
Advanced RISC Machines

ARM

Document Number: ARM DDI 0035A

Issued: January 1996

Copyright Advanced RISC Machines Ltd (ARM) 1996

All rights reserved

ARM 7100
Preliminary Data Sheet

P
re

lim
in

ar
y

Proprietary Notice
ARM and the ARM Powered logo are trademarks of Advanced RISC Machines Ltd.

SPI is a registered trademark of Motorola.
Microwire is a registered trademark of National Semiconductor.

Neither the whole nor any part of the information contained in, or the product described in, this
datasheet may be adapted or reproduced in any material form except with the prior written
permission of the copyright holder.

The product described in this datasheet is subject to continuous developments and
improvements. All particulars of the product and its use contained in this datasheet are given by
ARM in good faith. However, all warranties implied or expressed, including but not limited to
implied warranties or merchantability, or fitness for purpose, are excluded.

This datasheet is intended only to assist the reader in the use of the product. ARM Ltd shall not
be liable for any loss or damage arising from the use of any information in this datasheet, or any
error or omission in such information, or any incorrect use of the product.

Change Log
Issue Date By Change

-01 Jan 95 AW Created
-02 Feb 95 AW Changes after an initial preliminary

review. Changes to reflect updated
specification.

A draft1 Dec 95 AP Changes to reflect updated specification.
A Jan 96 AP Minor edits; addition of timing diagrams.

P
re

lim
in

ar
y

Preface

Preface-ii
ARM7100 Data Sheet

ARM DDI 0035A

The ARM7100 is a high integration microcontroller particularly well-suited for PDAs, smart mobile
phones, handheld games, portable instruments and similar applications. Built around the ARM710
microprocessor, the ARM7100 integrates LCD control, glueless DRAM interface, UART with infra-red
SIR protocol support and the other peripherals required for handheld computing applications.

In normal operation at 18.4MHz at 3.3V, the ARM7100 consumes an extremely low 70mW and in
standby, less than 40µW, which gives excellent battery performance. System power is minimized by
the ability to use self-refresh DRAM when in standby.

ARM7100 was implemented using a modular design methodology and the AMBA internal bus
architecture. The ARM7100 is the ideal starting point from which to consider further ASSP devices for
volume OEM applications.

Applications
High integration and low power consumption makes the ARM7100 ideal for battery-powered portable
computing applications:

● PDAs

● Smart Mobile phones

● Handheld games

● Electronic books and organizers

● Handheld instruments and data collection devices

● High specification pagers

● Mobile epos terminals

Its high performance and low cost features make the ARM7100 also suitable for:

● Office automation (photocopiers, faxes)

● Automotive user consoles

Features
● 32-bit ARM710 RISC cached processor

● 8Kb cache, memory management unit and write buffer
to deliver strong performance with inexpensive memory

● Very low chip and system power consumption
(two low power modes and advanced power management)

● Glueless DRAM interface, which supports self-refresh DRAM
to further reduce system power consumption

● 3072Mb total physical address range

● Support for 8-bit, 16-bit or 32-bit wide ROM/SRAM devices

● 36 bits of general purpose I/O

● Flexible LCD controller with DMA support

● Full duplex UART with two 16-byte FIFOs and
IrDA industry standard infra-red protocol support

● Synchronous serial interface supporting
multiple protocols for peripheral expansion

● Telephony CODEC interface

● Other peripherals include timer/counters, real-time clock,
DC-DC converter interface and on-chip clock generators

ARM7100 Data Sheet
ARM DDI 0035A

Contents-i

111

Contents

P
re

lim
in

ar
y

1 Introduction 1-1
1.1 Introduction 1-2
1.2 System Description 1-2
1.3 Block Diagram 1-3
1.4 CPU Core 1-4
1.5 Datasheet Notation 1-4

2 Signal Description 2-1
2.1 Signal Descriptions 2-2

3 The ARM Processor Macrocell 3-1
3.1 Introduction 3-2
3.2 Instruction set 3-2
3.3 Memory Interface 3-3
3.4 Clocking 3-3
3.5 ARM Processor Block Diagram 3-3

4 The ARM Processor Programmer's Model 4-1
4.1 Introduction 4-2
4.2 Register Configuration 4-2
4.3 Operating Mode Selection 4-4
4.4 Registers 4-4
4.5 Exceptions 4-7
4.6 Configuration Control Registers 4-11
4.7 Reset 4-16

5 ARM Processor Instruction Set 5-1
5.1 Instruction Set Summary 5-2
5.2 The Condition Field 5-3
5.3 Branch and Branch with link (B, BL) 5-4
5.4 Data Processing 5-6
5.5 PSR Transfer (MRS, MSR) 5-15
5.6 Multiply and Multiply-Accumulate (MUL, MLA) 5-19
5.7 Single Data Transfer (LDR, STR) 5-21

Contents

ARM7100 Data Sheet
ARM DDI 0035A

Contents-ii

P
re

lim
in

ar
y

5.8 Block Data Transfer (LDM, STM) 5-27
5.9 Single Data Swap (SWP) 5-34
5.10 Software Interrupt (SWI) 5-36
5.11 Coprocessor Instructions 5-38
5.12 Coprocessor data operations (CDP) 5-39
5.13 Coprocessor Data Transfers (LDC, STC) 5-41
5.14 Coprocessor Register Transfers (MRC, MCR) 5-44
5.15 Undefined Instruction 5-47
5.16 Instruction Set Examples 5-48
5.17 Instruction Speed Summary 5-52

6 Cache, Write Buffer and Coprocessors 6-1
6.1 Instruction and Data Cache 6-2
6.2 Read-lock-write 6-3
6.3 IDC Enable/Disable and Reset 6-3
6.4 Write Buffer 6-4
6.5 Coprocessors 6-5

7 ARM Processor MMU 7-1
7.1 Introduction 7-2
7.2 MMU Program Accessible Registers 7-3
7.3 Address Translation 7-4
7.4 Translation Process 7-5
7.5 Translating Section References 7-8
7.6 Translating Small Page References 7-10
7.7 Translating Large Page References 7-11
7.8 MMU Faults and CPU Aborts 7-12
7.9 Fault Address and Fault Status Registers (FAR and FSR)7-13
7.10 Domain Access Control 7-14
7.11 Fault Checking Sequence 7-15
7.12 Interaction of the MMU, IDC and Write Buffer 7-18
7.13 Effect of Reset 7-19

8 ARM7100 Programmer’s Model 8-1
8.1 Introduction 8-2
8.2 Summary of Registers 8-3
8.3 Register Descriptions 8-5

9 Interrupt Controller 9-1
9.1 Interrupt Controller 9-2

10 The Expansion and ROM Interface 10-1
10.1 The Expansion and ROM Interface 10-2

11 DRAM controller 11-1
11.1 DRAM Controller 11-2

12 CODEC Interface 12-1
12.1 CODEC Interface 12-2

13 Synchronous Serial Interface 13-1
13.1 Synchronous Serial Interface 13-2

14 LCD Controller 14-1
14.1 LCD Controller 14-2

Contents

ARM7100 Data Sheet
ARM DDI 0035A

Contents-iii

P
re

lim
in

ar
y

15 UART and SiR Encoder 15-1
15.1 UART 15-2
15.2 SiR Encoder 15-2

16 Timer Counters 16-1
16.1 Timer Counters 16-2
16.2 Real Time Clock 16-2

17 DC to DC Converters 17-1
17.1 DC to DC Converter Interfaces 17-2

18 Power Management and Reset 18-1
18.1 State Control 18-2
18.2 Reset 18-3

19 Memory Map 19-1
19.1 Memory Map 19-2

20 DC and AC Parameters 20-1
20.1 Absolute Maximum Ratings 20-2
20.2 DC Operating Conditions 20-2
20.3 DC Characteristics 20-3
20.4 AC Characteristics 20-5

21 Physical Details 21-1
21.1 Pin diagrams for the ARM7100 21-2

22 Pinout 22-1
22.1 Pin details 22-2

Contents

ARM7100 Data Sheet
ARM DDI 0035A

Contents-iv

P
re

lim
in

ar
y

ARM7100 Data Sheet
ARM DDI 0035A

1-1

111

P
re

lim
in

ar
y

Introduction

This chapter provides an introduction to the ARM7100.

1.1 Introduction 1-2

1.2 System Description 1-2

1.3 Block Diagram 1-3

1.4 CPU Core 1-4

1.5 Datasheet Notation 1-4

1

Introduction

ARM7100 Data Sheet
ARM DDI 0035A

1-2

P
re

lim
in

ar
y

1.1 Introduction
The ARM7100 is a highly integrated single chip microcontroller for PDA products,
using modular design techniques based on the Advanced Microcontroller Bus
Architecture (AMBA) to simplify design and test while optimizing for lowest power
(70mW) and low die size. The ARM7100 delivers 18.4 MIPS (peak) at 3.3V and
contains an embedded ARM710a core (including 8kByte cache and MMU) with ARM-
library peripherals such as an LCD controller, UART and CODEC interface.

1.2 System Description
ARM7100 is based around the ARM710a processor core.

The principle functional blocks in ARM7100 are:

• ARM7 CPU core

• memory management unit

• 8Kb of unified instruction and data cache

• interrupt and fast interrupt controller

• expansion and ROM interface giving 8 x 256 Mb expansion segments with
independent wait state control

• DRAM controller supporting fast page mode and self refresh in standby

• 36 bits of general purpose peripheral I/O

• telephony CODEC interface with 16-byte FIFOs

• programmable 4-bit per pixel LCD controller

• full duplex UART and two 16-byte FIFOs plus logic to implement the IrDA SIR
protocol; capable of speeds up to 115K bits per second

• two 16-bit general purpose counter timers

• A 32-bit real time clock and comparator

• two DC to DC converter interfaces

• system state control and power management

• synchronous serial interface for Microwire or SPI peripherals such as ADCs

• pin test and device isolation logic

• external tracing support for debug

• a main 3.68MHz oscillator with PLL to create system frequency of 18.432MHz

• a low power 32.768 KHz oscillator

➲Figure 1-1: ARM7100 block diagram on page 1-3 shows a simplified block diagram
of ARM7100.

