating supply voltages unless otherwise noted, T_A=25°C)

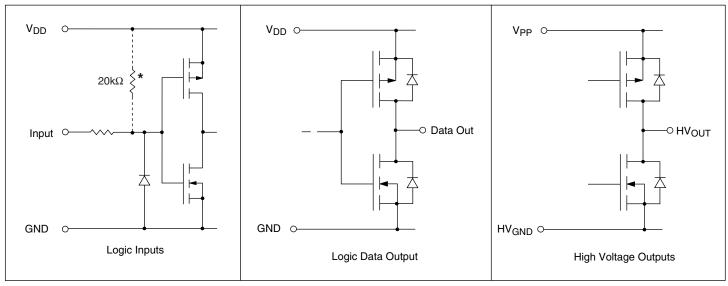
Symbol	Parameters		Min	Тур	Max	Unit	Conditions
I _{DD}	V _{DD} supply current			4	mA	f _{CLK} =8MHz, LE =LOW	
I _{DDQ}	Quiescent V _{DD} supply cur			0.1	mA	All V _{IN} = V _{DD}	
						2.0	All V _{IN} =0V
I _{PP}	V _{PP} supply current				1.0	mA	V_{PP} =250V, f_{OUT} =300Hz, no load
I _{PPQ}	Quiescent V _{PP} supply cur	rent			100	μΑ	V _{PP} =250V, outputs static
V _{IH}	High-level input voltage	V _{DD} -0.9V		V _{DD}	V		
V _{IL}	Low-level input voltage		0		0.9	V	
I _{IH}	High-level logic input current				10	μΑ	$V_{IH} = V_{DD}$
I _{IL}	Low-level logic input current				-10	μΑ	D _{IN} and CLK, V _{IL} =0V
				-350	POL, BL, LE, and HIZ, V _{IL} =0V		
V _{OH}	V _{OH} High-level output	HV _{OUT}	V _{PP} -60V			.,	IHV _{OUT} =-20mA, V _{PP} =200V
		Data out	V _{DD} -0.5V			V	I _{DOUT} =-0.1mA
V _{OL}	Low-level output	HV _{OUT}			60	V	IHV _{OUT} =20mA
		Data out			0.5	, v	I _{DOUT} =0.1mA
V _{SH}	Short voltage, output high			10		V	
V _{SL}	Short voltage, output low			10		V	

AC Electrical Characteristics (Over operating supply voltages unless otherwise noted, T_A=25°C)

Symbol	Parameters	Min	Тур	Max	Unit	Conditions
f _{CLK}	Clock frequency	0		8	MHz	
t_{WL} , t_{WH}	Clock width high and low	50			ns	
t _{su}	Data setup time before clock rises	35			ns	
t _H	Data hold time after clock rises	30			ns	
t _{wLE}	Width of latch enable pulse	80			ns	
t _{DLE}	LE delay time after rising edge of clock	35			ns	
t _{SLE}	LE setup time before rising edge of clock	40			ns	
t _{R,} t _F	Rise/fall time of HV _{OUT}			1000	μS	C _L =100nF, V _{PP} =200V
				1		C _L =40pF, V _{PP} =200V
t _{d ON/OFF}	Delay time for output to start rise/fall			500	ns	
t _{DHL}	Delay time clock to D _{OUT} high to low			90	ns	C _L =15pF
t _{DLH}	Delay time clock to D _{OUT} low to high			90	ns	C _L =15pF
t _{SD}	Output short circuit detection			500	ns	Short to output fall of $\overline{\text{SHORT}}$, $C_L=15\text{pF}$
t _{sc}	Output short circuit clear			1000	ns	Short clear to output rise of SHORT
t _{HI-Z}	Delay to HiZ			500	ns	

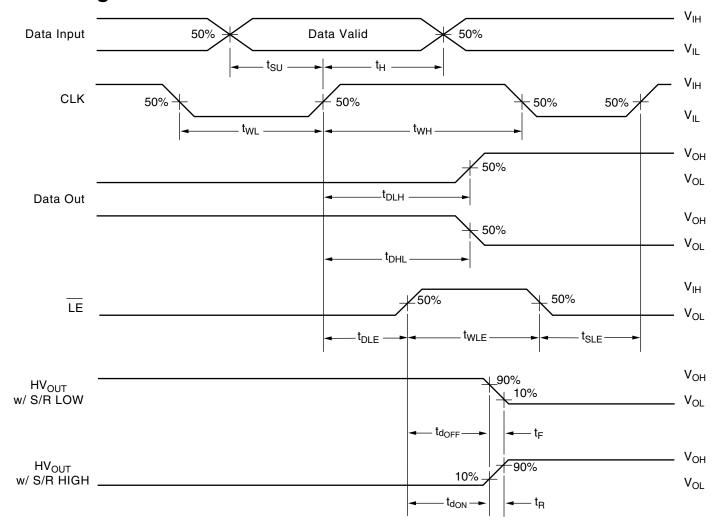
Note: Logic inputs have 5ns rise and fall times.

