
HFT228x-521

FEATURES


- Prealigned Pluggable LC
 Duplex Optical Front End
 (OFE) in compliance with the SFF Pluggable Transceiver
 MultiSource Agreement.
- VCSEL packaged with a back monitor photodiode
- Common anode and common cathode polarities available
- TO-46 hermetic package for VCSEL and Pin + Preamp
- 5V or 3.3 V operation
- GaAs PIN detector and BiCMOS preamplifier
- Differential output for low noise
- High Speed >1GHz
- Laser signal is attenuated
- Unattenuated versions available as well (HFT2283-522 and HFT2284-522)

The HFT228x-52x is a single package transmitter and receiver designed to interface with the LC style optical connectors.

The transmitter is a high performance 850nm VCSEL (Vertical Cavity Surface Emitting Laser) packaged for high speed data communications. This product combines all the performance advantages of VCSEL with a custom designed power monitor diode. The power monitor diode can be used with an appropriate feedback control circuitry to set a maximum power level for each VCSEL. Attenuating coatings are available on the Laser transmitter to simplify design and assist in meeting eye safety requirements.

The PIN + preamp converts optical power into a differential output electrical signal. As the light increases, the differential output voltage increases, limiting at input powers above $-10 \, \mathrm{dBm}$. The differential output is designed to be AC coupled into a data amplifier.

The Honeywell HFT228x-521 is designed to interface with 50/125 and $62.5/125\mu m$ multimode fiber within an LC style interface.

HFT228x-521

VCSEL PARAMETERS

ELECTRO-OPTICAL CHARACTERISTICS (T_A=25 °C unless otherwise stated)

VCSEL Parameters Test Condition		Symbol	Min.	Тур.	Max.	Units	Notes
Peak Fiber Coupled Optical Power (See threshold current and slope efficiency which control power output)	$\begin{array}{llllllllllllllllllllllllllllllllllll$			μW dBm	1		
Threshold Current		I_{TH}		3.5	6	mA	
Threshold Current Temperature Variation	Threshold Current Temperature $T_A = 0^{\circ}\text{C}$ to 70°C ΔI_{TH} -1.5 m		mA	2			
Slope Efficiency	P _{OC} =0.35 mW	η	0.02	0.04	0.1	mW/mA	3
Slope Efficiency Temperature Variation	$T_A = 0$ °C to 70 °C	$\Delta\eta/\Delta T$		-0.5		%/°C	
Peak Wavelength I _F =12mA		$\lambda_{ m P}$	830	850	860	nm	
$λ_P$ Temp Coefficient I_F =12 mA $Δλ_I$		$\Delta \lambda_P / \Delta T$		0.06		nm/°C	
Spectral Bandwidth	I _F =12 mA, FWHM	Δλ			1.0	nm	
Laser Forward Voltage	I _F =12 mA	V_{F}	1.6	1.8	2.2	V	
Laser Reverse Voltage	$I_R=10 \mu A$	BVR_{LD}	5	10		V	
Rise and Fall Time	Bias Above Threshold (20%-80%)	t _R t _F		150 200	300 300	ps	4
Relative Intensity Noise	1 GHz BW	RIN		-128	-122	dB/Hz	
Series Resistance $I_F=12 \text{ mA}$		R_S	15	25	50	Ohms	

Photodiode Parameters	Test Condition	Symbol	Min.	Typ.	Max.	Units	Notes
Monitor Current	P _{OC} =0.35 mW	I_{PD}	0.09		0.58	mA	
Monitor Current P _{OC} =0.35 mW		$\Delta I_{PD}/\Delta T$		0.0		%/°C	
Temperature Variation							
Dark Current Po=0 mW, V _R =3 V		I_D			20	nA	
PD Reverse Voltage	Po=0 mW, I_R =10 μ A	BVR_{PD}	30	115		V	5
PD Capacitance	V _R =0 V, Freq=1 MHz	С		75	100	pF	
	$V_R=3 V$, Freq=1 MHz			40	55		

