Regarding the change of names mentioned in the document, such as Hitachi Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp. Customer Support Dept. April 1, 2003

Cautions

Keep safety first in your circuit designs!

Renesas Technology Corporation puts the maximum effort into making semiconductor products better
and more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.
 Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

- 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
- 2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.
 - The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 - Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).
- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.

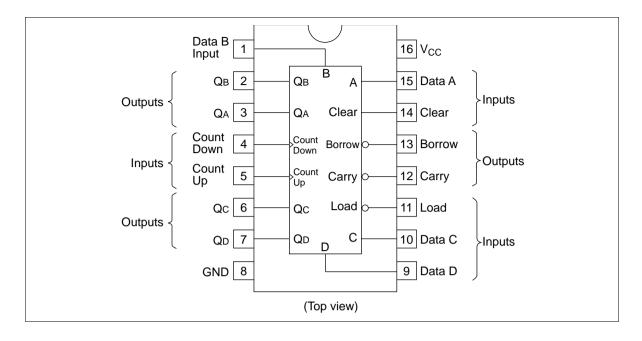
Synchronous Up/Down Decade Counter (Dual Clock Line)
Synchronous Up/Down 4-bit Binary Counter (Dual Clock Line)

ADE-205-465 (Z) 1st. Edition Sep. 2000

Description

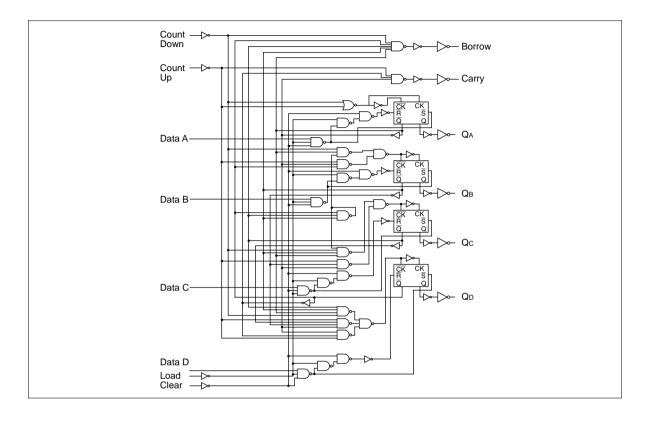
The HD74HC192 is a decade counter, and the HD74HC193 is a binary counter. Both counters have two separate clock inputs, an up count input and a down count input. All outputs of the flip-flops are simultaneously triggered on the low to high transition of either clock while the other input is held high. The direction of counting is determined by which input is clocked.

These counters may be preset by entering the desired data on the data A, data B, data C, and data D inputs. When the load input is taken low the data is loaded independently of either clock input. This feature allows the counters to be used as divide-by-n counters by modifying the count length with the preset inputs.

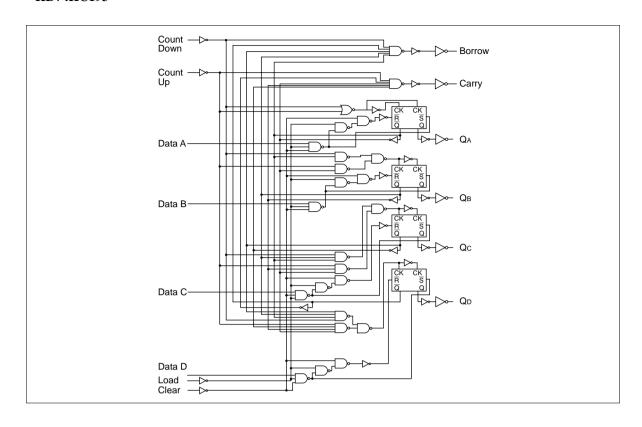

In addition both counters can also be cleared. This is accomplished by inputting a high on the clear input. All 4 internal stages are set to a low level independently of either count input.

Both a borrow and carry output are provided to enable cascading of both up and down counting functions. The borrow output produces a negative going pulse when the counter underflows and the carry outputs a pulse when the counter overflows. The counters can be cascaded by connecting the carry and borrow outputs of one device to the count up and count down inputs, respectively, of the next device.

