Regarding the change of names mentioned in the document, such as Hitachi Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

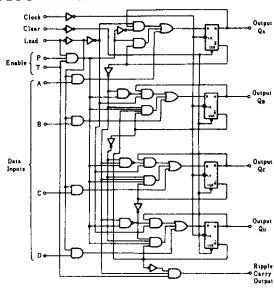
Renesas Technology Corp. Customer Support Dept. April 1, 2003

Cautions

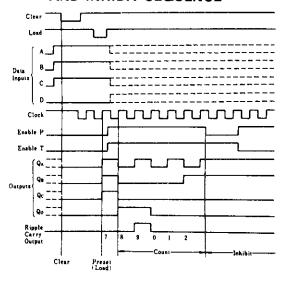
Keep safety first in your circuit designs!

Renesas Technology Corporation puts the maximum effort into making semiconductor products better
and more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials


- 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
- 2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.
 - The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 - Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).
- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.

This synchronous decade counter features an internal carry lookahead for application in high-speed counting designs. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable inputs and internal gating. This mode is operation eliminates the output counting spikes that are normally associated with asynchronous (rippie clock) counters. A buffered clock input triggers the four flip-flops on the rising (positive-going) edge of the clock input waveform. This counter is fully programmable; that is, the output may be preset to either level. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse regardless of the levels of the enable inputs. Lovi-to-high transitions at the load input of this device should be avoided when the clock is low if the enable inputs are high at or before the transition. The clear function is asynchronous and a low level at the clear input sets all four of the flipflop outputs low regardless of the levels of clock, load, or enable inputs. The carry look-shead circuitry provides for cascading counters for n-bit synchronous applications without additional gatting. Instrumental in accomplishing this function is two count-enable inputs and a ripple carry output. Both count-enable inputs (P and T) must be high to count, and input T is fed forward to enable the ripple carry output. The ripple carry output thus enabled will produce a high-level output pulse with a duration approximately equal to the high-level portion of the QA output. This high-level overflow ripple carry pulse can be used to enable successive cascaded stages. High-to-low-level transitions at the enable P or T inputs should occur only when the clock input is high.


■PIN ARRANGEMENT

BBLOCK DIAGRAM

TYPICAL CLEAR, PRESET, AND INHIBIT SEQUENCE

■ RECOMMENDED OPERATING CONDITIONS

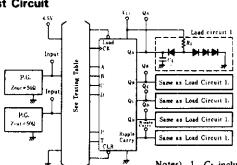
It	em	Symbol	min	typ	max	Unit	
Clock fre	quency	felock	0	_	25	MHz	
Clock pul	se width	tw(clock)	25	_	_	ns	
Clear pul	se width	tu(clear)	20	_	_	ns	
	A, B, C, D		20	-	-	ļ	
Setup time	Enable P, T	fru	20	_	_	ns	
	Load	1	20	_	_	1	
Hold time		th	3	_	_	ns	

HD74LS160A

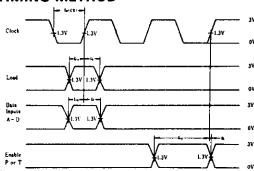
ELECTRICAL CHARACTERISTICS ($Ta = -20 \sim +75$ °C)