Introduction

ARM7100 Data Sheet
ARM DDI 0035A

1-3

P
re

lim
in

ar
y

1.3 Block Diagram

 Figure 1-1: ARM7100 block diagram

ARM7 uP
core

8 Kb
Cache

MMU

18.432 MHz
PLL

32.768 KHz
Oscillator

Interrupt
Controller

Power
Management

PIO

PSU
Control

CODEC
Interface

ROM/Expansion
Control

DRAM
Controller

MUX

LCD

IrDA

Controller

UART

FRC

FRC

RTC

D0-D31

nPOR,
RUN,

EXPCLK,

nMOE,

A0-27,

LCD Drive

LED and
photodiode

RS232 interface

EINT0-2,

BATOK,

nPWRFL,

PA,PB,

BUZ,

DC-DC

CODEC

Internal databus

Synchronous
Serial I/O

RESET,State
Control WAKEUP

CS0-7,
WORD

EXPRDY

nCASO-3
nRASO-3,
nMWE,

WRITE

DRAO-DRA12

MEDCHG
nEXTFIQ,

nEXTPWR

nBATCHG

PC,PD

COL0-7

SSI

Introduction

ARM7100 Data Sheet
ARM DDI 0035A

1-4

P
re

lim
in

ar
y

1.4 CPU Core
The processor macrocell contains the ARM7 processor core with 8Kb of cache,
memory management unit and write buffer. See ➲Chapter 3, The ARM Processor
Macrocell for a description of the ARM processor macrocell.

1.5 Datasheet Notation
0x marks a Hexadecimal quantity

BOLD external signals are shown in bold capital letters

binary where it is not clear that a quantity is binary, it is followed by the word
binary

ARM7100 Data Sheet
ARM DDI 0035A

2-1

111

P
re

lim
in

ar
y

Signal Description

This chapter gives the name, type and relevant details of each of the ARM7100 signals.

2.1 Signal Descriptions 2-2

2

Signal Description

ARM7100 Data Sheet
ARM DDI 0035A

2-2

P
re

lim
in

ar
y

2.1 Signal Descriptions

Name Type Description:

D[0:31] IO 32-bit system data bus for DRAM, ROM, and memory mapped expansion.

A[0:14] O Least significant 15 bits of system byte address during ROM and expansion
cycles.

A[15] / DRA[12]:
A[27] / DRA[0]

O 13-bit multiplexed DRAM word address during DRAM cycles or address bits
16 to 27 of system byte address during ROM and expansion cycles.

nRAS[0:3] O DRAM RAS outputs to DRAM banks 0 to 3.

nCAS[0:3] OM DRAM CAS outputs for bytes 0 to 3 within 32-bit word.

nMOE O DRAM, ROM and expansion output enable.

nMWE O DRAM, ROM and expansion write enable.

nCS[0:3] O Expansion channel I/O strobes. Active LOW SRAM like chip selects for
expansion.

CS[4:7] O Expansion channel I/O strobes. Active HIGH SRAM like chip selects for
expansion.

EXPRDY I Expansion channel ready. External devices drive this LOW to extend
expansion bus cycles.

WRITE O Transfer direction, LOW during reads, HIGH during writes from ARM7100.

WORD O Word access enable. Driven HIGH during word wide cycles, LOW during
byte wide cycles.

EXPCLK O Expansion clock output. Clock output at the same phase and speed as the
CPU clock. Free running or active only during expansion I/O cycles.

MEDCHG I The MEDCHG input is intended to be driven by a system sensor indicating
that a device connected to an external system port has been physically
removed or inserted. It can cause an interrupt to allow software to take
appropriate action.

nEXTFIQ I External active LOW fast interrupt request input.

EINT3 I External active HIGH interrupt request input.

nEINT1-2 I Two general purpose, active LOW interrupt inputs.

nPWRFL I Power fail input. Active LOW deglitched input to force system into the
standby state automatically.

BATOK I Main battery OK input. Falling edge generates a FIQ, a low level while in
standby inhibits system start up. Deglitched input.

 Table 2-1: Signal descriptions

Signal Description

ARM7100 Data Sheet
ARM DDI 0035A

2-3

P
re

lim
in

ar
y

nEXTPWR I External power sense. Must be driven LOW if the system is powered by
external source.

nBATCHG I New battery sense. Should be driven LOW if battery voltage falls below the
no-battery threshold.

nPOR IS Power-on reset input. Active LOW input completely resets the system.

RUN O System active output. HIGH when system is active or idle, LOW while in the
standby state.

WAKEUP IS Wake up input signal. Rising edge forces system into operating state.

nURESET IS User reset input. Active LOW input.

PCMCK O CODEC clock output.

PCMSYNC O CODEC synchronisation pulse output.

PCMOUT O CODEC serial data output.

PCMIN I CODEC serial data input.

ADCCLK O Synchronous serial interface ADC clock output.

SMPLCK O Synchronous serial interface ADC sample clock, can be disabled.

nADCCS O Synchronous serial interface ADC active LOW chip select and
synchronisation output.

ADCOUT O Synchronous serial interface ADC serial data output.

ADCIN I Synchronous serial interface ADC serial data input.

LEDDRV O Infra-red LED drive output.

PHDIN I Infra-red photo diode input.

TXD O RS232 Tx output.

RXD I RS232 Rx input.

DSR I RS232 DSR input.

DCD I RS232 DCD input.

CTS I RS232 CTS input.

DD[0:3] O LCD display data.

CL1 O LCD line clock.

CL2 O LCD pixel clock.

FRM O LCD frame synchronisation pulse output.

M O LCD AC bias drive.

Name Type Description:

 Table 2-1: Signal descriptions (Continued)

Signal Description

ARM7100 Data Sheet
ARM DDI 0035A

2-4

P
re

lim
in

ar
y

Key to signal types and drive capabilities

I Input

IS Schmitt input

IP Input with internal pull-up

O Standard drive output

OM Medium drive output

IOVH Very high drive I/O

IO Standard drive I/O

IOH High drive I/O

See ➲20.3 DC Characteristics on page 20-3 for more details.

COL[0:7] O Keyboard column drives.

BUZ O This output is driven by direct software control, or can be driven by a
frequency generated by timer counter interrupts. It is designed to drive a
buzzer.

PA[0:7] IO Port A I/O.

PB[0:7] IO Port B I/O.

PC[0:7] IO Port C I/O.

PD[0:3] IO Port D I/O.

PD[4:7] IOH Port D high drive I/O

PE[0:3] IO Port E I/O.

DRIVE[0:1] IOVH DC to DC drive outputs.

FB[0:1] I DC to DC feedback inputs.

nTEST[0:1] IP Test mode select inputs (always HIGH for normal operation).

MOSCIN/OUT - Main 3.6864MHz oscillator for 18.432 MHz PLL.

RTCIN/OUT - Real time clock 32.768 KHz oscillator.

Name Type Description:

 Table 2-1: Signal descriptions (Continued)

ARM7100 Data Sheet
ARM DDI 0035A

3-1

111

P
re

lim
in

ar
y

The ARM Processor Macrocell

This chapter introduces the ARM processor 32-bit microprocessor macrocell.

3.1 Introduction 3-2

3.2 Instruction set 3-2

3.3 Memory Interface 3-3

3.4 Clocking 3-3

3.5 ARM Processor Block Diagram 3-3

3

The ARM Processor Macrocell

ARM7100 Data Sheet
ARM DDI 0035A

3-2

P
re

lim
in

ar
y

3.1 Introduction
ARM7100 contains a 32-bit RISC ARM710a processor macrocell. It has a 8Kb cache,
write buffer, and a memory management unit (MMU). The ARM processor macrocell
offers high-level RISC performance, yet its fully static design ensures minimal power
consumption. This makes it ideal for incorporation into ARM7100.

This part of the datasheet describes the features of the ARM processor macrocell
which are available to the user in its embedded state within ARM7100. It is not
intended that this should be used as a standalone datasheet for a separate ARM
processor macrocell.

3.1.1 Architecture

The ARM processor architecture is based on Reduced Instruction Set Computer
(RISC) principles, and the instruction set and related decode mechanism are greatly
simplified compared with microprogrammed Complex Instruction Set Computers
(CISC).

The mixed data and instruction cache together with the write buffer substantially raise
the average execution speed and reduce the average amount of memory bandwidth
required by the processor.

The MMU supports a conventional two-level page-table structure and a number of
extensions which make it ideal for embedded control, UNIX and Object Oriented
systems.

3.2 Instruction set
The instruction set comprises ten basic instruction types:

• two of these make use of the on-chip arithmetic logic unit, barrel shifter and
multiplier to perform high-speed operations on the data in a bank of 31
registers, each 32 bits wide

• three classes of instruction control data transfer between memory and the
registers, one optimized for flexibility of addressing, another for rapid context
switching and the third for swapping data

• two instructions control the flow and privilege level of execution

• three types are dedicated to the control of external coprocessors which allow
the functionality of the instruction set to be extended in an open and uniform
way. However, as for the ARM710, the facility to add external coprocessors to
the ARM7100 is not available, and software emulation of coprocessor activity
will be required if these instructions are to perform a defined function.

The ARM instruction set is a good target for compilers of many different high-level
languages. Where required for critical code segments, assembly code programming
is also straightforward, unlike some RISC processors which depend on sophisticated
compiler technology to manage complicated instruction interdependencies.

The ARM Processor Macrocell

ARM7100 Data Sheet
ARM DDI 0035A

3-3

P
re

lim
in

ar
y

3.3 Memory Interface
The memory interface has been designed to allow the performance potential to be
realised without incurring high costs in the memory system. Speed-critical control
signals are pipelined to allow system control functions to be implemented in standard
low-power logic, and these control signals permit ARM7100 to exploit the page mode
access offered by industry-standard DRAMs.

3.4 Clocking
ARM7100 uses the ARM processor macrocell in fastbus mode. This means that the
core FCLK frequency is tied to the main processor input clock (MCLK). All references
to FCLK in this datasheet should be read as MCLK .

3.5 ARM Processor Block Diagram

 Figure 3-1: ARM processor block diagram

MMU
 8KByte
 Cache

ARM7
 CPU

Write
Buffer

Address Buffer C
o
n
t
r
o
l

Clock

MCLK SNA FCLK NRESET

NMREQ

NIRQ

NFIQ

Internal Data Bus

D[31:0]DBE

Internal Address Bus

C
o
p
r
o
c

A[31:0] NR/W NB/W

The ARM Processor Macrocell

ARM7100 Data Sheet
ARM DDI 0035A

3-4

P
re

lim
in

ar
y

ARM7100 Data Sheet
ARM DDI 0035A

4-1

111

P
re

lim
in

ar
y

The ARM Processor
Programmer's Model

This chapter describes the programmer’s model.

4.1 Introduction 4-2

4.2 Register Configuration 4-2

4.3 Operating Mode Selection 4-4

4.4 Registers 4-4

4.5 Exceptions 4-7

4.6 Configuration Control Registers 4-11

4.7 Reset 4-16

4

The ARM Processor Programmer's Model

ARM7100 Data Sheet
ARM DDI 0035A

4-2

P
re

lim
in

ar
y

4.1 Introduction
The ARM processor supports a variety of operating configurations. Some are
controlled by register bits and are known as the register configurations. Others may
be controlled by software and these are known as operating modes.