Features


- High Speed Operation: t_{pd} (Clock Up or Count Down to Q) = 21 ns typ ($C_L = 50 \text{ pF}$)
- High Output Current: Fanout of 10 LSTTL Loads
- Wide Operating Voltage: $V_{CC} = 2 \text{ to } 6 \text{ V}$
- Low Input Current: 1 μA max
- Low Quiescent Supply Current: I_{CC} (static) = 4 μ A max (Ta = 25°C)

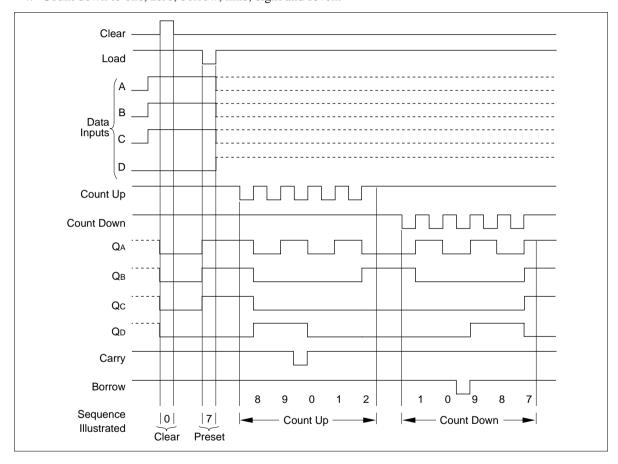
Pin Arrangement



Logic Diagram

HD74HC192

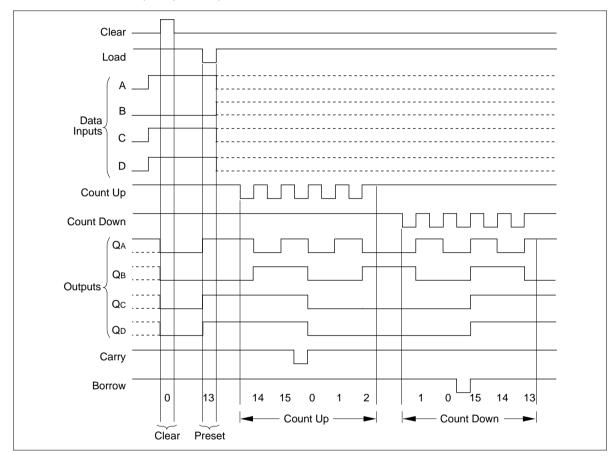
HD74HC193



Timing Chart

HD74HC192

Illustrated below is the following sequence:


- 1. Clear outputs to zero.
- 2. Load (preset) to binary seven.
- 3. Count up to eight, nine, zero, one and two.
- 4. Count down to one, zero, borrow, nine, eight and seven.

HD74HC193

Illustrated below is the following sequence:

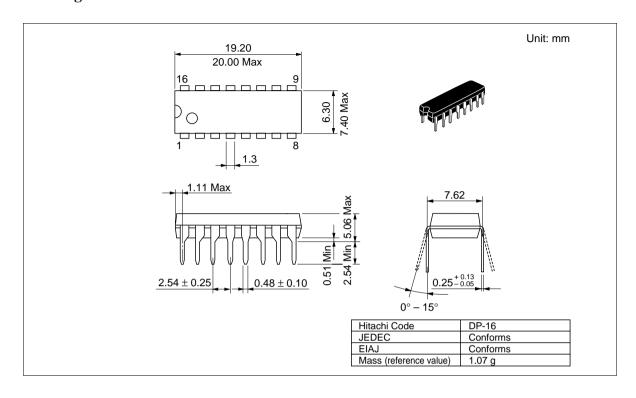
- 1. Clear outputs to zero.
- 2. Load (preset) to binary thirteen.
- 3. Count up to fourteen, fifteen, zero, one and two.
- 4. Count down to one, zero, borrow, fifteen and thirteen.

