

- Table of Contents -

1.	General Description	2
2.	Features	
3.	Pin Description	3
4.	LCD Display RAM Map	4
5.	Oscillators	5
6.	General Purpose I/O	
7.	Timer1	
8.	Timer2	8
9.	Time Base	9
10.	Watch Dog Timer	10
11.	PWM & DAC	10
12.	Absolute Maximum Rating	14
13.	Recommended Operating Conditions	14
14.	AC/DC Characteristics	15
15.	Application Circuit	16
16.	Important Note	17
17.	Undated History	15

1. General Description

HE83755 is a member of 8-bit Micro-controller series developed by King Billion Electronics Ltd. Users can choose any one of combination among 【2048 dots LCD Driver + 16 Bit I/O Port】...【1792 dots LCD Driver + 24 Bit I/O Port】 etc. which is determined by mask options. The built-in OP comparator can be used with light, voice, temperature and humility sensor or used to detect the battery low. The 7-bit current-type D/A converter and PWM drive output provide the complete speech output mechanism. The built-in DTMF generator can generate the PSTN dialing tone directly. The 512K bytes ROM size can be used in the storage of large speech data, image and text etc. It can be applicable to the medium systems such as small-scale dictionary, data bank, pocket dialer, automatic dialer machine, medium level educational toy, lower second voice recording system or used with external command mode SRAM or Flash RAM for higher second voice recording etc.

The instruction sets of HE80000 series are quite easy to learn and simple to use. Only about thirty instructions with four-type addressing mode are provided. Most of instructions take only 3 oscillator clocks (machine cycles). The performance of HE83755 is enough for most of battery operation system.

2. Features

• Operation Voltage : 2.4V - 5.5V

• System Clock : $DC \sim 8MHz @ 5.0V$

DC ~ 4MHz @ 2.4V

• Clock Source: Internal/External Fast clock, Internal/External slow clock

• Dual Clock System: Normal (Fast) clock 32.768KHz ~ 8MHz

Slow clock 32.768 KHz

Operation Mode : DUAL \ FAST \ SLOW \ IDLE \ SLEEP Mode.
 Internal ROM: 512K Bytes (64K Program ROM, 448K Data ROM)

• Internal RAM: 4K Bytes.

- Watch dog timer (WDT) to prevent deadlock condition.
- 16~24 Bi-directional I/O ports.
- 2048~1792 dots LCD driver with built-in regulator for LCD display.
- LCD COM X SEG: 32 X 64
- LCD Bias: 1/7
- LCD Charge Pump: 3/2, 2, and 3 times of VDD
- One 7-bits current-type DAC output.
- One built-in OP comparator.
- PWM device.
- Built-in DTMF Generator.
- Recording function
- Speech recognition function
- Two external interrupts and three internal timer interrupts.