4.2 Register Configuration
The ARM processor provides 3 register configuration settings which may be changed
while the processor is running. These are discussed below.

4.2.1 Big and little-endian (the bigend bit)

The bigend bit in the control register sets whether the ARM7100 treats words in
memory as being stored in big-endian or little-endian format. See ➲Chapter 6, Cache,
Write Buffer and Coprocessors for more information on the Control Register. Memory
is viewed as a linear collection of bytes numbered upwards from zero. Bytes 0 to 3 hold
the first stored word, bytes 4 to 7 the second and so on.

In the little-endian scheme the lowest numbered byte in a word is considered to be the
least significant byte of the word and the highest numbered byte is the most significant.
Byte 0 of the memory system should be connected to data lines 7 through 0 (D[7:0])
in this scheme.

 Figure 4-1: Little-endian addresses of bytes within word

In the big-endian scheme the most significant byte of a word is stored at the lowest
numbered byte and the least significant byte is stored at the highest numbered byte.
Byte 0 of the memory system should therefore be connected to data lines 31 through
24 (D[31:24]). Load and store are the only instructions affected by the endianness:
see ➲5.7 Single Data Transfer (LDR, STR) on page 5-21 for more details.

Little-endian

Higher Address 31 24 23 16 15 8 7 0 Word Address

11 10 9 8 8

7 6 5 4 4

3 2 1 0 0

Lower Address

 • Least significant byte is at lowest address

 • Word is addressed by byte address of least significant byte

The ARM Processor Programmer's Model

ARM7100 Data Sheet
ARM DDI 0035A

4-3

P
re

lim
in

ar
y

 Figure 4-2: Big-endian addresses of bytes within words

4.2.2 Configuration bits for backward compatibility

The other two configuration bits, prog32 and data32, are used for backward
compatibility with earlier ARM processors but should normally be set to 1. This mode
is recommended for compatibility with future ARM processors and all new code should
be written to use only the 32-bit operating modes.

Because the original ARM instruction set has been modified to accommodate 32-bit
operation there are certain additional restrictions which programmers must be aware
of. These are indicated in the text. Reference should also be made to the ARM
Application Notes Rules for ARM Code Writers and Notes for ARM Code Writers,
available from your supplier.

Big-endian

Higher Address 31 24 23 16 15 8 7 0 Word Address

8 9 10 11 8

4 5 6 7 4

0 1 2 3 0

Lower Address

 • Most significant byte is at lowest address

 • Word is addressed by byte address of most significant byte

The ARM Processor Programmer's Model

ARM7100 Data Sheet
ARM DDI 0035A

4-4

P
re

lim
in

ar
y

4.3 Operating Mode Selection
The processor has a 32-bit data bus and a 32-bit address bus. The processor supports
byte (8-bit) and word (32-bit) data types, where words must be aligned to four byte
boundaries. Instructions are exactly one word, and data operations (eg. ADD) are only
performed on word quantities. Load and store operations can transfer either bytes or
words.

The processor supports six modes of operation:

1 User mode (usr): the normal program execution state

2 FIQ mode (fiq): fast interrupt for data transfer or channel processes

3 IRQ mode (irq): used for general purpose interrupt handling

4 Supervisor mode (svc): a protected mode for the operating system

5 Abort mode (abt): entered after a data or instruction prefetch abort

6 Undefined mode (und): entered when an undefined instruction is executed

Mode changes may be made under software control or may be brought about by
external interrupts or exception processing. Most application programs will execute in
User mode. The other modes, known as privileged modes, will be entered to service
interrupts or exceptions or to access protected resources.

4.4 Registers
The processor has a total of 37 registers made up of 31 general 32-bit registers and 6
status registers. At any one time 16 general registers (R0 to R15) and one or two
status registers are visible to the programmer. The visible registers depend on the
processor mode. The other registers, known as the banked registers, are switched in
to support IRQ, FIQ, Supervisor, Abort and Undefined mode processing. ➲Figure 4-3:
Register organisation on page 4-5 shows how the registers are arranged, with the
banked registers shaded.

In all modes 16 registers, R0 to R15, are directly accessible. All registers except R15
are general purpose and may be used to hold data or address values. Register R15
holds the Program Counter (PC). When R15 is read, bits [1:0] are zero and bits [31:2]
contain the PC. A seventeenth register (the CPSR - Current Program Status Register)
is also accessible. It contains condition code flags and the current mode bits and may
be thought of as an extension to the PC.

R14 is used as the subroutine link register and receives a copy of R15 when a Branch
and Link instruction is executed. It may be treated as a general purpose register at all
other times. R14_svc, R14_irq, R14_fiq, R14_abt and R14_und are used similarly to
hold the return values of R15 when interrupts and exceptions arise, or when Branch
and Link instructions are executed within interrupt or exception routines.

The ARM Processor Programmer's Model

ARM7100 Data Sheet
ARM DDI 0035A

4-5

P
re

lim
in

ar
y

 Figure 4-3: Register organisation

FIQ mode has seven banked registers mapped to R8-14 (R8_fiq-R14_fiq). Many FIQ
programs will not need to save any registers. User mode, IRQ mode, Supervisor
mode, Abort mode and Undefined mode each have two banked registers mapped to
R13 and R14. The two banked registers allow these modes to each have a private
stack pointer and link register. Supervisor, IRQ, Abort and Undefined mode programs
which require more than these two banked registers are expected to save some or all
of the caller's registers (R0 to R12) on their respective stacks. They are then free to
use these registers which they will restore before returning to the caller. In addition
there are also five SPSRs (Saved Program Status Registers) which are loaded with
the CPSR when an exception occurs. There is one SPSR for each privileged mode.

General Registers and Program Counter Modes

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13_fiq

R14_fiq

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_svc

R14_svc

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_abt

R14_abt

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_irq

R14_irq

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_und

R14_und

R15 (PC)

User32 FIQ32 Supervisor32 Abort32 IRQ32 Undefined32

CPSR CPSR

SPSR_fiq

CPSR

SPSR_svc

CPSR

SPSR_abt

CPSR

SPSR_irq

CPSR

SPSR_und

Program Status Registers

= banked register

The ARM Processor Programmer's Model

ARM7100 Data Sheet
ARM DDI 0035A

4-6

P
re

lim
in

ar
y

 Figure 4-4: Format of the program status registers (PSRs)

The format of the Program Status Registers is shown in ➲Figure 4-4: Format of the
program status registers (PSRs). The N, Z, C and V bits are the condition code flags.
The condition code flags in the CPSR may be changed as a result of arithmetic and
logical operations in the processor and may be tested by all instructions to determine
if the instruction is to be executed.

The I and F bits are the interrupt disable bits. The I bit disables IRQ interrupts when it
is set and the F bit disables FIQ interrupts when it is set. The M0, M1, M2, M3 and M4
bits (M[4:0]) are the mode bits, and these determine the mode in which the processor
operates. The interpretation of the mode bits is shown in ➲Table 4-1: The Mode Bits.
Not all bit combinations define a valid processor mode. Only those explicitly described
should be used. The user should be aware that if any illegal value is programmed into
the mode bits, M[4:0], the processor will enter an unrecoverable state. If this occurs,
reset should be applied.

The bottom 28 bits of a PSR (incorporating I, F and M[4:0]) are known collectively as
the control bits. These will change when an exception arises and in addition can be
manipulated by software when the processor is in a privileged mode. Unused bits in
the PSRs are reserved and their state must be preserved when changing the flag or
control bits. Programs must not rely on specific values from the reserved bits when
checking the PSR status, since they may read as one or zero in future processors.

M[4:0] Mode Accessible Register Set

 10000 User PC, R14..R0 CPSR

 10001 FIQ PC, R14_fiq..R8_fiq, R7..R0 CPSR, SPSR_fiq

 10010 IRQ PC, R14_irq..R13_irq, R12..R0 CPSR, SPSR_irq

 10011 Supervisor PC, R14_svc..R13_svc, R12..R0 CPSR, SPSR_svc

 10111 Abort PC, R14_abt..R13_abt, R12..R0 CPSR, SPSR_abt

 11011 Undefined PC, R14_und..R13_und, R12..R0 CPSR, SPSR_und

 Table 4-1: The Mode Bits

0123456782728293031

M0M1M2M3M4.FIVCZN

Overflow
Carry / Borrow / Extend
Zero
Negative / Less Than

Mode bits
FIQ disable
IRQ disable

. ..

flags control

The ARM Processor Programmer's Model

ARM7100 Data Sheet
ARM DDI 0035A

4-7

P
re

lim
in

ar
y

4.5 Exceptions
Exceptions arise whenever there is a need for the normal flow of program execution
to be broken, so that (for example) the processor can be diverted to handle an interrupt
from a peripheral. The processor state just prior to handling the exception must be
preserved so that the original program can be resumed when the exception routine
has completed. Many exceptions may arise at the same time.

The ARM processor handles exceptions by making use of the banked registers to
save state. The old PC and CPSR contents are copied into the appropriate R14 and
SPSR and the PC and mode bits in the CPSR bits are forced to a value which depends
on the exception. Interrupt disable flags are set where required to prevent otherwise
unmanageable nestings of exceptions. In the case of a re-entrant interrupt handler,
R14 and the SPSR should be saved onto a stack in main memory before re-enabling
the interrupt; when transferring the SPSR register to and from a stack, it is important
to transfer the whole 32-bit value, and not just the flag or control fields. When multiple
exceptions arise simultaneously, a fixed priority determines the order in which they are
handled. This is listed later in ➲4.5.7 Exception priorities on page 4-10.

4.5.1 FIQ

The FIQ (Fast Interrupt reQuest) exception is externally generated in response to a
FIQ interrupt source becoming active, causing the nFIQ input to the macrocell to be
taken LOW. This input can except asynchronous transitions, and is delayed by one
clock cycle for synchronisation before it can affect the processor execution flow. FIQ
is designed to support a data transfer or channel process, and has sufficient private
registers to remove the need for register saving in such applications (thus minimising
the overhead of context switching). The FIQ exception may be disabled by setting the
F flag in the CPSR (but note that this is not possible from User mode). If the F flag is
clear, the processor checks for a LOW level on the output of the FIQ synchroniser at
the end of each instruction.

When a FIQ is detected, the processor:

1 Saves the address of the next instruction to be executed plus 4 in R14_fiq;
saves CPSR in SPSR_fiq

2 Forces M[4:0]=10001 (FIQ mode) and sets the F and I bits in the CPSR

3 Forces the PC to fetch the next instruction from address 0x1C

To return normally from FIQ, use SUBS PC, R14_fiq,#4 which will restore both the PC
(from R14) and the CPSR (from SPSR_fiq) and resume execution of the interrupted
code.