Notes

- 1. Operating power is set by the peak operating current $I_{PEAK}\!\!=\!\!I_{BIAS}\!\!+\!\!I_{MODULATION}\!.$
- 2. Operation at temperatures outside the specified range may result in the threshold current exceeding the maximums defined in the electro-optical characteristics table.
- 3. Slope efficiency is defined as $\Delta Po/\Delta IF$ at a total power output of 0.35 mW. Slope efficiency is intentionally lowered to the values shown by optical attenuation.
- 4. Rise and fall times are sensitive to drive electronics. 200 ps rise and fall times are achievable for all Honeywell VCSELs.
- 5. To safeguard the VCSEL from current spike damage, short the VCSEL anode and cathode to each other during photodiode BVR verification testing.

HFT228x-521

RECEIVER PARAMETERS

ELECTRO-OPTICAL CHARACTERISTICS (Vcc=5V, 0°C<T<70°C unless otherwise specified)

Parameters	Test Condition	Symbol	Min.	Тур.	Max.	Units	Notes
Electrical Characteristics							
Supply Voltage	$P_{in} = 0\mu W$, Rload= 50Ω	V_{cc}	3.0		5.5	Volts	1
Supply Current	$P_{in} = 0\mu W$, Rload= 50Ω	I_{cc}		35	40	mA	1
Output Voltage	$P_{in} = 100 \mu W$, Rload= 50Ω	V _{out}		200	500	mV	1
	Opto-Elec	ctronic Chai	racteristics	5			
Responsivity	$P_{in} = 20\mu W$ peak,	R	2500	3500	5000	μV/μW	2,3
	Rload= 50Ω						
Lower 3dB Bandwidth		$\mathrm{BW}_{\mathrm{lower}}$	0.1	0.3	1	MHz	4
Upper 3dB Bandwidth		BW_{upper}	850	1200	1500	MHz	4
RMS Output Referred	$P_{in}=0\mu W, R_{load}=50\Omega$			300		NW	5
Noise	937.5MHz BT Filter						
Sensitivity	BER=10 ⁻¹² , SNR=7	S	-20	-24		dBm	
Power Supply Rejection	$P_{in}=0\mu W, R_{load}=50\Omega$	PSRR	10	30		dB	6
Ratio							
Pulse Width Distortion	$P_{in}=20\mu W$ peak, $R_{load}=50\Omega$	PWD		35	60	ps	7
Rise/Fall Time	$P_{in}=20\mu W$ peak, $R_{load}=50\Omega$	T_R/T_F			400	ps	8
Wavelength Responsivity	$P_{in}=20\mu W$ peak, $R_{load}=50\Omega$	λ	760	850	860	nm	

Notes:

- 1. Pin refers to the total optical power at the face of the fiber optic cable input to the HFD3180-002.
- 2. Responsivity measured with source wavelength of 850nm, 125MHz square wave, P_{in} =20 μ W peak, R_{load} =50 Ω .
- 3. The output voltage increases as received light power increases, up to approximately -15dBm. The preamplifier is designed to limit the electrical output signal above this optical input level, and does not introduce signal distortion until the average input power exceeds od Bm.
- 4. Bandwidth is measured with a small signal sinusoidal light source with 50 μ W average power, R_{load} =50 Ω .
- 5. RMS input referred optical noise is obtained by measuring the RMS output referred noise, then dividing by the responsivity.
- 6. PSRR is measured from 300KHz to 1GHz by injecting a –20dB electrical signal on the V_{cc} pin. The nominal value at 100MHz is recorded. No external bypass components are assumed. An external V_{cc} filter network will greatly increase the PSRR.
- 7. Measured at the 50% level of output pulses using 0.5 GHz square wave with <200 ps rise time.
- 8. Rise and fall times are measured with source wavelength of 850nm, 125MHz square wave, with optical rise and fall times < 200ps, P_{in} =20 μ W peak, R_{load} =50 Ω .