3. Pin Description

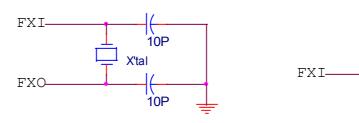
			External fast clock	Mask option setting:
			input/output pins are	1
122	FXI,	В,	used to connect crystal	MO_FCK/SCKN= 00 : Slow Clock only
121	FXO	O,	or RC to generate the	01 : Illegal
121	170		32.768KHz ~ 8MHz	10: Dual Clock
			system clock.	11: Fast Clock only
			system crock.	$MO_FOSCE = 0$: Internal fast osc.
				= 1 : External fast osc.
			External slow clock	$MO_FXTAL = 0 : RC \text{ osc. for fast clock}$
			input/output pins used to	= 1 : X'tal osc. for fast clock
105	CATA	_	connect the 32.768KHz	MO SXTAL = 0 : RC for 32768 Hz clock
125	SXI,	I,	crystal to generate slow	= 1 : X'tal for 32768 Hz clock
124	SXO	О	clock for system	Use OP1 and OP2 to switch among different
			operation (slow mode), LCD display or timer 1	operation mode (NORMAL, SLOW, IDEL and
			clock source.	SLEEP). In Dual Clock mode, the main system
			crock source.	clock is still the Fast Clock. The 32768 Hz clock is
				for LCD and Timer 1 only.
				Level trigger, active low. Except for using this pin,
	RSTP N	I		using mask option (MO_PORE=1) could enable IC
120			System Reset.	build-in Power-on reset circuit.
120	K511_1\	1	System Reset.	Besides, MO_WDTE can set Watch Dog Timer:
				MO_WDTE=0: Disable Watch Dog Timer
				=1: Enable Watch Dog Timer
123	TSTP P	I	Test Pin	Please bond this pin and add a test point on PCB for
123	1911_1	•	1050 1 111	debugging. Leave this pin floating is OK.
				Mask options:
139	DDTCIE AL	Б	8-pin bi-directional I/O	$MO_CPP[70] = 1 \sim Push-pull.$
142	PRTC[7:0]	В	port.	$= 0 \sim \text{Open-drain}.$
14			1	I/O shall be set to output "1" state before reading,
			8-pin bi-directional I/O	whenever use them as input (No tri-state structure).
			port. PRTD[72] as	1
131	PRTD[7:0]	В	wake-up pin.	$MO_DPP[70] = 1 \sim Push-pull.$ = 0 \sim Open-drain.
138	[[[[[[[[[[[[[[[[[[[[1 1	I/O shall be set to output "1" state before reading,
			interrupt pin.	whenever use them as input (No tri-state structure).
			1 1	Mask options:
				MO LIO14[70] = $1 \sim LCD Pin$.
	DDT1467 AV	D/	8-pin bi-directional I/O	
2330	PRT14[7:0]/		port that is shared with	
	SEG[63:56]		LCD segment pin.	$= 0 \sim \text{Open-drain}.$
				I/O shall be set to output "1" state before reading,
				whenever use them as input (No tri-state structure).
227	COM[31:0]	O	LCD common Output	LCD Data filled from "Page1, 00H", please refer
87102			-	the LCD RAM map.
3186	SEG[55:0]	0	LCD segment Output	1
104	LC2	В	Charge Pump Switch 1	Add one 0.1 μF capacitor between LC1 and LC2.

103	LC1	В	Charge Pump Switch 2	Please refer the application circuit.		
107	LV3	В	Charge Pump V3	••		
106	L V2	В	Charge Pump V2	LV3< 9 Volts.		
105	LV1	В	Charge Pump V1	Please refer the application circuit.		
	LR[40]	В		Please refer the application circuit.		
113	LVG	Ī	LCD Virtual Ground	Please refer the application circuit.		
5	PWMP	О	The PWM positive	* *		
6	PWMN	О	The PWM positive output can drive speaker or buzzer directly.	Set the bit2 of VOC register as one to turn on PWM.		
115	VO	O	D/A output.	Bit 1 of VOC = '1', Turn on DA		
116	DAO	О	DAC Voice Output	Set the bit1 (DA=1) of VOC register to turn on DAC with VO output.		
117	OPIN	Ι	OPAMP negative input pin.			
118	OPIP	Ι	OPAMP positive input pin.	Built-in OP comparator. Set Bit 0 of VOC = '1', Turn on OP		
119	ОРО	О	OPAMP output pin.			
128	DTMFO	О	DTMF Output	Through PRT12 we can turn on/off DTMF and write data. Using Mask Option MO_DTMFSCK set the clock source of DTMF block. MO_DTMFSCK=0 → Clock Source=3.579545MHz =1 → Clock Source=32768 Hz		
127	MUTE	O	MUTE Output for Dialer	User can turn on/off MUTE pin by port12.		
129	SDO	О	Serial Data Output	We can turn on/off SDO block or write data by port12.		
130	KEYTONE	О	1024-Hz 50% duty square wave	User can turn on/off key tone by port12.		
126	VDD	P	Positive Power Input	Add a 0.1 μF capacitor as by-pass capacitor between		
114	GND	P	Power Ground Input	VDD and GND.		
) () (D D					

I: Input, O: Output, B: Bidirectional, P: Power.