The ARM Processor Programmer's Model

ARM7100 Data Sheet
ARM DDI 0035A

4-8

P
re

lim
in

ar
y

4.5.2 IRQ

The IRQ (Interrupt ReQuest) exception is a normal interrupt caused by a LOW level
on the nIRQ input to the macrocell. It has a lower priority than FIQ, and is masked out
when a FIQ sequence is entered. Its effect may be masked out at any time by setting
the I bit in the CPSR (but note that this is not possible from User mode). If the I flag is
clear, the processor checks for a LOW level on the output of the IRQ synchroniser at
the end of each instruction. When an IRQ is detected, the processor:

1 Saves the address of the next instruction to be executed plus 4 in R14_irq;
saves CPSR in SPSR_irq

2 Forces M[4:0]=10010 (IRQ mode) and sets the I bit in the CPSR

3 Forces the PC to fetch the next instruction from address 0x18

To return normally from IRQ, use SUBS PC,R14_irq,#4 which will restore both the PC
and the CPSR and resume execution of the interrupted code.

4.5.3 Abort

An abort is signalled by the internal Memory Management Unit. An abort indicates that
the current memory access cannot be completed. For instance, in a virtual memory
system the data corresponding to the current address may have been moved out of
memory onto a disc, and considerable processor activity may be required to recover
the data before the access can be performed successfully. The ARM processor
checks for aborts during memory access cycles. When successfully aborted ARM
processor will respond in one of two ways:

1 If the abort occurred during an instruction prefetch (a Prefetch Abort), the
prefetched instruction is marked as invalid but the abort exception does not
occur immediately. If the instruction is not executed, for example as a result
of a branch being taken while it is in the pipeline, no abort will occur. An abort
will take place if the instruction reaches the head of the pipeline and is about
to be executed.

2 If the abort occurred during a data access (a Data Abort), the action depends
on the instruction type.

a) Single data transfer instructions (LDR, STR) will write back modified base
registers and the Abort handler must be aware of this.

b) The swap instruction (SWP) is aborted as though it had not executed,
though externally the read access may take place.

c) Block data transfer instructions (LDM, STM) complete, and if write-back is
set, the base is updated. If the instruction would normally have overwritten
the base with data (ie. LDM with the base in the transfer list), this
overwriting is prevented. All register overwriting is prevented after the
Abort is indicated, which means in particular that R15 (which is always last
to be transferred) is preserved in an aborted LDM instruction.

The ARM Processor Programmer's Model

ARM7100 Data Sheet
ARM DDI 0035A

4-9

P
re

lim
in

ar
y

When either a prefetch or data abort occurs, the processor:

1 Saves the address of the aborted instruction plus 4 (for prefetch aborts) or 8
(for data aborts) in R14_abt; saves CPSR in SPSR_abt.

2 Forces M[4:0]=10111 (Abort mode) and sets the I bit in the CPSR.

3 Forces the PC to fetch the next instruction from either address 0x0C (prefetch
abort) or address 0x10 (data abort).

To return after fixing the reason for the abort, use SUBS PC,R14_abt,#4 (for a prefetch
abort) or SUBS PC,R14_abt,#8 (for a data abort). This will restore both the PC and the
CPSR and retry the aborted instruction.

The abort mechanism allows a demand paged virtual memory system to be
implemented when suitable memory management software is available. The
processor is allowed to generate arbitrary addresses, and when the data at an address
is unavailable the MMU signals an abort. The processor traps into system software
which must work out the cause of the abort, make the requested data available, and
retry the aborted instruction. The application program needs no knowledge of the
amount of memory available to it, nor is its state in any way affected by the abort.

4.5.4 Software interrupt

The software interrupt instruction (SWI) is used for getting into Supervisor mode,
usually to request a particular supervisor function. When a SWI is executed, the
processor:

1 Saves the address of the SWI instruction plus 4 in R14_svc; saves CPSR in
SPSR_svc

2 Forces M[4:0]=10011 (Supervisor mode) and sets the I bit in the CPSR

3 Forces the PC to fetch the next instruction from address 0x08

To return from a SWI, use MOVS PC,R14_svc. This will restore the PC and CPSR and
return to the instruction following the SWI.

4.5.5 Undefined instruction trap

When the ARM processor comes across an instruction which it cannot handle (see
➲Chapter 5, ARM Processor Instruction Set), it will take the undefined instruction trap.
This includes all coprocessor instructions, except MCR and MRC operations which
access the internal control coprocessor.

The trap may be used for software emulation of a coprocessor in a system which does
not have the coprocessor hardware, or for general purpose instruction set extension
by software emulation.

When the ARM processor takes the undefined instruction trap it:

1 Saves the address of the Undefined or coprocessor instruction plus 4 in
R14_und; saves CPSR in SPSR_und.

2 Forces M[4:0]=11011 (Undefined mode) and sets the I bit in the CPSR

The ARM Processor Programmer's Model

ARM7100 Data Sheet
ARM DDI 0035A

4-10

P
re

lim
in

ar
y

3 Forces the PC to fetch the next instruction from address 0x04

To return from this trap after emulating the failed instruction, use MOVS PC,R14_und.
This will restore the CPSR and return to the instruction following the undefined
instruction.

4.5.6 Vector summary

These are byte addresses, and will normally contain a branch instruction pointing to
the relevant routine.

The FIQ routine might reside at 0x1C onwards, and thereby avoid the need for (and
execution time of) a branch instruction.

4.5.7 Exception priorities

When multiple exceptions arise at the same time, a fixed priority system determines
the order in which they will be handled:

1 Reset (highest priority)

2 Data abort

3 FIQ

4 IRQ

5 Prefetch abort

6 Undefined Instruction, Software interrupt (lowest priority)

Note that not all exceptions can occur at once. Undefined instruction and software
interrupt are mutually exclusive since they each correspond to particular (non-
overlapping) decodings of the current instruction.

If a data abort occurs at the same time as a FIQ, and FIQs are enabled (ie. the F flag
in the CPSR is clear), ARM processor will enter the data abort handler and then
immediately proceed to the FIQ vector. A normal return from FIQ will cause the data

Address Exception Mode on Entry

0x00000000 Reset Supervisor

0x00000004 Undefined instruction Undefined

0x00000008 Software interrupt Supervisor

0x0000000C Abort (prefetch) Abort

0x00000010 Abort (data) Abort

0x00000014 -- reserved -- --

0x00000018 IRQ IRQ

0x0000001C FIQ FIQ

 Table 4-2: Vector summary

The ARM Processor Programmer's Model

ARM7100 Data Sheet
ARM DDI 0035A

4-11

P
re

lim
in

ar
y

abort handler to resume execution. Placing data abort at a higher priority than FIQ is
necessary to ensure that the transfer error does not escape detection; the time for this
exception entry should be added to worst case FIQ latency calculations.

4.6 Configuration Control Registers
The operation and configuration of the ARM processor is controlled both directly via
coprocessor instructions and indirectly via the Memory Management Page tables. The
coprocessor instructions manipulate a number of on-chip registers which control the
configuration of the Cache, write buffer, MMU and a number of other configuration
options.

To ensure backwards compatibility of future CPUs, all reserved or unused bits in
registers and coprocessor instructions should be programmed to '0'. Invalid registers
must not be read/written. The following bits must be programmed to '0':

Register 1 bits[31:11]

Register 2 bits[13:0]

Register 5 bits[31:0]

Register 6 bits[11:0]

Register 7 bits[31:0]

Note The grey areas in the register and translation diagrams are reserved and should be
programmed to 0 for future compatibility.

4.6.1 Internal coprocessor instructions

These registers may be read using MRC instructions and written using MCR
instructions. These operations are only allowed in non-user modes and the undefined
instruction trap will be taken if accesses are attempted in user mode.

 Figure 4-5: Format of internal coprocessor instructions MRC and MCR

4.6.2 Registers

The ARM processor contains registers which control the cache and MMU operation.
These registers are accessed using CPRT instructions to Coprocessor #15 with the
processor in a privileged mode. Only some of registers 0-7 are valid: an access to an

1 1 1 0 n 1 1 1 1 1

034578111215161920212324272831

Cond CRn Rd

Cond
Crn
Rd
n

ARM condition codes
ARMxxx Register
ARM Register
1 MRC register read
0 MRC register write

The ARM Processor Programmer's Model

ARM7100 Data Sheet
ARM DDI 0035A

4-12

P
re

lim
in

ar
y

invalid register will cause neither the access nor an undefined instruction trap, and
therefore should never be carried out; an access to any of the registers 8-15 will cause
the undefined instruction trap to be taken.

Register 0 ID

Register 0 is a read-only identity register that returns the ARM Ltd code for this chip:
0x4104710x.

Register Register Reads Register Writes

0 ID Register Reserved

1 Reserved Control

2 Reserved Translation Table Base

3 Reserved Domain Access Control

4 Reserved Reserved

5 Fault Status Flush TLB

6 Fault Address Purge TLB

7 Reserved Flush IDC

8-15 Reserved Reserved

 Table 4-3: Cache and MMU control register

0341516232431

41 Revision04 710

The ARM Processor Programmer's Model

ARM7100 Data Sheet
ARM DDI 0035A

4-13

P
re

lim
in

ar
y

Register 1 Control

Register 1 is write only and contains control bits. All bits in this register are forced LOW
by reset.

M Bit 0 Enable/disable

0 - on-chip Memory Management Unit turned off

1 - on-chip Memory Management Unit turned on.

A Bit 1 Address Fault Enable/Disable

0 - alignment fault disabled

1 - alignment fault enabled

C Bit 2 Cache Enable/Disable

0 - Instruction / data cache turned off

1 - Instruction / data cache turned on

W Bit 3 Write buffer Enable/Disable

0 - Write buffer turned off

1 - Write buffer turned on

P Bit 4 ARM 32/26 Bit Program Space

0 - 26-bit Program Space selected

1 - 32-bit Program Space selected

D Bit 5 ARM 32/26 Bit Data Space

0 - 26-bit Data Space selected

1 - 32-bit Data Space selected

B Bit 7 Big/little-endian

0 - Little-endian operation

1 - Big-endian operation

S Bit 8 System

This bit controls the ARM processor permission system.

R Bit 9 ROM

This bit controls the ARM processor permission system.

01234567893031

0 S B L D P W AC M10 0 0 0 R S B

2829 2627 1011

The ARM Processor Programmer's Model

ARM7100 Data Sheet
ARM DDI 0035A

4-14

P
re

lim
in

ar
y

Register 2 Translation Table Base

Register 2 is a write-only register which holds the base of the currently active Level
One page table.

Register 3 Domain Access Control

Register 3 is a write-only register which holds the current access control for domains
0 to 15.

.

Register 4 Reserved

Register 4 is Reserved. Accessing this register has no effect, but should never be
attempted.