HFT228x-521

Absolute Maximum Ratings

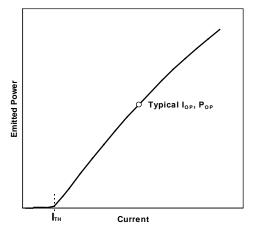
Parameter	Rating		
Storage Temperature	-40 to +85°C		
Operating Temperature	0 to +70°C		
Lead Solder Temperature	260°C, 10 sec.		
Continuous Optical Output Power (Any Current)	5 mW		
Laser Diode Reverse Voltage (I _R =10 μA)	5 V		
Laser Continuous Forward Current, Heat-Sinked	15 mA		
PIN Photodiode Forward Current	10 mA		
Power Supply Voltage (PIN + Preamp)	6 V		
Incident Optical Power	0 dBm average, +4 dBm peak		

NOTICE

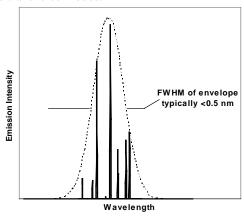
Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operations section for extended periods of time may affect reliability.

NOTICE

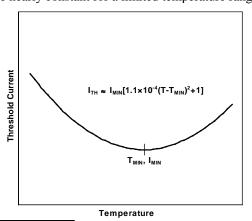
The inherent design of this component causes it to be sensitive to electrostatic discharge (ESD). To prevent ESD-induced damage and/or degradation to equipment, take normal ESD precautions when handling this product


ORDER GUIDE

OTE ER COIDE					
Catalog Listing	Description				
HFT2280-521	Attenuated, Common Anode				
HFT2281-521	Attenuated, Common Cathode				


HFT228x-521

TYPICAL PERFORMANCE CURVES


Emitted Power vs. Current: Power varies approximately linearly with current above threshold.

Emission Intensity vs. Wavelength: Typical 10 mA spectrum comprises multiple lines corresponding to multiple transverse modes.

Threshold Current vs. Temperature: Threshold current varies parabolically with temperature; thus it can be nearly constant for a limited temperature range.

NOTICE

The inherent design of this component causes it to be sensitive to electrostatic discharge (ESD). To prevent ESD-induced damage and/or degradation to equipment, take normal ESD precautions when handling this product.

The VCSEL is a class IIIb laser and should be treated as a potential eye hazard. Due to the size of the component, the applicable warning logotype, aperture label, and certification/identification label cannot be placed on the component itself. These labels can be found on the individual envelope in which the VCSEL unit is packaged, or attached to the shipping package.

HFT228x-521

FIGURE 1: INTERNAL SCHEMATIC DIAGRAM OF THE HFD3180-002

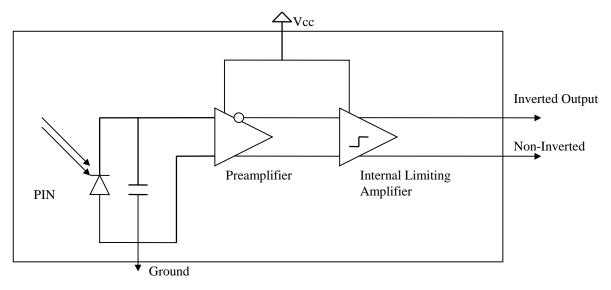
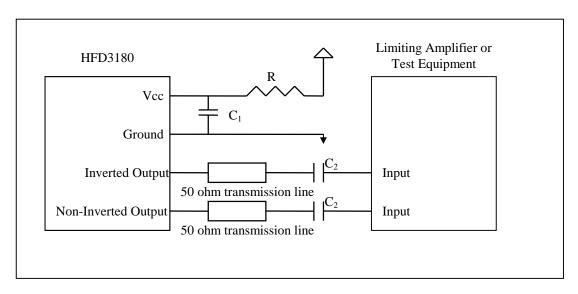
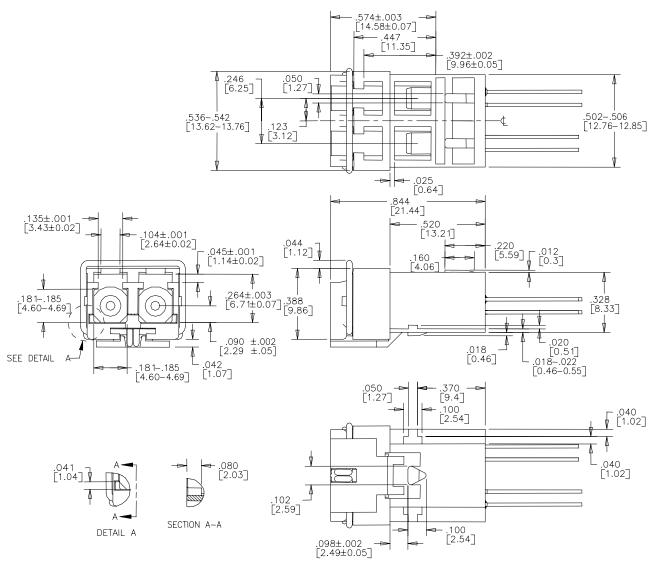
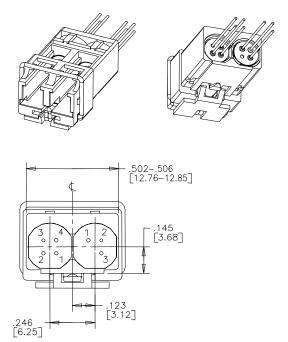