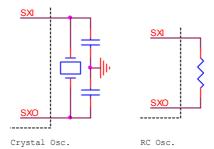
4. LCD Display RAM Map

Page	SEG	SEG	SEG	SEG	SEG	SEG	SEG	SEG
1	[7:0]	[15:8]	[23:16]	[31:24]	[39:32]	[47:40]	[55:48]	[63:56]
COM0	00H	20H	40H	60H	80H	A0H	C0H	E0H
COM1	01H	21H	41H	61H	81H	A1H	C1H	E1H
COM2	02H	22H	42H	62H	82H	A2H	C2H	E2H
:	• •	•	•	• •	•	•	:	:
:	••	•	•	••	•	•	:	:
COM29	1DH	3DH	5DH	7DH	9DH	BDH	DDH	FDH
COM32	1EH	3EH	5EH	7EH	9EH	BEH	DEH	FEH
COM31	1FH	3FH	5FH	7FH	9FH	BFH	DFH	FFH



5. Oscillators

The MCU is equipped with two clock sources with a variety of selections on the types of oscillators to choose from. System designer can select oscillator types based on the cost target, timing accuracy requirements etc. Crystal, Resonator or the RC oscillator can be used as fast clock source, components should be placed as close to the pins as possible. The type of oscillator used is selected by mask option MO FXTAL.


FXI (Bi-direction), FXO (Output)

Mask Option	Description				
MO_FXTAL	0: RC Oscillator. 1: Crystal Oscillator.				
MO_FCK	0: Fast clock disable 1: Fast clock enable				

SXI (Bi-direction), SXO (Output)

Two types of oscillator, crystal and RC, can be used as slow clock selectable by mask option MO_SXTAL. If used time keeping function or other applications that required the accurate timing, crystal oscillator is recommended. If the timing accuracy is not important, then RC type oscillator can be used to save cost.

Mask Option	Description				
MO_SXTAL	0: RC Oscillator. 1: Crystal Oscillator.				
MO_SCKN	0: Slow clock enable 1: Slow clock disable				

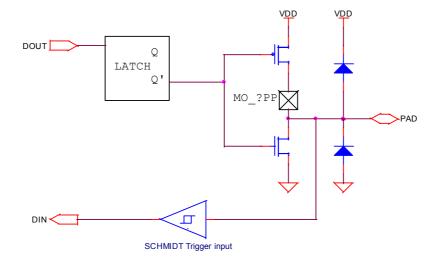
With two clock sources available, the system can switch among operation modes of Normal, Slow, Idle,

and Sleep modes by the setting of OP1 and OP2 registers as shown in tables below to suit the needs of application such as power saving, etc.

OP1	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Field	DRDY	STOP	SLOW	INTE	T2E	T1E	Z	С
Mode	R/W							
Reset	1	0	0	0	0	0	-	-

OP2	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Field	IDLE	PNWK	TCWK	TBE	TBS[3:0]			
Mode	R/W	R	R	R/W	W	W	W	W
Reset	0	X	X	0	X	X	X	X

6. General Purpose I/O


There are two dedicated general purpose I/O port, PRTC and PRTD, while PRT14[7:0] are multiplexed with LCD segment driver pins. All the I/O Ports are bi-directional and of non- tri-state output structure. The output has weak sourcing (50 μ A) and stronger sinking (1 mA) capability and each can be configured as push-pull or open-drain output structure individually by mask option.

When the I/O port is used as input, the weakly high sourcing can be used as weakly pull-up. Open drain can be used if the pull-up is not required and let the external driver to drive the pin. Please note that a floating pad could cause more power consumption since the noise could interfere with the circuit and cause the input to toggle. A '1' needs to be written to port first before reading the input data from the I/O pin. If the PMOS is used as pull-up, care should be taken to avoid the constant power drain by DC path between pull-up and external circuit.

The input port has built-in Schmidt trigger to prevent it from chattering. The hysteresis level of Schmidt trigger is 1/3 VDD.

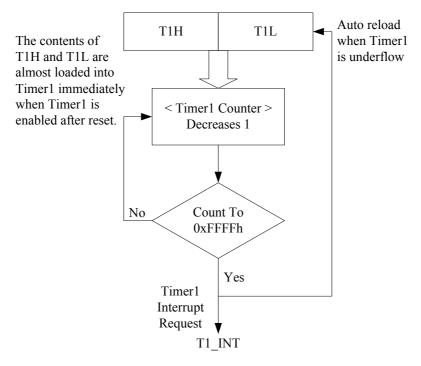
As pads of PRT14 are shared with LCD segment driver, the function of the pad is determined by mask options. Following table is the setting for MO_LIO14[...] and MO_14PP[...] and others related to LCD display setting and pin assignment features.

MO_LIO14[]	MO_14PP[]	I/O Port	LCD Pin	
0	0 0			
0	1	Push-pull output		
1	0		XX	
1	1		LCD Display	

--: Function not available.

xx: Displayable, but may have abnormal leakage current, do not use.