Register 5

Read: Fault Status

Reading register 5 returns the status of the last data fault. It is not
updated for a prefetch fault. Note that only the bottom 12 bits are
returned. The upper 20 bits will be the last value on the internal data
bus, and therefore will have no meaning. Bits 11:8 are always
returned as zero

.

Write: Translation Lookaside Buffer Flush

Writing Register 5 flushes the TLB. (The data written is discarded).

0131431

Translation Table Base

012345678910111213141516171819202122232425262728293031

0123456789101112131415

0 0 0 0 Domain Status

03478111231

The ARM Processor Programmer's Model

ARM7100 Data Sheet
ARM DDI 0035A

4-15

P
re

lim
in

ar
y

Register 6

Read: Fault Address

Reading register 6 returns the virtual address of the last data fault.

Write: TLB Purge

Writing Register 6 purges the TLB; the data is treated as an address
and the TLB is searched for a corresponding page table descriptor. If
a match is found, the corresponding entry is marked as invalid. This
allows the page table descriptors in main memory to be updated and
invalid entries in the on-chip TLB to be purged without requiring the
entire TLB to be flushed

.

Register 7 IDC Flush

Register 7 is a write-only register. The data written to this register is discarded and the
IDC is flushed.

Registers 8 - 15 Reserved

Accessing any of these registers will cause the undefined instruction trap to be taken.

031

Fault Address

031

Purge Address

1314

The ARM Processor Programmer's Model

ARM7100 Data Sheet
ARM DDI 0035A

4-16

P
re

lim
in

ar
y

4.7 Reset
When the nRESET input to the processor macrocell goes LOW, the ARM processor
abandons the executing instruction and then performs idle cycles from incrementing
word addresses.

When the nRESET macrocell input goes HIGH again, the ARM processor does the
following:

1 Overwrites R14_svc and SPSR_svc by copying the current values of the PC
and CPSR into them. The value of the saved PC and CPSR is not defined.

2 Forces M[4:0]=10011 (Supervisor mode) and sets the I and F bits in the
CPSR.

3 Forces the PC to fetch the next instruction from address 0x00

At the end of the reset sequence, the MMU is disabled and the TLB is flushed, so
forces “flat” translation (ie. the physical address is the virtual address, and there is no
permission checking); alignment faults are also disabled; the cache is disabled and
flushed; the write buffer is disabled and flushed; the ARM7 CPU core is put into 26-bit
data and address mode and little-endian mode.

ARM7100 Data Sheet
ARM DDI 0035A

5-1

111

P
re

lim
in

ar
y

ARM Processor Instruction Set

This chapter describes the ARM Processor instruction set.

5.1 Instruction Set Summary 5-2

5.2 The Condition Field 5-3

5.3 Branch and Branch with link (B, BL) 5-4

5.4 Data Processing 5-6

5.5 PSR Transfer (MRS, MSR) 5-15

5.6 Multiply and Multiply-Accumulate (MUL, MLA) 5-19

5.7 Single Data Transfer (LDR, STR) 5-21

5.8 Block Data Transfer (LDM, STM) 5-27

5.9 Single Data Swap (SWP) 5-34

5.10 Software Interrupt (SWI) 5-36

5.11 Coprocessor Instructions 5-38

5.12 Coprocessor data operations (CDP) 5-39

5.13 Coprocessor Data Transfers (LDC, STC) 5-41

5.14 Coprocessor Register Transfers (MRC, MCR) 5-44

5.15 Undefined Instruction 5-47

5.16 Instruction Set Examples 5-48

5.17 Instruction Speed Summary 5-52

5

ARM Processor Instruction Set - Summary

ARM7100 Data Sheet
ARM DDI 0035A

5-2

P
re

lim
in

ar
y

5.1 Instruction Set Summary
A summary of the ARM Processor instruction set is shown in ➲Figure 5-1: Instruction
set summary.

Note Some instruction codes are not defined but do not cause the Undefined instruction trap
to be taken, for instance a Multiply instruction with bit 6 changed to a 1. These
instructions must not be used, as their action may change in future ARM
implementations.

 Figure 5-1: Instruction set summary

31 28 27 24 23 20 19 16 15 12 11 8 7 5 4 3 0

Cond 0 0 Opcode

21

S Rn Rd Operand 2
Data Processing
PSR Transfer

Multiply

Single Data Swap

Single Data Transfer

Undefined

Block Data Transfer

Coproc Data Transfer

Branch

Coproc Data Operation

Coproc Register Transfer

Software Interrupt

26 25 22

I

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

0 0 0 0 0 0 SA Rd Rn Rs 1 0 0 1 Rm

1 0 0 1 Rm0 0 0 0RdRn0 0 0 1 0 B 0 0

offsetRdRnB W LI P U0 1

0 1 1 XXXXXXXXXXXXXXXXXXXX 1 XXXX

1 0 0 S W LP U Rn Register List

1 0 1 L

1 1 0

offset

1 1 1 0 0 CRm

1 1 1 0 LCP Opc

N W LP U Rn offset CRd CP#

1 1 1 1

CP Opc CRn CRd

 CRn Rd

 CP#

 CP#

 CP

 CP 1 CRm

ignored by processor

ARM Processor Instruction Set - Condition

ARM7100 Data Sheet
ARM DDI 0035A

5-3

P
re

lim
in

ar
y

5.2 The Condition Field

 Figure 5-2: Condition codes

All ARM Processor instructions are conditionally executed, which means that their
execution may or may not take place depending on the values of the N, Z, C and V
flags in the CPSR. The condition encoding is shown in ➲Figure 5-2: Condition codes.

If the always (AL) condition is specified, the instruction will be executed irrespective of
the flags. The never (NV) class of condition codes should not be used as they will be
redefined in future variants of the ARM architecture. If a NOP is required, MOV R0,R0
should be used. The assembler treats the absence of a condition code as though
always had been specified.

The other condition codes have meanings as detailed in ➲Figure 5-2: Condition
codes, for instance code 0000 (EQual) causes the instruction to be executed only if
the Z flag is set. This would correspond to the case where a compare (CMP)
instruction had found the two operands to be equal. If the two operands were different,
the compare instruction would have cleared the Z flag and the instruction will not be
executed.

Cond

31 28 27 0

Condition field
0000 = EQ - Z set (equal)
0001 = NE - Z clear (not equal)
0010 = CS - C set (unsigned higher or same)
0011 = CC - C clear (unsigned lower)
0100 = MI - N set (negative)
0101 = PL - N clear (positive or zero)
0110 = VS - V set (overflow)
0111 = VC - V clear (no overflow)
1000 = HI - C set and Z clear (unsigned higher)
1001 = LS - C clear or Z set (unsigned lower or same)
1010 = GE - N set and V set, or N clear and V clear (greater or equal)
1011 = LT - N set and V clear, or N clear and V set (less than)
1100 = GT - Z clear, and either N set and V set, or N clear and V clear (greater than)
1101 = LE - Z set, or N set and V clear, or N clear and V set (less than or equal)
1110 = AL - always
1111 = NV - never

ARM Processor Instruction Set - B, BL

ARM7100 Data Sheet
ARM DDI 0035A

5-4

P
re

lim
in

ar
y

5.3 Branch and Branch with link (B, BL)
The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in ➲Figure
5-3: Branch instructions on page 5-4.

Branch instructions contain a signed 2's complement 24-bit offset. This is shifted left
two bits, sign extended to 32-bits, and added to the PC. The instruction can therefore
specify a branch of +/- 32Mbytes. The branch offset must take account of the prefetch
operation, which causes the PC to be 2 words (8 bytes) ahead of the current
instruction.

 Figure 5-3: Branch instructions

Branches beyond +/- 32Mbytes must use an offset or absolute destination which has
been previously loaded into a register. In this case the PC should be manually saved
in R14 if a Branch with Link type operation is required.

5.3.1 The link bit

Branch with Link (BL) writes the old PC into the link register (R14) of the current bank.
The PC value written into R14 is adjusted to allow for the prefetch, and contains the
address of the instruction following the branch and link instruction. Note that the CPSR
is not saved with the PC.

To return from a routine called by Branch with Link use MOV PC,R14 if the link register
is still valid or LDM Rn!,{..PC} if the link register has been saved onto a stack
pointed to by Rn.

5.3.2 Instruction cycle times

Branch and Branch with Link instructions take 3 instruction fetches. For more
information see ➲5.17 Instruction Speed Summary on page 5-52.

Cond 101 L offset

31 28 27 25 24 23 0

Link bit
0 = Branch
1 = Branch with Link

Condition field

ARM Processor Instruction Set - B, BL

ARM7100 Data Sheet
ARM DDI 0035A

5-5

P
re

lim
in

ar
y

5.3.3 Assembler syntax

B{L}{cond} <expression>

{L} is used to request the Branch with Link form of the instruction.
If absent, R14 will not be affected by the instruction.

{cond} is a two-character mnemonic as shown in ➲Figure 5-2:
Condition codes on page 5-3 (EQ, NE, VS etc). If absent then
AL (ALways) will be used.

<expression> is the destination. The assembler calculates the offset.

Items in {} are optional. Items in <> must be present.

5.3.4 Examples

here BAL here ; assembles to 0xEAFFFFFE (note effect
B there of PC offset) ALways condition used as

 default

CMP R1,#0 ; compare R1 with zero and branch to fred
BEQ fred if R1 was zero otherwise continue to

; next instruction

BL sub+ROM ; call subroutine at computed address

ADDS R1,#1 ; add 1 to register 1, setting CPSR flags
BLCC sub ; on the result then call subroutine if

; the C flag is clear,which will be the
; case unless R1 held 0xFFFFFFFF

ARM Processor Instruction Set - Data

ARM7100 Data Sheet
ARM DDI 0035A

5-6

P
re

lim
in

ar
y

5.4 Data Processing
The instruction is only executed if the condition is true, defined at the beginning of this
chapter. The instruction encoding is shown in ➲Figure 5-4: Data processing
instructions on page 5-7.

The instruction produces a result by performing a specified arithmetic or logical
operation on one or two operands. The first operand is always a register (Rn). The
second operand may be a shifted register (Rm) or a rotated 8-bit immediate value
(Imm) according to the value of the I bit in the instruction. The condition codes in the
CPSR may be preserved or updated as a result of this instruction, according to the
value of the S bit in the instruction. Certain operations (TST, TEQ, CMP, CMN) do not
write the result to Rd. They are used only to perform tests and to set the condition
codes on the result and always have the S bit set. The instructions and their effects
are listed in ➲Table 5-1: ARM data processing instructions on page 5-8

ARM Processor Instruction Set - Data

ARM7100 Data Sheet
ARM DDI 0035A

5-7

P
re

lim
in

ar
y

.

