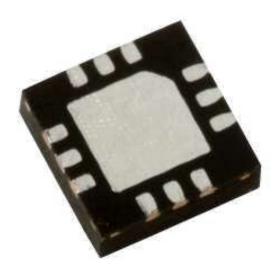


SPDT Absorptive RF Switch


Features

- High Isolation Of > 40 dB @ 2 GHz
- Low Insertion Loss Of 1.1dB @ 2 GHz
- DC To 4GHz Operating Frequency
- Integrated CMOS Control Logic
- Integrated ESD Protection on Digital I/O
- Single Positive Supply Voltage
- Ultra Small LPCC[™] Packaging
- Impedance matched for 50 Ohm systems

Product Description

The Honeywell HRF-SW1000 is a high performance single pole double throw (SPDT) absorptive RF switch that is ideal for use in wireless basestation and handset applications that require minimum power and minimum insertion loss.

The HRF-SW1000 is manufactured with Honeywell's patented Silicon On Insulator (SOI) CMOS technology, which provides the performance of GaAs with the economy and integration capabilities of conventional CMOS technology.

HRF-SW1000 in LPCC™ Package

RF Electrical Specifications @ + 25°C

Results @ Vdd=5.0 = /-10%, Vss = 0 unless otherwise stated, $Z_0 = 50$ ohms

Parameter	Test Condition	Frequency	Minimum	Typical	Maximum	Units
Insertion Loss		DC - 0.5 GHz		0.9	1.2	dB
		2.0 GHz		1.1	1.5	dB
		3.0 GHz		1.3	1.7	dB
Isolation		DC - 0.5 GHz	50	53.5		dB
		2.0 GHz	40	42.5		dB
		3.0 GHz	35	39.0		dB
VSWR*		DC - 0.5 GHz		1.1:1		Ratio
		2.0 GHz		1.2:1		Ratio
		3.0 GHz		1.2:1	1.3:1	Ratio
1dB Compression	Input Power					
·	Vss=Gnd	1.0 GHz		35		dBm
	Vss= -3	1.0 GHz		>35		dBm
Input IP3	Two-Tone Inputs Up To + 5 dBm					
	Vss=Gnd	2.0 GHz		>35		dBm
	Vss= -3	2.0 GHz		>35		dBm
Trise, Tfall*	10% To 90%			10		nS
Ton, Toff	50% Cntl To 90%/10%Rf			20		nS
Transients	In-Band			10		mV

*By design

Web Site: www.mysoiservices.com
Email: mysoiservices@honeywell.com

Published June 2002 Page 1

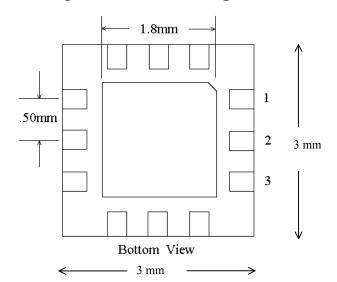
Honeywell Solid State Electronics Center 12001 State Highway 55 Plymouth, Minnesota 55441-4799 1-800-323-8295

DC Electrical Specifications @ + 25°C

Parameter	Minimum	Typical	Maximum	Units
Single V _{DD} Supply Voltage	3.3*	5.0	5.5	V
CMOS Logic Level (0)	0		0.8	V
CMOS Logic Level (1)	$V_{DD} - 0.8$		V_{DD}	V
Input Leakage Current			10	uA

^{*} Performance curves are for Vdd = +5.0 +/- 10%

Absolute Maximum Ratings¹


Parameter	Absolute Maximum	Units	
V_{DD}	+6.0	V	
Vin Digital Logic 0	Vss - 0.6	V	
Vin Digital Logic 1	Vdd + 0.6	V	
Maximum Input Power	> 35	dBm	
ESD Voltage (Control Lines)	2K	V	
Operating Temperature Range	+85	Degrees C	
Storage Temperature Range	+125	Degrees C	

⁽Note 1) Operation beyond any of these parameters may cause permanent damage.

Latch-Up: Unlike conventional CMOS RF switches, Honeywell's HRF-SW1000 is immune to latch-up.

ESD Protection: Although this device contains ESD protection circuitry on all digital inputs, conventional precautions should be taken to ensure that the Absolute Maximum Ratings are not exceeded.