Item		Symbol	Test Condition	min	typ*	max	Unit	
Input voltage		VIH			2.0	_	-	ν
		VIL			-	_	0.8	v
		Voн	$V_{CC} = 4.75 \text{V}, V_{IH} = 2 \text{V}, V_{IL} = 0.8$	V , $I_{OH} = -400 \mu A$	2.7	-		V
Output voltage			$V_{CC} = 4.75 \text{V}, V_{IH} = 2 \text{V},$	$I_{OL} = 4 \text{mA}$	-	_	0.4	37
		Vol	$V_{IL}=0.8V$	$lo_L = 8 m A$	_	_	0.5	V
	Data, Enable P			- "	_	20	μА	
ľ	Load, Clock, Enable T	In	$V_{CC} = 5.25 \text{V}, V_I = 2.7 \text{V}$	-	-	40		
current	Clear	1		_	_	20		
	Data, Enable P			-	-	-0.4	mA	
	Load, Clock, Enable T	In	$V_{CC} = 5.25 \text{V}, V_I = 0.4 \text{V}$	-	-	-0.8		
indu:	Clear			_	_	-0.4		
=	Data, Enable P				_	0.1		
ſ	Load, Clock, Enable T	I_{l}	$V_{CC} = 5.25 \text{V}, V_I = 7 \text{V}$		-	0.2	mA	
	Clear			-	-	0.1	ı	
Short-circuit output current		Ios	$V_{CC} = 5.25 \text{V}$		- 20		- 100	mA
Supply current **		Іссн	$V_{CC} = 5.25 \text{V}$	į		18	31	mA
		lccL	$V_{CC} = 5.25 \text{V}$		-	19	32	mA
In	put clamp voltage	Vik	$V_{CC} = 4.75 \text{V}, I_{IN} = -18 \text{m/s}$	A	_	_	-1.5	V

^{*} V_{CC}=5V, Ta=25°C


ESWITCHING CHARACTERISTICS ($V_{CC} = 5V$, $T_a = 25^{\circ}C$)

Item	Symbol	Inputs	Outputs	Test Conditions	min	typ	max	Unit
Maximum clock frequency	fmaz	Clock	$Q_A \sim Q_D$		25	32	_	MHz
	tplh	C1 1	Ripple		_	20	35	ns
	tphl	Clock	Carry		_	18	35	ns
	tplH	Clock (Load="H")	Qa~QD			13	24	ns
	tрнL			$C_L = 15 pF$,		18	27	ns
Propagation delay time	İPLH	Clock		$R_L = 2k\Omega$	_	13	24	ns
	tphl.	(Load="L")	$Q_A \sim Q_D$		_	18	27	ns
	tplH	D 11 D	Ripple		_	9	14	ns
	tp#L	Enable T	Carry			9	14	ns
	tPHL.	Clear	QA-QD			20	28	ns

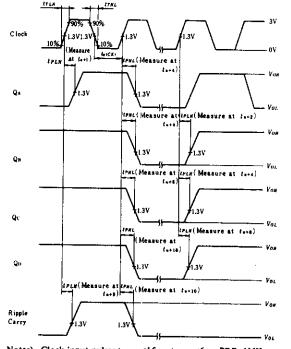

^{**} I_{CCH} is measured with the load input high, then again with the load input low, with all other inputs high and all outputs open.
I_{CCL} is measured with the clock input high, then again with the clock input low, with all other inputs low and all outputs open.

TESTING METHOD

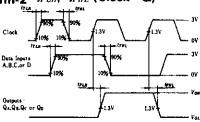
1) Test Circuit

TIMING METHOD

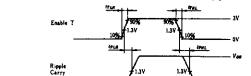
Notes) 1. C_L includes probe and jig capacitance.

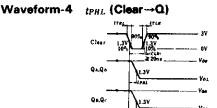

2 All diodes are 1S2074 (H).

2) Testing Table


						Inputs							Outputs	3	
Item	From input to output	Clear	Load	En	Enable Clock		Data			0.				Ripple	
				.b	T	Clock	Α	В	С	D	Qλ	Qн	Qc	Qu	Carry
fmus	ii ii	4.5V	4.5V	4.5V	4.5V	IN	GND	GND	GND	GND	OUT	OUT	OUT	OUT	OUT
	CK-→Ripply Carry	4.5V	4.5V	4,5V	4.5V	IN	GND	GND	GND	GND	_		_	-	OUT
	CK→Q	4.5V	4.5V	4.5V	4.5V	IN	GND	GND	GND	GND	OUT	OUT	OUT	OUT	
tri.n	CK→Q	4.5V	GND	GND	GND	IN	IN*	IN*	IN.	IN*	OUT	OUT	OUT	OUT	
trni.	Enable T→Ripple Carry	4.5V	GND	4.5V	IN	IN	4.5V	GND	GND	4.5V	-	_	-		оит
	CLR⊶Q	IN	GND	GND	GND	IN**	4.5V	4.5V	4.5V	4.5V	OUT	OUT	OUT	OUT	_

