

High Voltage 1 REN Ring Generator

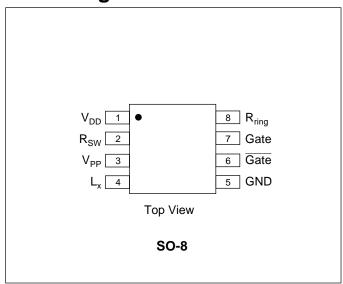
Ordering Information

	Package Options					
Device	8-Lead SO					
HV421	HV421LG					

Features

Processed with HVCMOS® technology
4.75V to 9.5V supply voltage
DC to AC conversion
1 REN load capacity
Adjustable ring frequency from 15Hz to 60Hz
Adjustable converter frequency
Enable/Disable function

General Description


The Supertex HV421 is a high voltage ring generator designed to drive 1 North American REN (ringer equivalent number) from a 5V source. The HV421 has an internal DC-DC converter which converts the 5V DC supply to a nominal 68V DC connected to the V_{PP} pin. The DC-DC converter frequency of the HV421 is set by an external resistor connected between R_{SW} and V_{DD} . The ringing signal is generated by a high voltage H-bridge which produces two square waves which are 180 degrees from each other. The ringing frequency of the H-bridge is set by an external resistor connected between R_{RING} and V_{DD} .

Absolute Maximum Ratings*

Supply Voltage, V _{DD}	-0.5V to +10V
Output Voltage, V _{cs}	-0.5V to +120V
Operating Temperature Range	0°C to +85°C
Storage Temperature Range	-65°C to +150°C
SO-8 Power Dissipation	400mW

Note:

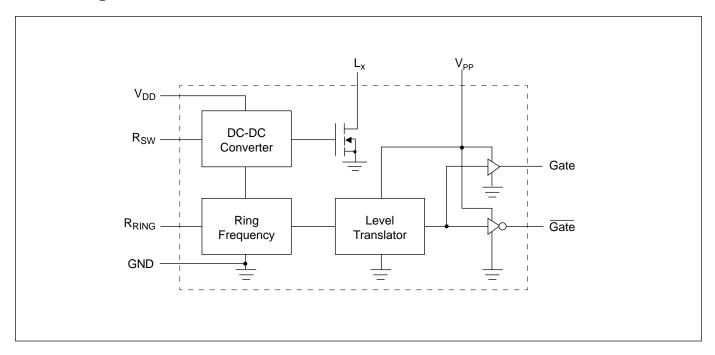
Pin Configuration

^{*}All voltages are referenced to GND.

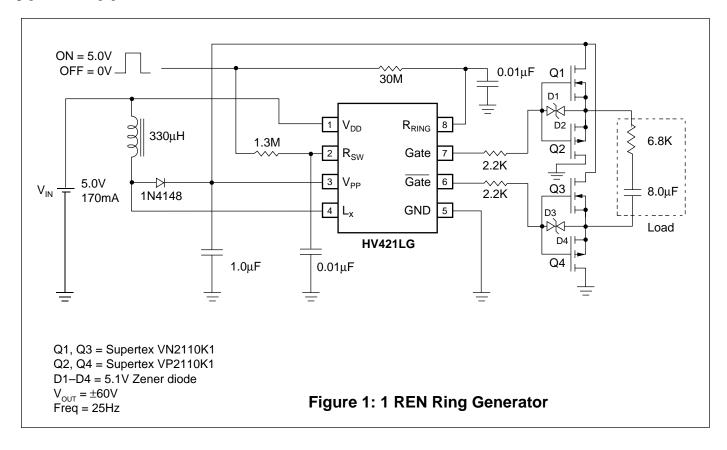
Electrical Characteristics

 $\textbf{DC Characteristics} \ \ (V_{DD}=5.0V,\ R_{RING}=30M\Omega,\ R_{SW}=1.3M\Omega,\ L_{X}=330\mu\text{H},\ T_{A}=25^{\circ}\text{C})$

Symbol	Parameter	Min	Тур	Max	Units	Conditions	
R _{DS(ON)}	On-resistance of switching transistor		3.5	5	Ω	I=100mA	
I _{DDQ}	Quiescent V _{DD} supply current			50	nA	R _{SW} =Low	
I _{DD}	Input current going into the V _{DD} pin			300	μΑ	V _{IN} =5.0V. See Figure 1.	
I _{IN}	Input current including inductor current		170	220	mA	V _{IN} =5.0V. See Figure 1.	
V_{PP}	Output voltage on V _{PP}	65	68		V	V _{IN} =5.0V. See Figure 1.	
F _{RING}	Ring frequency	20	25	30	Hz	V _{IN} =5.0V. See Figure 1.	
D _{RING}	Ringing frequency duty cycle		50		%		
fsw	Switching transistor frequency		35		KHz	V _{IN} =5.0V. See Figure 1.	
Dsw	Switching transistor duty cycle		88		%		


Recommended Operating Conditions

Symbol	Parameter		Тур	Max	Units	Conditions
V_{DD}	Supply voltage	4.75		9.5	V	
T _A	Operating temperature	0		85	°C	


Enable/Disable Table

Symbol	Parameter		Тур	Max	Units	Conditions
EN-L Logic input low voltage		0		0.5	V	
EN-H	Logic input high voltage	V _{DD} -0.5		V _{DD}	V	

Block Diagram

Typical Application

Application Description

The Supertex HV421LG is a high voltage 1 REN ring generator. Atypical application circuit is shown in Figure 1. There are four basic parts to the circuit; the DC-DC converter, DC-AC converter, enable/disable function, and an external source follower buffer stage.

DC-DC converter

The DC-DC converter consists of a 330 μ H inductor, 1N4148 diode, 1.0 μ F capacitor and 1.3M Ω resistor. The 1.3M Ω resistor sets the DC-DC converter frequency. Energy is stored in the 330 μ H inductor when the switching transistor is turned on and is released into the 1.0 μ F capacitor when the switch is in the off state. A high voltage DC will develop at V_{PP} which is internally connected to the level translator.

DC-AC Converter

The ringing frequency is set by a $30M\Omega$ resistor. A low voltage square wave is generated with a nominal frequency of 25Hz. Lower ringing frequencies can be obtained by using resistors greater than $30M\Omega$. The signal is then level translated to swing from 0V to the V_{PP} voltage. An inverted and a noninverted output are generated (gate and $\overline{\text{gate}}$).

Enable/Disable function

The HV421 can be enabled by connecting the 1.3M Ω and 30M Ω resistors to the same potential as V_{DD} and disabled by connecting them to ground.

External source follower buffer stage

The gate and gate bar are connected to an external source follower stage. Supertex transistors VP2110K1 and VN2110K1 are used for the buffering. Zener diodes clamps across the gates are recommended as a precaution but not required.

The voltage seen by the load is ± 60 V. A 6.8K Ω resistor in series with an 8.0μ F capacitor is used to simulate 1 North American REN (ringer equivalent number). The main specifications for the Supertex source follower transistors are listed below.

Device	Туре	Breakdown Voltage, BV _{DSS}	Gate Threshold Voltage, V _{GS(th)}	On-Resistance, R _{DS(ON)}	Package Options
VN2110	N-Channel	100V	0.8V to 2.4V	6.0Ω at V _{GS} =5V	TO-92, SOT-23
VP2110	P-Channel	-100V	-1.5V to -3.5V	11 Ω at V _{GS} =-5V	TO-92, SOT-23