7. Timer1


The Timer1 consists of two 8-bit write-only preload registers T1H and T1L and 16-bit down counter. If Timer1 is enabled, the counter will decrement by one with each incoming clock pulse. Timer1 interrupt will be generated when the counter underflows - counts down to FFFFH. And the counter will be automatically reloaded with the value of T1H and T1L.

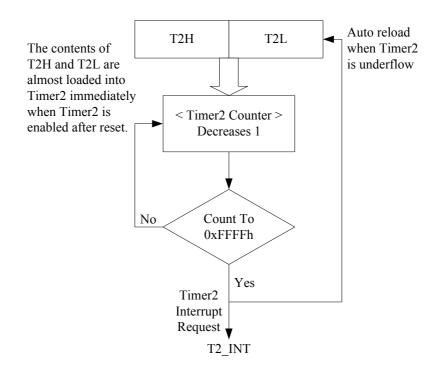
The clock source of Timer1 is derived from slow clock "SCK" at dual clock or slow clock only mode. And it comes from the fast clock "FCK" at fast clock only mode.

Please note that the interrupt is generated when counter counts from 0000H to FFFFH. If the value of T1H and T1L is N, and count down to FFFFH, the total count is N+1. The content of counter is zero when system resets. Once it is enabled to count at this moment, interrupt will be generated immediately and value of T1H and T1L will be loaded since it counts to FFFFH. So the T1H and T1L value should be set before enabling Timer1.

The Timer1 related control registers are list as below:

Register	Address	Field	Bit position	Mode	Description
IER	0x02	TC1 IER	2	R/W	0: TC1 interrupt is disabled. (default)
ILK	0x02	ICI_IEK	2	IX/ VV	1: TC1 interrupt is enabled.
T1L	0x03	T1L[7:0]	7~0	W	Low byte of TC1 pre-load value
T1H	0x04	T1H[7:0]	7~0	W	High byte of TC1 pre-load value
OP1	000	TC1E	2	D/W/	0: TC1 is disabled. (default)
OPI	0x09	TC1E	2	F / \ \ /	1: TC1 is enabled.

8. Timer2


Timer2 is similar in structure to Timer1 except that clock source of Timer2 comes from the system clock "Fsys"/1.5. The system clock "Fsys" varies depending on the operation modes of the MCU.

The Timer2 consists of two 8-bit write-only preload registers T2H and T2L and 16-bit down counter. If Timer2 is enabled, counter will decrement by one with each incoming clock pulse. Timer2 interrupt will be generated when the counter underflows - counts down to FFFFH. And it will be automatically reloaded with the value of T2H and T2L.

Please note that the interrupt signal is generated when counter counts from 0000H to FFFFH. If the value of counter is N, and count down to FFFFH, the total count is N+1. The content of counter is zero when system resets. Once it is enabled to count at this time, the interrupt will be generated immediately and value of T2H and T2L will be loaded since the counter counts to FFFFH. So the T2H and T2L value should be set before enabling Timer2.

The Timer2 related control registers are list as below:

Register	Address	Field	Bit position	Mode	Description
IER	0x02	TC2 IER	1		0: TC2 interrupt is disabled. (default)
ILK	0702	TC2_IER	1	10/ 11	1: TC2 interrupt is enabled.
T2L	0x05	T2L[7:0]	7~0	W	Low byte of TC2 pre-load value
T2H	0x06	T2H[7:0]	7~0	W	High byte of TC2 pre-load value
OD1	000	TC2E	2	D/W/	0: TC2 is disabled. (default)
OP1	0x09	TC2E	3	R / \//	1: TC2 is enabled.

9. Time Base

The TB timer is used to generate time-out interrupt at fixed period. The time-out frequency of TB is determined by dividing slow clock with a factor selected in OP2[3..0]. TBE (Time Base Enable) bit controls enable or disable of the circuit.

OP2	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Field	IDLE	PNWK	TCWK	TBE	TBS[30]				
Mode	R/W	R	R	R/W	R/W	R/W	R/W	R/W	
Reset	0	-	-	0	-	-	-	-	

TBE	Function
0	Disable Time Base
1	Enable Time Base

For example, if the slow clock is 32768 Hz, then the interrupt frequency is as shown in following table.