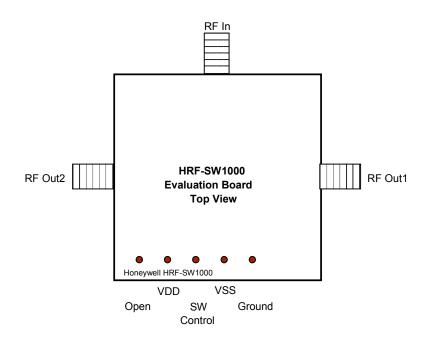
Package Outline Drawing

Bottom View
12 Pin 3X3 mm LPCCTM Package
ASAT LPCC Marketing Outline Dwg. # GMJ00004
For more information see http://www.asat.com

Web Site: Email: www.mysoiservices.com mysoiservices@honeywell.com

2002 1000W Published June 2002 Page 2

Truth Table

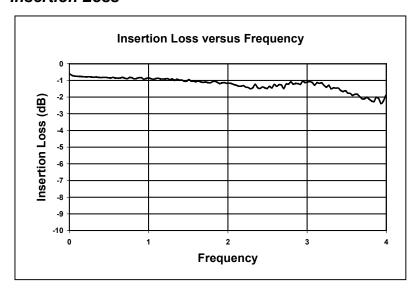

Switch Control	RF Output 1	RF Output 2
0	RF INPUT	
1		RF INPUT

[&]quot;0" = CMOS Low, "1" = CMOS High

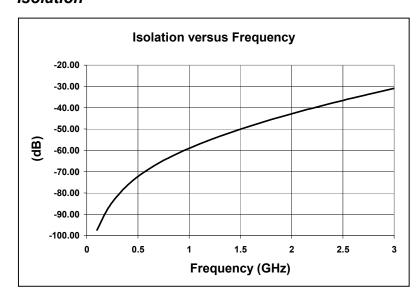
Pin Configuration

Pin	Function	Pin	Function
1	GROUND	7	GROUND
2	RF OUT 2	8	RF OUT 1
3	GROUND	9	GROUND
4	VDD	10	GROUND
5	SWITCH CONTROL	11	RF IN
6	VSS	12	GROUND

Evaluation Circuit Board Connections


Web Site: Email:

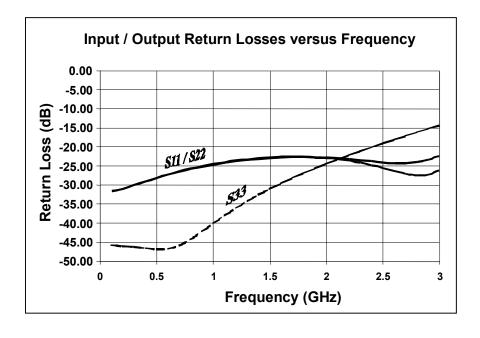
HRF-SW1000


Performance Curves

Insertion Loss

The Insertion Loss curve shows the worst case loss versus frequency at Vdd = +5.0 +/-10%, Ta = 25C, Z₀ = 50 Ohms

Isolation



The Isolation curve shows the typical isolation of an "off" state output to the insertion path.

HRF-SW1000

Honeywell

Return Loss

The return loss curve shows the input return loss S11, the output return loss in the insertion path S22, and the output return loss in the isolation state S33.

Evaluation Circuit Board

HRF-SW1000 Evaluation Board

Honeywell's evaluation board provides an easy to use method of evaluating the RF performance of our switch. Simply connect power, DC and RF signals to be measuring switch performance in less than 10 minutes.

HRF-SW1000

Evaluation Circuit Board Layout Design Details

Item	Description
PCB	Impedance Matched Multi-Layer FR4
Switch	HRF-SW1000 RF Switch
Chip Capacitor	Panasonic Model ECU-E1C103KBQ Capacitor, .01uf 0402 10% 16V
RF Connector	Johnson Connectors Model 142-0701-801 SMA RF Coaxial Connector
DC Pin	Mil-Max Model 800-10-064-10-001 Header Pins

Ordering Information

Ordering Number	Product
HRF-SW1000-B	Delivered In Chip Tubes
HRF-SW1000-TR	Delivered On Tape And Reel ²
HRF-SW1000-E	Engineering Evaluation Board

(Note 2) Contact Honeywell for details

LPCC[™] is a registered Trademark of ASAT Ltd.

Honeywell reserves the right to make changes to improve reliability, function or design. Honeywell does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

2002 1000W