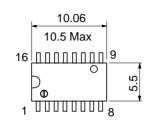
Measuring outputs correspond to this condition, each outputs (QA, QB, QC, and QD) must not be over the following rate, "H", "L", "L", and "H".

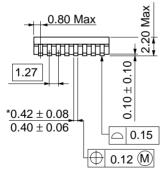

Waveform-1 fmax, tPLH, tPHL (Clock→Q, Ripple Carry) Waveform-2 tPLH, tPHL (Clock→Q)

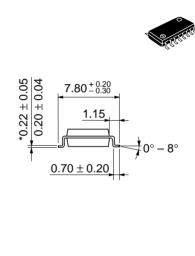

Notes) Ctock input pulse; $t_{TLH \le 1}$ 15ns, $t_{THL} \le 6$ ns, PRR = 1MHz, duty cycle=50% and: for f_{max} , $t_{TLH} = t_{THL} \le 2$.5ns. t_n is reference bit time when all outputs are low.

Notes) Input pulse: t_{TLH}≤15ns, t_{THL}≤6ns, Clock input: PRR=
1MHz, duty cycle 50%, Data input: PRR=500kHz, duty cycle 50%
Waveform-3 t_{PLH}, t_{PHL} (Enable T→Ripple Carry)

Note) Input pulse: $t_{TLH} \le 15$ ns, $t_{THL} \le 6$ ns, PRR = 1MHz



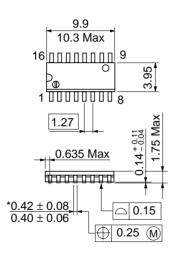

Note) Input pulse: $t_{TLH} \le 15 \text{ ns}$, $t_{THL} \le 6 \text{ ns}$

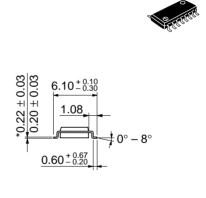

^{**} For initialized

Unit: mm 19.20 20.00 Max 16 7.40 Max 6.30 1.3 1.11 Max 7.62 5.06 Max 2.54 Min 0.51 Min $0.25^{+0.13}_{-0.05}$ 0.48 ± 0.10 2.54 ± 0.25 $0^{\circ} - 15^{\circ}$ Hitachi Code DP-16 **JEDEC** Conforms EIAJ Conforms Weight (reference value) 1.07 g

Unit: mm

*Dimension including the plating thickness
Base material dimension


EIAJ Conforms
Weight (reference value) 0.24 g


FP-16DA

Hitachi Code

JEDEC

Unit: mm

*Dimension including the plating thickness
Base material dimension

Hitachi Code	FP-16DN
JEDEC	Conforms
EIAJ	Conforms
Weight (reference value)	0.15 g

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

HTACHI

Hitachi, Ltd.

Semiconductor & Integrated Circuits.

Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

NorthAmerica URL Europe

http://www.hitachi-eu.com/hel/ecg http://www.has.hitachi.com.sg/grp3/sicd/index.htm http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (Singapore) Asia (Taiwan) Asia (HongKong) http://www.hitachi.com.hk/eng/bo/grp3/index.htm

http:semiconductor.hitachi.com/

http://www.hitachi.co.jp/Sicd/indx.htm Japan

For further information write to:

Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Stra§e 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0

Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park

Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000

Fax: <44> (1628) 778322

Lower Cookham Road

Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533

Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666

Fax: <886> (2) 2718-8180

7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX

Hitachi Asia (Hong Kong) Ltd.

Group III (Electronic Components)

Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.