TBS[30]	Interrupt Frequency

TBS[30]	Interrupt Frequency
0000	16.384 KHz
0001	8.192 KHz
0010	4.096 KHz
0011	2.048 KHz
0100	1.024 KHz
0101	512 Hz
0110	256 Hz
0111	128 Hz
1000	64 Hz
1001	32 Hz
1010	16 Hz
1011	8 Hz
1100	4 Hz
1101	2 Hz
1110	1 Hz
1111	0.5 Hz

10. Watch Dog Timer

Watch Dog Timer (WDT) is designed to reset system automatically and prevents system dead lock caused by abnormal hardware activities or program execution. The WDT needs to be enabled in Mask Option.

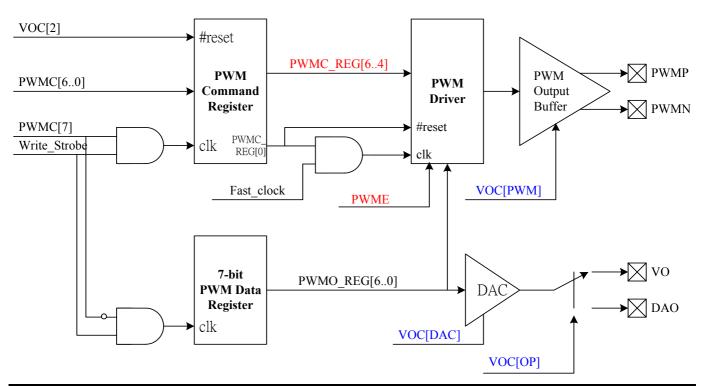
MO_WDTE	Function
0	WDT disable
1	WDT enable

Using the WDT function, the "CLRWDT" instruction needs to be executed in every possible program path when the program runs normally in order to clears the WDT counter before it overflows, so that the program can operate normally. When abnormal conditions happen to cause the MCU to divert from normal path, the WDT counter will not be cleared and reset signal will be generated to reset the system.

The WDT clock source is the same as TC1 (Timer1 clock), and the WDT reset signal is generated when the counter had counted 32768 clock. The WDT can function in Normal, Slow and Idle Mode. However, WDT will not function during Sleep Mode (as the TC1 clock has stopped).

11. PWM & DAC

The 7-bit DAC/PWM voice output is available for user. The 7-bit voice output is controlled by PWMC and VOC register, and the PWMC is a command/data register which is determined by PWMC[7] bit. The Digital-to-Analog converter converts the 7-bit unsigned speech data which is written into PWMC data register to proportional current output.



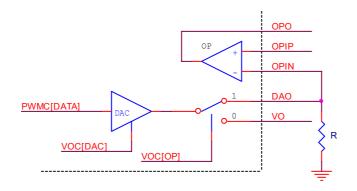
PWMC register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Data Mode	0	DAC and PWM Output Data						
Control Mode	1	PWM O/P driver				Reserved		PWME

When users write data into the PWMC register, the PWMC[7] bit will determines the data written into PWM command register or 7-bit data register and the data register is also sent to the DA converter shown as the below diagram.

7-bit Voice Output Architecture

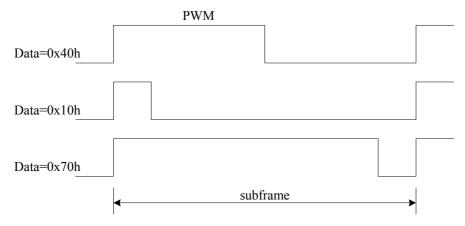
VOC	address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Field	0x13	1	-	-	-	-	PWM	DAC	OP
Reset	-	-	-	-	-	-	0	0	0

PWM: '1' PWM output enabled; '0' PWM output disabled.


DAC: '1' DAC enabled; '0' DAC disabled.

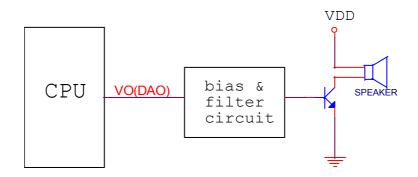
OP: '1' DAC uses DAO pin as output pin; '0' DAC uses VO pin as output pin.

