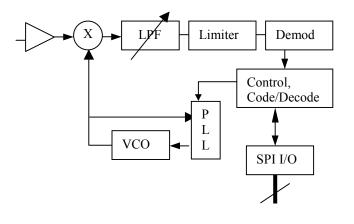


Advance Information

FSK Receiver On A Chip 860-928 MHz Frequency Agile With SPI Bus Interface


Features

- High Level of Integration Minimizes System Cost
- Data Rates from 4 to 128.8 Kbits/Sec
- Direct Connection To Microprocessor
- Adjustable detection bandwidths, data rates
- Adjustable gain, detection level/ hysterisis
- Low and high beta FSK detection modes
- Integrated Manchester decoding
- Programmable Frequency And Rx/Standby Modes
- Operates From Single 2.5V Power Supply
- Surface Mount Leadless Plastic Packaging

Description

The Honeywell HRF-ROC093XR is a single chip receiver for use in digital data applications. Direct microprocessor connection for control and data transfer, eliminate the need for additional ICs, while integrated data code/decode reduces the instruction set requirements on the microprocessor. The HRF-ROC093XR is ideally suited for use in battery powered wireless applications in conjunction with microprocessors for data communication. Adjustable data rates, filter bandwidths and detection levels allow the IC to be used in a wide variety of high sensitivity / high EMI environments.

Functional Schematic

Product Photo

Web Site: www.mysoiservices.com Email: mysoiservices@honeywell.com

2002 09325XR Published June 2002 Page 1

Honeywell Solid State Electronics Center 12001 State Highway 55 Plymouth, Minnesota 55441-4799 1-800-323-8295

Advance Information

RF Electrical Specifications @ + 25°C

Parameter	Test Condition	Frequency	Minimum	Typical	Maximum	Units
Rx Sensitivity		860– 928 MHz		-95		dBm
1db Compression	Vdd = 2.5V	860– 928 MHz		-30		dBm
Input IP3	Vdd = 2.5V	860– 928 MHz		-5		dBm
Data Rate, Tx / Rx	Continuous Packeted Data			128		Kbps
Channel Rejection	Adjacent Channels	Fc +/- 350KHz		60		dB
Max Detection BW	IQ Baseband Filter			250		KHz
	Passband					
Control/Data I/O	Serial Peripheral Interface (SPI). Direct			10		MHz
	Connection To Microcontroller/Microprocessor					

^{*} Adjustable bandwidth reduction using off chip elements

DC Electrical Specifications @ + 25°C

Parameter	Minimum	Typical	Maximum	Units
V _{DD} Power Supply Voltage	2.4	2.5	2.6	V
Power Supply Current (I _{DD}) During Rx (915MHz)	22	28		mA
Standby Current Consumption		<1		uA
CMOS Logic Level (0)	0		0.7	V
CMOS Logic Level (1)	1.7		V_{DD}	V

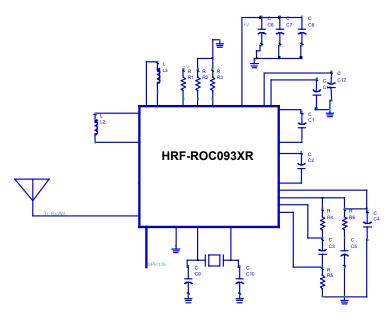
Absolute Maximum Ratings¹

Parameter	Absolute Maximum	Units
Maximum Input Power	-	-
V_{DD}	+ 2.8	V
ESD Voltage (Human Body Model)	200	V
Operating Temperature	- 40 to + 85	Degrees C
Storage Temperature	- 40 to + 150	Degrees C

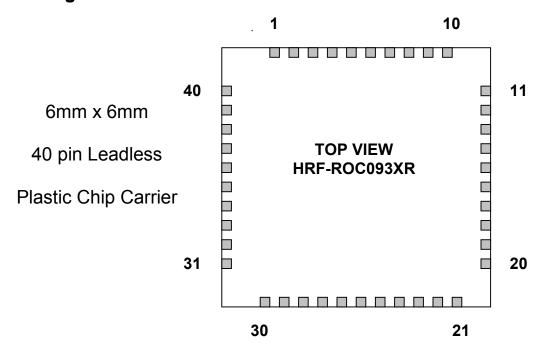
(Note 1) Operation Of The HRF-ROC093XR Beyond Any Of These Parameters May Cause Permanent Damage.