 Figure 5-4: Data processing instructions

5.4.1 CPSR flags

The data processing operations may be classified as logical or arithmetic. The logical
operations (AND, EOR, TST, TEQ, ORR, MOV, BIC, MVN) perform the logical action
on all corresponding bits of the operand or operands to produce the result. If the S bit
is set (and Rd is not R15, see below) the V flag in the CPSR will be unaffected, the C
flag will be set to the carry out from the barrel shifter (or preserved when the shift
operation is LSL #0), the Z flag will be set if and only if the result is all zeros, and the
N flag will be set to the logical value of bit 31 of the result.

Cond 00 I OpCode Rn Rd Operand 2

011121516192021242526272831

Destination register
1st operand register
Set condition codes

Operation Code

0 = do not alter condition codes
1 = set condition codes

0000 = AND - Rd:= Op1 AND Op2

0010 = SUB - Rd:= Op1 - Op2
0011 = RSB - Rd:= Op2 - Op1
0100 = ADD - Rd:= Op1 + Op2
0101 = ADC - Rd:= Op1 + Op2 + C
0110 = SBC - Rd:= Op1 - Op2 + C
0111 = RSC - Rd:= Op2 - Op1 + C
1000 = TST - set condition codes on Op1 AND Op2
1001 = TEQ - set condition codes on Op1 EOR Op2
1010 = CMP - set condition codes on Op1 - Op2
1011 = CMN - set condition codes on Op1 + Op2
1100 = ORR - Rd:= Op1 OR Op2
1101 = MOV - Rd:= Op2
1110 = BIC - Rd:= Op1 AND NOT Op2
1111 = MVN - Rd:= NOT Op2

Immediate Operand
0 = operand 2 is a register

1 = operand 2 is an immediate value

Shift Rm

Rotate

S

Unsigned 8 bit immediate value

2nd operand register
shift applied to Rm

shift applied to Imm

Imm

Condition field

11 8 7 0

03411

0001 = EOR - Rd:= Op1 EOR Op2

- 1
- 1

ARM Processor Instruction Set - Data

ARM7100 Data Sheet
ARM DDI 0035A

5-8

P
re

lim
in

ar
y

The arithmetic operations (SUB, RSB, ADD, ADC, SBC, RSC, CMP, CMN) treat each
operand as a 32-bit integer (either unsigned or 2's complement signed, the two are
equivalent). If the S bit is set (and Rd is not R15) the V flag in the CPSR will be set if
an overflow occurs into bit 31 of the result; this may be ignored if the operands were
considered unsigned, but warns of a possible error if the operands were 2's
complement signed. The C flag will be set to the carry out of bit 31 of the ALU, the Z
flag will be set if and only if the result was zero, and the N flag will be set to the value
of bit 31 of the result (indicating a negative result if the operands are considered to be
2's complement signed).

Assembler
Mnemonic

OpCode Action

AND 0000 operand1 AND operand2

EOR 0001 operand1 EOR operand2

SUB 0010 operand1 - operand2

RSB 0011 operand2 - operand1

ADD 0100 operand1 + operand2

ADC 0101 operand1 + operand2 + carry

SBC 0110 operand1 - operand2 + carry - 1

RSC 0111 operand2 - operand1 + carry - 1

TST 1000 as AND, but result is not written

TEQ 1001 as EOR, but result is not written

CMP 1010 as SUB, but result is not written

CMN 1011 as ADD, but result is not written

ORR 1100 operand1 OR operand2

MOV 1101 operand2 (operand1 is ignored)

BIC 1110 operand1 AND NOT operand2 (Bit clear)

MVN 1111 NOT operand2 (operand1 is ignored)

 Table 5-1: ARM data processing instructions

ARM Processor Instruction Set - Shifts

ARM7100 Data Sheet
ARM DDI 0035A

5-9

P
re

lim
in

ar
y

5.4.2 Shifts

When the second operand is specified to be a shifted register, the operation of the
barrel shifter is controlled by the Shift field in the instruction. This field indicates the
type of shift to be performed (logical left or right, arithmetic right or rotate right). The
amount by which the register should be shifted may be contained in an immediate field
in the instruction, or in the bottom byte of another register (other than R15). The
encoding for the different shift types is shown in ➲Figure 5-5: ARM shift operations.

 Figure 5-5: ARM shift operations

Instruction specified shift amount

When the shift amount is specified in the instruction, it is contained in a 5-bit field which
may take any value from 0 to 31. A logical shift left (LSL) takes the contents of Rm and
moves each bit by the specified amount to a more significant position. The least
significant bits of the result are filled with zeros, and the high bits of Rm which do not
map into the result are discarded, except that the least significant discarded bit
becomes the shifter carry output which may be latched into the C bit of the CPSR when
the ALU operation is in the logical class (see above). For example, the effect of LSL
#5 is shown in ➲Figure 5-6: Logical shift left.

 Figure 5-6: Logical shift left

Note that LSL #0 is a special case, where the shifter carry out is the old value of the
CPSR C flag. The contents of Rm are used directly as the second operand.

0 0 1Rs

11 8 7 6 5 411 7 6 5 4

Shift type

Shift amount
5 bit unsigned integer

00 = logical left
01 = logical right
10 = arithmetic right
11 = rotate right

Shift type

Shift register

00 = logical left
01 = logical right
10 = arithmetic right
11 = rotate right

Shift amount specified in
bottom byte of Rs

0 0 0 0 0

contents of Rm

value of operand 2

31 27 26 0

carry out

ARM Processor Instruction Set - Shifts

ARM7100 Data Sheet
ARM DDI 0035A

5-10

P
re

lim
in

ar
y

A logical shift right (LSR) is similar, but the contents of Rm are moved to less
significant positions in the result. LSR #5 has the effect shown in ➲Figure 5-7: Logical
shift right on page 5-10.

 Figure 5-7: Logical shift right

The form of the shift field which might be expected to correspond to LSR #0 is used to
encode LSR #32, which has a zero result with bit 31 of Rm as the carry output. Logical
shift right zero is redundant as it is the same as logical shift left zero, so the assembler
will convert LSR #0 (and ASR #0 and ROR #0) into LSL #0, and allow LSR #32 to be
specified.

An arithmetic shift right (ASR) is similar to logical shift right, except that the high bits
are filled with bit 31 of Rm instead of zeros. This preserves the sign in 2's complement
notation. For example, ASR #5 is shown in ➲Figure 5-8: Arithmetic shift right.

 Figure 5-8: Arithmetic shift right

The form of the shift field which might be expected to give ASR #0 is used to encode
ASR #32. Bit 31 of Rm is again used as the carry output, and each bit of operand 2 is
also equal to bit 31 of Rm. The result is therefore all ones or all zeros, according to the
value of bit 31 of Rm.

Rotate right (ROR) operations reuse the bits which 'overshoot' in a logical shift right
operation by reintroducing them at the high end of the result, in place of the zeros used
to fill the high end in logical right operations. For example, ROR #5 is shown in ➲Figure
5-9: Rotate right.

contents of Rm

value of operand 2

31 0

carry out

0 0 0 0 0

5 4

contents of Rm

value of operand 2

31 0

carry out

5 430

ARM Processor Instruction Set - Shifts

ARM7100 Data Sheet
ARM DDI 0035A

5-11

P
re

lim
in

ar
y

 Figure 5-9: Rotate right

The form of the shift field which might be expected to give ROR #0 is used to encode
a special function of the barrel shifter, rotate right extended (RRX). This is a rotate right
by one bit position of the 33-bit quantity formed by appending the CPSR C flag to the
most significant end of the contents of Rm as shown in ➲Figure 5-10: Rotate right
extended.

 Figure 5-10: Rotate right extended

Register specified shift amount

Only the least significant byte of the contents of Rs is used to determine the shift
amount. Rs can be any general register other than R15.

If this byte is zero, the unchanged contents of Rm will be used as the second operand,
and the old value of the CPSR C flag will be passed on as the shifter carry output.

If the byte has a value between 1 and 31, the shifted result will exactly match that of
an instruction specified shift with the same value and shift operation.

If the value in the byte is 32 or more, the result will be a logical extension of the shift
described above:

1 LSL by 32 has result zero, carry out equal to bit 0 of Rm.

2 LSL by more than 32 has result zero, carry out zero.

3 LSR by 32 has result zero, carry out equal to bit 31 of Rm.

contents of Rm

value of operand 2

31 0

carry out

5 4

contents of Rm

value of operand 2

31 0

carry
out

1

C
in

ARM Processor Instruction Set - TEQ, TST, CMP

ARM7100 Data Sheet
ARM DDI 0035A

5-12

P
re

lim
in

ar
y

4 LSR by more than 32 has result zero, carry out zero.

5 ASR by 32 or more has result filled with and carry out equal to bit 31 of Rm.

6 ROR by 32 has result equal to Rm, carry out equal to bit 31 of Rm.

7 ROR by n where n is greater than 32 will give the same result and carry out
as ROR by n-32; therefore repeatedly subtract 32 from n until the amount is
in the range 1 to 32 and see above.

Note that the zero in bit 7 of an instruction with a register controlled shift is compulsory;
a one in this bit will cause the instruction to be a multiply or undefined instruction.

5.4.3 Immediate operand rotates

The immediate operand rotate field is a 4-bit unsigned integer which specifies a shift
operation on the 8-bit immediate value. This value is zero extended to 32 bits, and then
subject to a rotate right by twice the value in the rotate field. This enables many
common constants to be generated, for example all powers of 2.

5.4.4 Writing to R15

When Rd is a register other than R15, the condition code flags in the CPSR may be
updated from the ALU flags as described above.

When Rd is R15 and the S flag in the instruction is not set the result of the operation
is placed in R15 and the CPSR is unaffected.

When Rd is R15 and the S flag is set the result of the operation is placed in R15 and
the SPSR corresponding to the current mode is moved to the CPSR. This allows state
changes which atomically restore both PC and CPSR. This form of instruction must
not be used in User mode.

5.4.5 Using R15 as an operand

If R15 (the PC) is used as an operand in a data processing instruction the register is
used directly.

The PC value will be the address of the instruction, plus 8 or 12 bytes due to instruction
prefetching. If the shift amount is specified in the instruction, the PC will be 8 bytes
ahead. If a register is used to specify the shift amount the PC will be 12 bytes ahead.

5.4.6 TEQ, TST, CMP and CMN opcodes

These instructions do not write the result of their operation but do set flags in the
CPSR. An assembler must always set the S flag for these instructions even if it is not
specified in the mnemonic.

The TEQP form of the instruction used in earlier processors must not be used in the
32-bit modes, the PSR transfer operations should be used instead. If used in these
modes, its effect is to move SPSR_<mode> to CPSR if the processor is in a privileged
mode and to do nothing if in User mode.