There are two output paths for the DAC. Either VO or DAO can be selected as output port of DAC by VOC register when it is enabled. The VO output is primarily intended for speech generation, although it is not necessary so, while the DAO output path can be used in conjunction with built-in OP comparator to function as an Analog-to-Digital Converter as required in applications such as speech recording, speech recognition or sensor interfaces.



The DAC is enabled by DAC bit of VOC register. When DAC is enabled, the DAC output path can be selected to output to DAO or VO pin by OP bit of VOC register.

The fast clock is used to provide as PWM driver time base, and user shall set the PWMC[7]='1' and VOC[2]='1' to enable the PWM output. When the system enters into sleep or idle mode, it will automatically turn off the voice device by clearing VOC[2:0] to "000". In order to activate voice output again when the system returns and enter into normal mode, the related bits of VOC register need to be set again.



When the DAC is used as sound generator, the bias & filter circuit is used for bias voltage setting and waveform filter regulation and the DAC is output to the VO (Voice Output) pin and please see application notes for detailed calculation example and application. The driving capability of DAC is shown below.

	Condition	Min.	Тур.	Max.	Unit
VO/DAO	V _{DD} =3V;VO=0~2V;Data=7Fh	2.5	3		mA

The PWM output volume can be adjusted by command register PWMC[6..4]. The bit 6 and 5 control 2 time driver, while bit 4 controls 1 time driver, thus it has 5 levels of driver output. By turning on/off the internal drivers, the sound level of PWM output can be turned up and down. Please note that this adjustment apply only to PWM, but not DA output.

PWM Output Driver Selection

1 Will Suspen Bill of Scientish				
PWMC[64]	Number of Driver			
000	off			
001	1			
010	2			
011	3			
100	2			
101	3			
110	4			
111	5			

12. Absolute Maximum Rating

Item	Sym.	Rating	Condition
Supply Voltage	V_{dd}	-0.5V ~ 8V	
Input Voltage	Vin	$-0.5V \sim V_{dd} + 0.5V$	
Output Voltage	Vo	$-0.5V \sim V_{dd} + 0.5V$	
Operating Temperature	Top	$0^{0}\text{C} \sim 70^{0}\text{C}$	
Storage Temperature	T_{st}	-50^{0} C $\sim 100^{0}$ C	

13. Recommended Operating Conditions

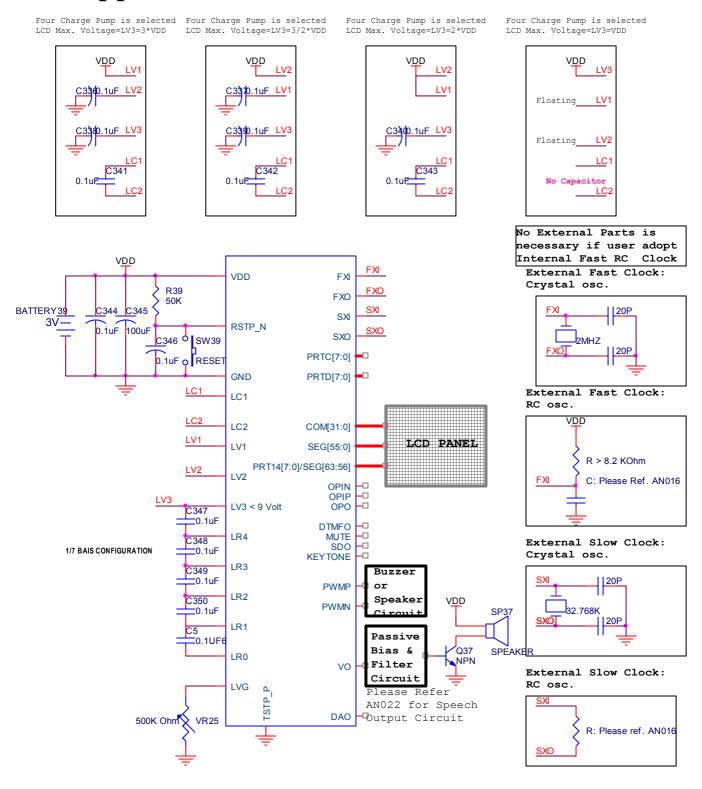
ITEM	SYM.	RATING	CONDITION
Supply Voltage	V_{dd}	$2.4V \sim 5.5V$	
Input Voltage	V_{ih}	$0.9~V_{dd} \sim V_{dd}$	
	V_{il}	$0.0V \sim 0.1V_{dd}$	
Operating Frequency	Fmax	8MHz	$V_{dd} = 5.0V$
		4MHz	$V_{dd} = 2.4V$
Operating Temperature	T_{op}	$0^{0}\text{C} \sim 70^{0}\text{C}$	
Storage Temperature	T_{st}	-50° C $\sim 100^{\circ}$ C	