ESD Protection: The HRF-ROC093XR Contains reduced ESD Protection Circuitry for sensitive RF I/O. Precautions Should Be Taken During Handling/Assembly Until Protected By External Circuitry or Housings

Web Site: www.mysoiservices.com Email: mysoiservices@honeywell.com


2002 09325XR Published June 2002 Page 2

Honeywell Solid State Electronics Center 12001 State Highway 55 Plymouth, Minnesota 55441-4799 1-800-323-8295



Advance Information

Typical Application

Package Outline

Low inductance RF/DC ground connection required below part as bottom ground pad is used for all device grounding. Additionally, this connection prodvides a direct connection to the die for enhanced thermal dissipation. Package shown not to scale.

Web Site: Email:

www.mysoiservices.com mysoiservices@honeywell.com

2002 09325XR

Published June 2002 Page 3

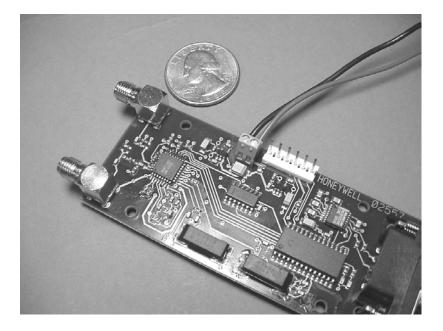
Honeywell **Solid State Electronics Center** 12001 State Highway 55 Plymouth, Minnesota 55441-4799 1-800-323-8295

Advance Information

Pin Configuration

HRF-ROC093XR 40Pin LPCC[™] (6 mm X 6 mm) Package Pin List * RF/Digital ground is provided through backside slug pad.

Name	Pin #	Function	Name	Pin #	Function
LNA Bias R	1	Bias resistor for LNA: ~ 16K		21	SPI slave select
			SPI_SSN_		
			in		
LNA Input	2	LNA input		22	SPI clock
			SPI_CLK_		
			in		
Digital Gain	3	Vp, high gain; gnd low gain		23	SPI serial data output
Control			SPI_data_		
***	1	T > T 1	out	2.4	CDV
Vp	4	LNA supply	CDI DIT	24	SPI interrupt output
			SPI_INT_		
V.	5	INIA complex	out	25	A sum or data sustant bucComed in alarity
Vp	3	LNA supply	Rx_out_p	23	Async data output buffered, polarity selected, for board debug
Vp	6	Mixer supply	Vp	26	Digital positive supply
I mixer bias	7	Sensitivity/IP3 adjust, 10K res to	Hysterisis	27	Four level widow select, 2 bit digital
I IIIIXEI DIAS	/	gnd	A	27	Four level widow select, 2 bit digital
Q mixer bias	8	Sensitivity/IP3 adjust	Hysterisis	28	(())
Q IIIIXCI Dias	0	Schsitivity/II 3 adjust	B	20	
I filter bw 1	9	Data bandwidth reduction	P_test_out	29	Pll N-counter output
I filter bw 2	10	Con Carlot Victor Feddellon	R_test_out	30	Pll R-counter out
Q filter bw 1	11	((;)	Crystal 2	31	reference crystal connection
Q filter bw 2	12	(())	Crystal 1	32	reference crystal connection
Vp	13	Analog electronics supply	Pdout	33	Phase detector charge pump output
Supply filtering	14	Common mode voltage filtering	Rext PLL	34	PLL bias resistor
Raw data	15	Raw detected data / predetect data	Vp	35	Phase detector supply
		shaping	F		and an array
Detection level	16	Detection level monitor/filtering	varactor	36	VCO varactor for freq tuning
Mixer ref	17	Baseband ref voltage bypass		37	VCO external tank connection
_			VCO_tank		
			1		
Resetn	18	Dig power-on reset		38	VCO external tank connection
			VCO_tank		
			2		
SPI_data_in	19	SPI serial data input	NC	39	
Dig_data_in	20	Dig FIFO RX data	NC	40	


Web Site: www.mysoiservices.com Email: mysoiservices@honeywell.com

2002 09325XR Published June 2002 Page 4

Advance Information

Engineering Evaluation Board

The engineering evaluation board provides for a RS232 connection using a PIC microcontroller as the interface between the HRF-ROC093XR and the RS232 port. Using the software provided and a PC, control of test data, operating frequency, power levels and all internal registers is available for early product development/prototyping. The board operates from a single +6 to +9 volt supply and provides separate RF Rx/Tx ports.

Ordering Information

Ordering Number	Product		
HRF-ROC093XR -B	Delivered In Chip Tubes		
HRF-ROC093XR -T	Delivered On Tape And Reel ²		
HRF-ROC093XR -E	Engineering Evaluation Board		

Note 2: Contact Honeywell for details

Honeywell reserves the right to make changes to improve reliability, function or design. Honeywell does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

Web Site: www.mysoiservices.com Email: mysoiservices@honeywell.com

2002 09325XR Published June 2002 Page 5