ARM Processor Instruction Set - TEQ, TST, CMP

ARM7100 Data Sheet
ARM DDI 0035A

5-13

P
re

lim
in

ar
y

5.4.7 Instruction cycle times

Data Processing instructions vary in the number of incremental cycles taken as
follows:

Normal Data Processing 1instruction fetch

Data Processing with register specified shift

1 instruction fetch + 1 internal cycle

Data Processing with PC written 3 instruction fetches

Data Processing with register specified shift and PC written

3 instruction fetches and 1 internal cycle

See ➲5.17 Instruction Speed Summary on page 5-52 for more information.

5.4.8 Assembler syntax

1 MOV,MVN - single operand instructions

<opcode>{cond}{S} Rd,<Op2>

2 CMP,CMN,TEQ,TST - instructions which do not produce a result.

<opcode>{cond} Rn,<Op2>

3 AND,EOR,SUB,RSB,ADD,ADC,SBC,RSC,ORR,BIC

<opcode>{cond}{S} Rd,Rn,<Op2>

where

<Op2> is Rm{,<shift>} or,<#expression>

{cond} is a two-character condition mnemonic, see ➲Figure 5-2: Condition
codes on page 5-3

{S} sets condition codes if S present (implied for CMP, CMN, TEQ, TST).

Rd,Rn,Rm are expressions evaluating to a register number.

If <#expression> is used, the assembler will attempt to generate a shifted
immediate 8-bit field to match the expression. If this is impossible, it will give an error.

<shift> is <shiftname> <register> or <shiftname> #expression , or RRX
(rotate right one bit with extend).

<shiftname> s are: ASL, LSL, LSR, ASR, ROR. (ASL is a synonym for LSL, they
assemble to the same code.)

ARM Processor Instruction Set - TEQ, TST, CMP

ARM7100 Data Sheet
ARM DDI 0035A

5-14

P
re

lim
in

ar
y

5.4.9 Examples

ADDEQ R2,R4,R5 ; if the Z flag is set make R2:=R4+R5

TEQS R4,#3 ; test R4 for equality with 3
; (the S is in fact redundant as the
; assembler inserts it automatically)

SUB R4,R5,R7,LSR R2 ; logical right shift R7 by the number
; in the bottom byte of R2, subtract
; result from R5, and put the answer
; into R4

MOV PC,R14 ; return from subroutine

MOVS PC,R14 ; return from exception and restore
; CPSR from SPSR_mode

ARM Processor Instruction Set - MRS, MSR

ARM7100 Data Sheet
ARM DDI 0035A

5-15

P
re

lim
in

ar
y

5.5 PSR Transfer (MRS, MSR)
The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter.

The MRS and MSR instructions are formed from a subset of the Data Processing
operations and are implemented using the TEQ, TST, CMN and CMP instructions
without the S flag set. The encoding is shown in ➲Figure 5-11: PSR Transfer on page
5-16.

These instructions allow access to the CPSR and SPSR registers. The MRS
instruction allows the contents of the CPSR or SPSR_<mode> to be moved to a
general register. The MSR instruction allows the contents of a general register to be
moved to the CPSR or SPSR_<mode> register.

The MSR instruction also allows an immediate value or register contents to be
transferred to the condition code flags (N,Z,C and V) of CPSR or SPSR_<mode>
without affecting the control bits. In this case, the top four bits of the specified register
contents or 32-bit immediate value are written to the top four bits of the relevant PSR.

5.5.1 Operand restrictions

In User mode, the control bits of the CPSR are protected from change, so only the
condition code flags of the CPSR can be changed. In other (privileged) modes the
entire CPSR can be changed.

The SPSR register which is accessed depends on the mode at the time of execution.
For example, only SPSR_fiq is accessible when the processor is in FIQ mode.

R15 must not be specified as the source or destination register.

A further restriction is that no attempt should be made to access an SPSR in User
mode, since no such register exists.

ARM Processor Instruction Set - MRS, MSR

ARM7100 Data Sheet
ARM DDI 0035A

5-16

P
re

lim
in

ar
y

 Figure 5-11: PSR Transfer

Cond

01112151621272831

Condition field

P

2223

0 = CPSR
1 = SPSR_<current mode>

00010 000000000000s 001111 Rd

Destination register

Source PSR

Condition field

MRS

021272831 2223

MSR

RmPdCond 00010

4 3

Condition field

272831 2223

MSR

PdCond

1010011111 00000000

12 11

Source register

21 12

101000111100 I 10

011

Source operand

Immediate Operand

Rm

Rotate

Unsigned 8 bit immediate value

shift applied to Imm

Imm

11 8 7 0

03411

Destination PSR
0 = CPSR
1 = SPSR_<current mode>

Destination PSR
0 = CPSR
1 = SPSR_<current mode>

0 = Source operand is a register

1 = Source operand is an immediate value

00000000

Source register

(transfer PSR contents to a register)

(transfer register contents to PSR)

(transfer register contents or immediate value to PSR flag bits only)

ARM Processor Instruction Set - MRS, MSR

ARM7100 Data Sheet
ARM DDI 0035A

5-17

P
re

lim
in

ar
y

5.5.2 Reserved bits

Only eleven bits of the PSR are defined in ARM processor (N,Z,C,V,I,F and M[4:0]);
the remaining bits (PSR[27:8,5]) are reserved for use in future versions of the
processor. To ensure the maximum compatibility between ARM processor programs
and future processors, the following rules should be observed:

1 The reserved bits must be preserved when changing the value in a PSR.

2 Programs must not rely on specific values from the reserved bits when
checking the PSR status, since they may read as one or zero in future
processors.

 A read-modify-write strategy should therefore be used when altering the control bits
of any PSR register; this involves transferring the appropriate PSR register to a
general register using the MRS instruction, changing only the relevant bits and then
transferring the modified value back to the PSR register using the MSR instruction.

For example, the following sequence performs a mode change:

MRS R0,CPSR ; take a copy of the CPSR
BIC R0,R0,#0x1F ; clear the mode bits
ORR R0,R0,#new_mode ; select new mode
MSR CPSR,R0 ; write back the modified CPSR

When the aim is simply to change the condition code flags in a PSR, a value can be
written directly to the flag bits without disturbing the control bits. For example, the
following instruction sets the N,Z,C and V flags:

MSR CPSR_flg,#0xF0000000; set all the flags regardless of
 ; their previous state (does not
 ; affect any control bits)

No attempt should be made to write an 8-bit immediate value into the whole PSR since
such an operation cannot preserve the reserved bits.

5.5.3 Instruction cycle times

PSR Transfers take 1 instruction fetch. For more information see ➲5.17 Instruction
Speed Summary on page 5-52.

5.5.4 Assembler syntax

1 MRS - transfer PSR contents to a register

MRS{cond} Rd,<psr>

2 MSR - transfer register contents to PSR

MSR{cond} <psr>,Rm

3 MSR - transfer register contents to PSR flag bits only

MSR{cond} <psrf>,Rm

The most significant four bits of the register contents are written to the N,Z,C
and V flags respectively.

ARM Processor Instruction Set - MRS, MSR

ARM7100 Data Sheet
ARM DDI 0035A

5-18

P
re

lim
in

ar
y

4 MSR - transfer immediate value to PSR flag bits only

MSR{cond} <psrf>,<#expression>

 The expression should symbolise a 32-bit value of which the most significant
four bits are written to the N,Z,C and V flags respectively.

{cond} two-character condition mnemonic, see ➲Figure 5-2: Condition codes
on page 5-3

Rd, Rm expressions evaluating to a register number other than R15

<psr> CPSR, CPSR_all, SPSR or SPSR_all. (CPSR and CPSR_all are
synonyms as are SPSR and SPSR_all)

<psrf> CPSR_flg or SPSR_flg

Where <#expression> is used, the assembler will attempt to generate a shifted
immediate 8-bit field to match the expression. If this is impossible, it will give an error.

5.5.5 Examples

In User mode the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]

MSR CPSR_flg,#0xA0000000; CPSR[31:28] <- 0xA
; (i.e. set N,C; clear Z,V)

MRS Rd,CPSR ; Rd[31:0] <- CPSR[31:0]

In privileged modes the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:0] <- Rm[31:0]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]

MSR CPSR_flg,#0x50000000; CPSR[31:28] <- 0x5
; (i.e. set Z,V; clear N,C)

MRS Rd,CPSR ; Rd[31:0] <- CPSR[31:0]

MSR SPSR_all,Rm ; SPSR_<mode>[31:0] <- Rm[31:0]
MSR SPSR_flg,Rm ; SPSR_<mode>[31:28] <- Rm[31:28]

MSR SPSR_flg,#0xC0000000; SPSR_<mode>[31:28] <- 0xC
; (i.e. set N,Z; clear C,V)

MRS Rd,SPSR ; Rd[31:0] <- SPSR_<mode>[31:0]

ARM Processor Instruction Set - MUL, MLA

ARM7100 Data Sheet
ARM DDI 0035A

5-19

P
re

lim
in

ar
y

5.6 Multiply and Multiply-Accumulate (MUL, MLA)
The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in ➲Figure
5-12: Multiply instructions.

The multiply and multiply-accumulate instructions use an 2-bit Booth's algorithm to
perform integer multiplication. They give the least significant 32 bits of the product of
two 32-bit operands, and may be used to synthesize higher precision multiplications.

 Figure 5-12: Multiply instructions

The multiply form of the instruction gives Rd:=Rm*Rs. Rn is ignored, and should be
set to zero for compatibility with possible future upgrades to the instruction set.

The multiply-accumulate form gives Rd:=Rm*Rs+Rn, which can save an explicit ADD
instruction in some circumstances.

Both forms of the instruction work on operands which may be considered as signed
(2’s complement) or unsigned integers.

5.6.1 Operand restrictions

Due to the way multiplication was implemented, certain combinations of operand
registers should be avoided. (The assembler will issue a warning if these restrictions
are overlooked.)

The destination register (Rd) should not be the same as the operand register (Rm), as
Rd is used to hold intermediate values and Rm is used repeatedly during multiply. A
MUL will give a zero result if Rm=Rd, and an MLA will give a meaningless result. R15
must not be used as an operand or as the destination register.

All other register combinations will give correct results, and Rd, Rn and Rs may use
the same register when required.

Cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm

034781112151619202122272831

Operand registers
Destination register
Set condition code

Accumulate

0 = do not alter condition codes
1 = set condition codes

0 = multiply only
1 = multiply and accumulate

Condition Field

ARM Processor Instruction Set - MUL, MLA

ARM7100 Data Sheet
ARM DDI 0035A

5-20

P
re

lim
in

ar
y

5.6.2 CPSR flags

Setting the CPSR flags is optional, and is controlled by the S bit in the instruction. The
N (Negative) and Z (Zero) flags are set correctly on the result (N is made equal to bit
31 of the result, and Z is set if and only if the result is zero). The C (Carry) flag is set
to a meaningless value and the V (oVerflow) flag is unaffected.