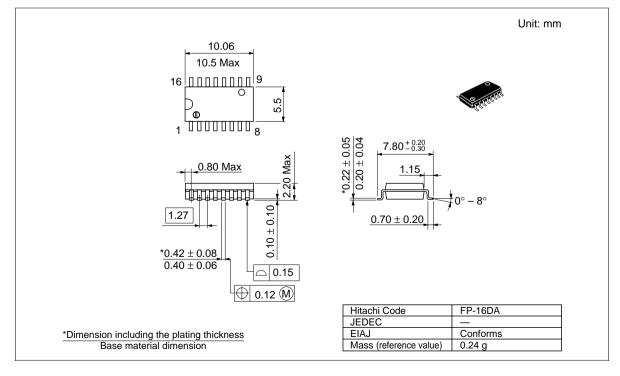
DC Characteristics

			Ta =	= 25°(Ta = - +85°C	–40 to			
Item	Symbol	V _{cc} (V)	Min	Тур	Max	Min	Max	Unit	Test Condition	าร
Input voltage	V _{IH}	2.0	1.5	_	_	1.5	_	V		
		4.5	3.15	<u></u>	_	3.15	_	_		
		6.0	4.2	_	_	4.2	_	_		
	V _{IL}	2.0	_	_	0.5	_	0.5	V		
		4.5	_	_	1.35	_	1.35	_		
		6.0	_	_	1.8	_	1.8	=		
Output voltage	V _{OH}	2.0	1.9	2.0	_	1.9	_	V	$Vin = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -20 \mu A$
		4.5	4.4	4.5		4.4	_	_		
		6.0	5.9	6.0	_	5.9	_	=		
		4.5	4.18	3 —	_	4.13	_	=		$I_{OH} = -4 \text{ mA}$
		6.0	5.68	3 —	_	5.63	_	=		$I_{OH} = -5.2 \text{ mA}$
	V _{OL}	2.0	_	0.0	0.1	_	0.1	V	$Vin = V_{IH} \text{ or } V_{IL}$	I _{OL} = 20 μA
		4.5	_	0.0	0.1	_	0.1	=		
		6.0	_	0.0	0.1	_	0.1	_		
		4.5	_	_	0.26	_	0.33	=		I _{OL} = 4 mA
		6.0	_	_	0.26	_	0.33	=		I _{OL} = 5.2 mA
Input current	lin	6.0	_	_	±0.1	_	±1.0	μΑ	Vin = V _{cc} or GN	ND
Quiescent supply current	I _{cc}	6.0	_	_	4.0	_	40	μА	Vin = V _{cc} or GN	ND, lout = $0 \mu A$

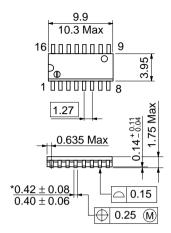
AC Characteristics ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

	Ta = -40 to
Ta = 25°C	+85°C

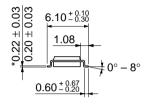

Item	Symbol	V _{cc} (V)	Min	Тур	Max	Min	Max	Unit	Test Conditions
Maximum clock	f _{max}	2.0	_	_	4	_	3	MHz	
frequency		4.5		_	20	_	16	_	
		6.0	_	_	24	_	19	=	
Propagation delay	t _{PLH}	2.0	_	_	140	_	175	ns	Count up to Carry
time		4.5		14	28	_	35	_	
		6.0	_	_	24	_	30	_	
	t _{PHL}	2.0	_	_	130	_	165		
		4.5	_	15	26	_	33	_	
		6.0	_	_	22	_	28	_	
	t _{PLH}	2.0	_	_	130	_	165	_	Count down to Borrow
		4.5		14	26	_	33	_	
		6.0	_	_	22	_	28	=	
	t _{PHL}	2.0	_	_	130	_	165	=	
		4.5		15	26	_	33	_	
		6.0	_	_	22	_	28	=	
	t _{PLH}	2.0	_	_	215	_	270	=	Count up or down to Q
		4.5		21	43	_	54	_	
		6.0	_	_	37	_	46	=	
	t _{PHL}	2.0	_	_	275	_	345	=	
		4.5		21	55	_	69	_	
		6.0		_	47	_	59	_	
	t _{PLH}	2.0	_	_	230	_	290	=	Load to Q
		4.5		17	46	_	58	_	
		6.0		_	39	_	49	_	
	t _{PHL}	2.0	_	_	290	_	365	=	
		4.5	_	23	58	_	73	=	
		6.0	_	_	49	_	62	=	
	t _{PHL}	2.0	_	_	265	_	335	=	Clear to Q
		4.5	_	24	53	_	66	_	
		6.0	_	_	45	_	56	_	
Pulse width	t _w	2.0	80	_	_	100	_	ns	
		4.5	16	8	_	20	_	_	
		6.0	14	_	_	17	_	_	


AC Characteristics ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$) (cont)