14. AC/DC Characteristics

Testing condition: TEMP=25°C, VDD=3V+/-10%, GND=0V

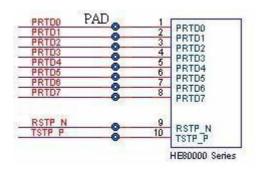
	PARAMETER		CONDITION	MIN	TYP	MAX	UNIT
IFast	NORMAL Mode Current	System	2M ext. R/C		1	1.5	mA
I_{Slow}	SLOW Mode Current	System	32.768K X'tal LCD Disable		15	25	μΑ
I _{Idle}	IDLE Mode Current	System	32.769K X'tal LCD Disable		10	20	μΑ
I _{LCD}	Extra Current if LCD ON	System	LCD Enable, LCD option=300Kohm LV3=6 Volt		40	45	μΑ
LCD		J 2000	LCD Enable, LCD option=30Kohm, LV3=6 Volt		300	330	
I _{Sleep}	Sleep Mode Current	System				1	μA
			With 32Ω Loading	10	14		mA
I_{PWM}	PWM Output Current	PWMP, PWMN*2	With 64Ω Loading	6	8		mA
			With 100 Ω Loading	4	5		mA
I _{oVO}	DAC Output Current	VO, DAO	V _{DD} =3V;VO=0~2V, Data=7F	2.5	3		mA
V_{iH}	Input High Voltage	I/O pins		$\begin{array}{c} 0.8 \\ V_{DD} \end{array}$			V
V_{iL}	Input Low Voltage	I/O pins				$\begin{array}{c} 0.2 \\ V_{DD} \end{array}$	V
${f V_{hys}}$	Input Hysteresis Width	I/O, RSTP_N	Threshold=2/3V _{DD} (input from low to high) Threshold=1/3V _{DD} (input from high to low)		1/3 V _{DD}		V
I_{oH}	Output Drive Current	I/O pull-high*1	$V_{oL}=2.0V$	50			$\mu \mathbf{A}$
$I_{oL 1}$	Output Sink Current	I/O pull-low*1	$V_{oL}=0.4V$	1.0			mA
I_{iL_1}	Input Low Current	RSTP_N	V _{iL} =GND, pull high Internally		20		μΑ
I_{iL_2}	Input Low Current	I/O	V _{iL} =GND, if pull high Internally by user		100		μΑ

Note:


^{*1:} Drive Current Spec. for Push-Pull I/O port only Sink Current Spec. for both Push-Pull and Open-Drain I/O port.

^{*2:} This Spec. base on one driver only. There are five build-in drivers, so user just multiplies the number of driver he used to one driver current to get the total amount of current. (I_{PWM} * N; N=0,1,2,3,4,5)

15. Application Circuit



16. Important Note

- Please always take in mind that ICE is different from IC which is your target body. ICE is the whole set of HE80000 series IC, but each IC is a subset of ICE. Never use any hardware resource that your target IC didn't have these resources, especially RAM and register. KBIDS and compiler cannot prevent user to use some hardware resources that don't exist in your target IC. Please check the following table and refer to the abbreviation in HE80000 user's manual.
- To access any address larger than 64KB, users must update TPP first, TPH, and then TPL. Only follow this order, the pre-charge circuit of ROM will work correctly. 5us waiting is necessary before LDV instruction is executed since Data ROM is a low speed ROM. Users can not emulate this accessing process in ICE. So 5us delay should be added by firmware.
- LCD driving circuit must be turn off <u>before</u> IC goes into <u>sleep mode</u>.
- Please bonds the TSTP_P, RSTP_N and PRTD [7:0] with test points on PCB (can be soldered and probed) as you can, then some testing can be performed on PCB if necessary. The TSTP_P is suggested to connect to ground by a 0 ohm resistor. The following figure is an example (Testing point with through hole).

17. Updated History

Version	Date	Update History
V1.0	9/29/03	New Created