Recommended Operating Conditions

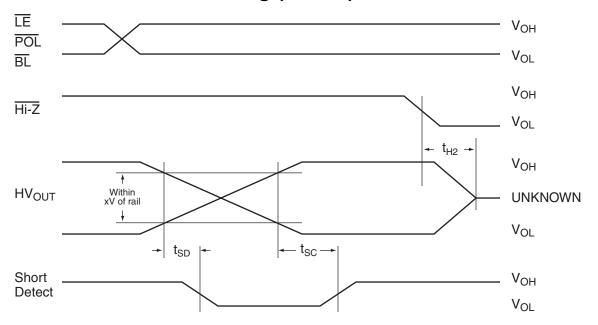

Symbol	Parameters	Min	Тур	Max	Unit	Conditions
f _{out}	Output switching frequency (SOA limited)		300		Hz	C _L =50nF, V _{PP} =200V
V _{DD}	Logic supply voltage	4.5	5.0	5.5	V	
V _{PP}	High voltage supply	50		250	V	

Notes:

- 1. Below minimum $\boldsymbol{V}_{_{\boldsymbol{PP}}}$ the output may not switch.
- 2. Power-up sequence should be the following:
 - 1. Connect ground.
 - 2. Apply V_{DD} .
 - 3. Set all inputs to a known state.
 - 4. Apply V_{pp} .
 - 5. The V_{PP} should not drop below V_{DD} or float during operation.

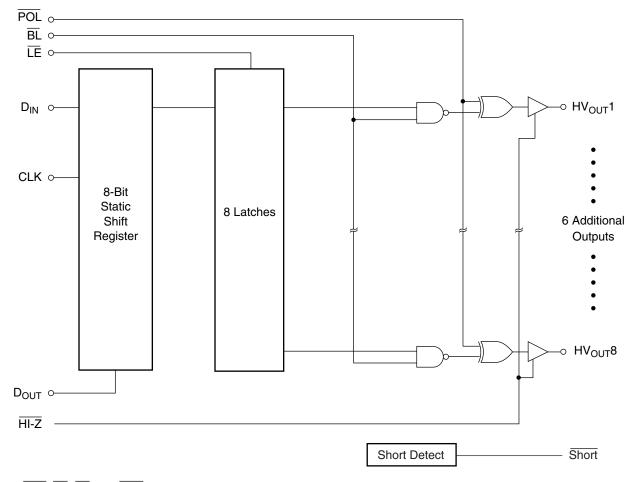

Power-down sequence should be the reverse of the above.

Input and Output Equivalent Circuits



^{*} \overline{POL} , \overline{BL} , \overline{LE} , and $\overline{HI-Z}$

Switching Waveforms



Short Circuit Detect Detail Timing (HV513)

Note: If the output is not within 5V to 10V of the desired output state, the SHORT signal goes LOW.

Functional Block Diagram

 $\overline{\text{POL}},\,\overline{\text{BL}},\,\overline{\text{LE}},$ and $\overline{\text{HI-Z}}$ have internal 20k Ω pull-up resistors.

Function Table

			Inputs			
Function	CLK	LE	BL	POL	HI-Z	HV Outputs
Clock data in	1	L	Н	Н	Н	previous state
Transparent	Х	Н	Н	Н	Н	follows shift register outputs
Hold	Х	L	Н	Н	Н	holds previous state
Invert	Х	Х	Н	L	Н	logical inversion of latch outputs
All on	Х	Х	L	L	Н	All high
All off	Х	Х	L	Н	Н	All low
High-Z	Х	Х	Х	Х	L	Hi-Z

Notes:

H = high level, L = low level, X = irrelevant, ↑ = low-to-high transition

Pin Configuration

Pin	Function
1	N/C
2	V _{DD}
3	D _{OUT}
4 5	BL
5	POL
6	CLK
7	ĪĒ
8	SHORT
9	HI-Z
10	D _{IN}
11	LGND
12	N/C
13	HVGND
14	HVGND
15	HV _{out} 1
16	HV _{out} 2
17	HV _{out} 3
18	HV _{out} 4
19	HV _{out} 5
20	HV _{out} 6
21	HV _{out} 7
22	HV _{out} 8
23	V _{PP}
24	V _{PP}

Package Outline

1	24
2	23
3	22
4	21
5	20
6	19
7	18
8	17
9	16
10	15
11	14
12	13

24-Lead SOW Package (WG) (Wide Body)