	Ta = -40 to
Ta = 25°C	+85°C


Symbol	V_{cc} (V)	Min	Тур	Max	Min	Max	Unit	Test Conditions
t _h	2.0	5	_	_	5	_	ns	Data to Load
	4.5	5	-3	_	5	_		
	6.0	5	_	_	5	_		
t _{su}	2.0	100	_	_	125	_	ns	Data to Load
	4.5	20	4	_	25	_	=	
	6.0	17	_	_	21	_	=	
t _{rem}	2.0	50	_	_	65	_	ns	Clear to Clock
	4.5	10	-1	_	13	_	=	
	6.0	9	_	_	11	_	-	
t _{TLH}	2.0	_	_	75	_	95	ns	
\mathbf{t}_{THL}	4.5	_	5	15	_	19	=	
	6.0	_	_	13	_	16	_	
Cin	_	_	5	10	_	10	pF	
	$t_{\rm su}$ $t_{\rm rem}$ $t_{\rm TLH}$ $t_{\rm THL}$	$\begin{array}{c} t_{\text{h}} & 2.0 \\ \hline 4.5 \\ \hline 6.0 \\ \hline \\ t_{\text{su}} & 2.0 \\ \hline 4.5 \\ \hline 6.0 \\ \hline \\ t_{\text{rem}} & 2.0 \\ \hline \\ 4.5 \\ \hline \hline 6.0 \\ \hline \\ \\ t_{\text{TLH}} & 2.0 \\ \hline \\ t_{\text{THL}} & 4.5 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \hline $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} t_{\text{h}} & \begin{array}{c} 2.0 & 5 & - \\ 4.5 & 5 & -3 \\ \hline 6.0 & 5 & - \\ \end{array} \\ t_{\text{su}} & \begin{array}{c} 2.0 & 100 & - \\ \hline 4.5 & 20 & 4 \\ \hline 6.0 & 17 & - \\ \end{array} \\ t_{\text{rem}} & \begin{array}{c} 2.0 & 50 & - \\ \hline 4.5 & 10 & -1 \\ \hline 6.0 & 9 & - \\ \end{array} \\ t_{\text{TLH}} & \begin{array}{c} 2.0 & - & - \\ \hline 4.5 & - & 5 \\ \hline 6.0 & - & - \\ \end{array} \end{array}$	$\begin{array}{c} t_{\text{h}} \\ & \begin{array}{ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} t_{\rm h} \\ t_{\rm h} \\ \hline \\ 2.0 \\ \hline \\ 4.5 \\ \hline \\ 5 \\ \hline \\ -3 \\ \hline \\ -3 \\ \hline \\ -5 \\ \hline $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Package Dimensions



Unit: mm

*Dimension including the plating thickness
Base material dimension

Hitachi Code	FP-16DN				
JEDEC	Conforms				
EIAJ	Conforms				
Mass (reference value)	0.15 g				

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

IITACHI

Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

URL NorthAmerica http://semiconductor.hitachi.com/ http://www.hitachi-eu.com/hel/ecg Europe Asia http://sicapac.hitachi-asia.com

Japan http://www.hitachi.co.jp/Sicd/indx.htm

For further information write to:

Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Germany Fax: <1>(408) 433-0223 Tel: <49> (89) 9 9180-0

Hitachi Europe GmbH Electronic Components Group Dornacher Straße 3 D-85622 Feldkirchen, Munich Fax: <49> (89) 9 29 30 00

Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead

Berkshire SL6 8YA, United Kingdom Tel: <886>-(2)-2718-3666 Tel: <44> (1628) 585000 Fax: <44> (1628) 585160

Hitachi Asia Ltd. Hitachi Tower 16 Collyer Quay #20-00, Singapore 049318 Tel: <65>-538-6533/538-8577 Fax: <65>-538-6933/538-3877 URL: http://www.hitachi.com.sg

Hitachi Asia Ltd. (Taipei Branch Office) 4/F, No. 167, Tun Hwa North Road, Hung-Kuo Building, Taipei (105), Taiwan

Fax: <886>-(2)-2718-8180 Telex: 23222 HAS-TP URL: http://www.hitachi.com.tw Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road Tsim Sha Tsui, Kowloon, Hong Kong

Tel: <852>-(2)-735-9218 Fax: <852>-(2)-730-0281 URL: http://www.hitachi.com.hk

Copyright @ Hitachi, Ltd., 2000. All rights reserved. Printed in Japan.