FIGURE 2: RECOMMENDED INTERFACE CIRCUIT FOR THE HFD3180-002




R=10 Ω

 $C_1 = 10 \text{ nF}$

 $C_2 = DATA RATE DEPENDANT (22NF FOR RATES > 1GB)$

HFT228x-521

PIN	RCVR	XMTR				
#		HFT2280/2290	HFT2281/2291			
1	VCC	VCSEL CATHODE	VCSEL ANODE			
2	OUT-	VCSEL ANODE & PD CATH.	VCSEL CATH. & PD ANODE			
3	GND	PD ANODE	PD CATHODE			
4	OUT+	N/A	N/A			

HFT228x-521

WARRANTY/REMEDY

Honeywell warrants goods of its manufacture as being free of defective materials and faulty workmanship. Commencing with the date of shipment, Honeywell's warranty runs for 18 months. If warranted goods are returned to Honeywell during that period of coverage, Honeywell will repair or replace without charge those items it finds defective. The foregoing is Buyer's sole remedy and is **in lieu of all other warranties**, **expressed or implied**, **including those of merchantability and fitness for a particular purpose**.

While we provide application assistance, personally and through our literature, it is up to the customer to determine the suitability of the product in the application.

Specifications may change at any time without notice. The information we supply is believed to be accurate and reliable as of this printing. However, we assume no responsibility for its use.

SALES AND SERVICE

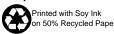
Honeywell Sensing and Control serves its customers through a worldwide network of sales offices and distributors. For application assistance, current specifications, pricing or name of the nearest Authorized Distributor, contact a nearby sales office or call:

TELEPHONE

1-800-367-6786 (USA) 1-800-737-3360 (Canada) +49 (0) 89 35813310 (Germany) +65-580-3312 (Singapore) +44 (0) 118 981 9511 (UK)

FAX

1-972-470-4326 (Customer Response Center) 1-972-470-4549 (Fax on demand) +49 (0) 89 3599971 (Germany) +65 445 3033 (Singapore) +44 (0) 118 981 7513 (UK)


INTERNET

http://www.honeywell.com/sensing/VCSEL info.sc@honeywell.com

8/30/01

Honeywell

Honeywell Inc. 11 West Spring Street Freeport, Illinois 61032

R

Honeywell Inc. Optoelectronics Facility 830 East Arapaho Road Richardson, Texas 75081 Honeywell Control Systems Ltd. Zodiac House Calleva Park Aldermaston, Berkshire RG7 8HW England Helping You Control Your World

 $PK\ XXXX\ X\quad DMM\quad Printed\ in\ USA$