5.6.3 Instruction cycle times

The Multiply instructions take 1 instruction fetch and m internal cycles. For more
information see ➲5.17 Instruction Speed Summary on page 5-52.

m is the number of cycles required by the multiply algorithm, which is
determined by the contents of Rs. Multiplication by any number
between 2^(2m-3) and 2^(2m-1)-1 takes 1S+mI cycles for 1<m>16.
Multiplication by 0 or 1 takes 1S+1I cycles, and multiplication by any
number greater than or equal to 2^(29) takes 1S+16I cycles. The
maximum time for any multiply is thus 1S+16I cycles.

5.6.4 Assembler syntax

MUL{cond}{S} Rd,Rm,Rs
MLA{cond}{S} Rd,Rm,Rs,Rn

{cond} two-character condition mnemonic, see ➲Figure 5-2: Condition codes
on page 5-3

{S} set condition codes if S present

Rd, Rm, Rs and Rn

expressions evaluating to a register number other than R15.

5.6.5 Examples

MUL R1,R2,R3 ; R1:=R2*R3
MLAEQS R1,R2,R3,R4 ; conditionally R1:=R2*R3+R4,

; setting condition codes

ARM Processor Instruction Set - LDR, STR

ARM7100 Data Sheet
ARM DDI 0035A

5-21

P
re

lim
in

ar
y

5.7 Single Data Transfer (LDR, STR)
The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in ➲Figure
5-13: Single data transfer instructions on page 5-21.

The single data transfer instructions are used to load or store single bytes or words of
data. The memory address used in the transfer is calculated by adding an offset to or
subtracting an offset from a base register. The result of this calculation may be written
back into the base register if `auto-indexing' is required.

 Figure 5-13: Single data transfer instructions

Cond I Rn Rd

011121516192021242526272831

01 P U B W L Offset

2223

011

Source/Destination register
Base register
Load/Store bit

0 = Store to memory
1 = Load from memory

Write-back bit

Byte/Word bit

0 = no write-back
1 = write address into base

0 = transfer word quantity
1 = transfer byte quantity

Up/Down bit

Pre/Post indexing bit

0 = offset is an immediate value
Immediate offset

Immediate offset

Unsigned 12 bit immediate offset
1 = offset is a register

11 0

shift applied to Rm

34

Condition field

0 = down; subtract offset from base
1 = up; add offset to base

0 = post; add offset after transfer
1 = pre; add offset before transfer

Offset register

Shift Rm

ARM Processor Instruction Set - LDR, STR

ARM7100 Data Sheet
ARM DDI 0035A

5-22

P
re

lim
in

ar
y

5.7.1 Offsets and auto-indexing

The offset from the base may be either a 12-bit unsigned binary immediate value in
the instruction, or a second register (possibly shifted in some way). The offset may be
added to (U=1) or subtracted from (U=0) the base register Rn. The offset modification
may be performed either before (pre-indexed, P=1) or after (post-indexed, P=0) the
base is used as the transfer address.

The W bit gives optional auto increment and decrement addressing modes. The
modified base value may be written back into the base (W=1), or the old base value
may be kept (W=0). In the case of post-indexed addressing, the write back bit is
redundant and is always set to zero, since the old base value can be retained by
setting the offset to zero. Therefore post-indexed data transfers always write back the
modified base. The only use of the W bit in a post-indexed data transfer is in privileged
mode code, where setting the W bit forces non-privileged mode for the transfer,
allowing the operating system to generate a user address in a system where the
memory management hardware makes suitable use of this hardware.

5.7.2 Shifted register offset

The 8 shift control bits are described in the data processing instructions section.
However, the register specified shift amounts are not available in this instruction class.
See ➲5.4.2 Shifts on page 5-9.

5.7.3 Bytes and words

This instruction class may be used to transfer a byte (B=1) or a word (B=0) between
an ARM processor register and memory.

The action of LDR(B) and STR(B) instructions is influenced by the 3 instruction
fetches. For more information see ➲5.17 Instruction Speed Summary on page 5-52.
The two possible configurations are described below.

Little-endian configuration

A byte load (LDRB) expects the data on data bus inputs 7 through 0 if the
supplied address is on a word boundary, on data bus inputs
15 through 8 if it is a word address plus one byte, and so on.
The selected byte is placed in the bottom 8 bits of the
destination register, and the remaining bits of the register are
filled with zeros. Please see ➲Figure 4-2: Big-endian
addresses of bytes within words on page 4-3.

A byte store (STRB)repeats the bottom 8 bits of the source register four times
across data bus outputs 31 through 0. The external memory
system should activate the appropriate byte subsystem to
store the data.

A word load (LDR) will normally use a word aligned address. However, an
address offset from a word boundary will cause the data to be
rotated into the register so that the addressed byte occupies
bits 0 to 7. This means that half-words accessed at offsets 0
and 2 from the word boundary will be correctly loaded into

ARM Processor Instruction Set - LDR, STR

ARM7100 Data Sheet
ARM DDI 0035A

5-23

P
re

lim
in

ar
y

bits 0 through 15 of the register. Two shift operations are then
required to clear or to sign extend the upper 16 bits. This is
illustrated in ➲Figure 5-14: Little-endian offset addressing on
page 5-23.

 Figure 5-14: Little-endian offset addressing

A word store (STR) should generate a word aligned address. The word presented
to the data bus is not affected if the address is not word
aligned. That is, bit 31 of the register being stored always
appears on data bus output 31.

Big-endian configuration

A byte load (LDRB) expects the data on data bus inputs 31 through 24 if the
supplied address is on a word boundary, on data bus inputs
23 through 16 if it is a word address plus one byte, and so on.
The selected byte is placed in the bottom 8 bits of the
destination register and the remaining bits of the register are
filled with zeros. Please see ➲Figure 4-2: Big-endian
addresses of bytes within words on page 4-3.

A byte store (STRB)repeats the bottom 8 bits of the source register four times
across data bus outputs 31 through 0. The external memory
system should activate the appropriate byte subsystem to
store the data.

A word load (LDR) should generate a word-aligned address. An address offset
of 0 or 2 from a word boundary will cause the data to be

A

B

C

D

memory

A+3

A+2

A+1

A

24

16

8

0

A

B

C

D

register

24

16

8

0

LDR from word aligned address

A

B

C

D

A+3

A+2

A+1

A

24

16

8

0

A

B

C

D

24

16

8

0

LDR from address offset by 2

ARM Processor Instruction Set - LDR, STR

ARM7100 Data Sheet
ARM DDI 0035A

5-24

P
re

lim
in

ar
y

rotated into the register so that the addressed byte occupies
bits 31 through 24. This means that half-words accessed at
these offsets will be correctly loaded into bits 16 through 31
of the register. A shift operation is then required to move (and
optionally sign extend) the data into the bottom 16 bits. An
address offset of 1 or 3 from a word boundary will cause the
data to be rotated into the register so that the addressed byte
occupies bits 15 through 8.

A word store (STR) should generate a word aligned address. The word presented
to the data bus is not affected if the address is not word
aligned. That is, bit 31 of the register being stored always
appears on data bus output 31.

5.7.4 Use of R15

Writeback must not be specified if R15 is specified as the base register (Rn). When
using R15 as the base register you must remember it contains an address 8 bytes on
from the address of the current instruction.

R15 must not be specified as the register offset (Rm).

When R15 is the source register (Rd) of a register store (STR) instruction, the stored
value will be address of the instruction plus 12.

5.7.5 Restriction on the use of base register

When configured for late aborts, the following example code is difficult to unwind as
the base register, Rn, gets updated before the abort handler starts. Sometimes it may
be impossible to calculate the initial value.

For example:

LDR R0,[R1],R1

So a post-indexed LDR/STR where Rm is the same register as Rn must not be used.

5.7.6 Data aborts

A transfer to or from a legal address may cause problems for a memory management
system. For instance, in a system which uses virtual memory the required data may
be absent from main memory. The memory manager can signal a problem by taking
the processor abort input HIGH whereupon the Data Abort trap will be taken. It is up
to the system software to resolve the cause of the problem, then the instruction can
be restarted and the original program continued.

5.7.7 Instruction cycle times

Normal LDR instructions take 1 instruction fetch, 1 data read and 1 internal cycle and
LDR PC take 3 instruction fetches, 1 data read and 1 internal cycle. For more
information see ➲5.17 Instruction Speed Summary on page 5-52.

STR instructions take 1 instruction fetch and 1 data write incremental cycles to
execute.

ARM Processor Instruction Set - LDR, STR

ARM7100 Data Sheet
ARM DDI 0035A

5-25

P
re

lim
in

ar
y

5.7.8 Assembler syntax

<LDR|STR>{cond}{B}{T} Rd,<Address>

LDR load from memory into a register

STR store from a register into memory

{cond} two-character condition mnemonic, see ➲Figure 5-2: Condition codes
on page 5-3

{B} if B is present then byte transfer, otherwise word transfer

{T} if T is present the W bit will be set in a post-indexed instruction, forcing
non-privileged mode for the transfer cycle. T is not allowed when a
pre-indexed addressing mode is specified or implied.

Rd an expression evaluating to a valid register number.

<Address> can be:

1 An expression which generates an address:

<expression>

The assembler will attempt to generate an instruction using the PC as a base
and a corrected immediate offset to address the location given by evaluating
the expression. This will be a PC relative, pre-indexed address. If the address
is out of range, an error will be generated.

2 A pre-indexed addressing specification:

[Rn] offset of zero
[Rn,<#expression>]{!} offset of <expression> bytes

[Rn,{+/-}Rm{,<shift>}]{!} offset of +/- contents of index
register, shifted by <shift>

3 A post-indexed addressing specification:

[Rn],<#expression> offset of <expression> bytes

[Rn],{+/-}Rm{,<shift>} offset of +/- contents of index register, shifted
as by <shift> .

Rn, Rm expressions evaluating to a register number. If Rn is R15 then the
assembler will subtract 8 from the offset value to allow for ARM7100
pipelining. In this case base writeback must not be specified.

<shift> a general shift operation (see section on data processing instructions)
but note that the shift amount may not be specified by a register.

{!} writes back the base register (set the W bit) if ! is present.

ARM Processor Instruction Set - LDR, STR

ARM7100 Data Sheet
ARM DDI 0035A

5-26

P
re

lim
in

ar
y

5.7.9 Examples

STR R1,[R2,R4]!; store R1 at R2+R4 (both of which are
; registers) and write back address to R2

STR R1,[R2],R4; store R1 at R2 and write back
; R2+R4 to R2

LDR R1,[R2,#16]; load R1 from contents of R2+16
; Don't write back

LDR R1,[R2,R3,LSL#2]; load R1 from contents of R2+R3*4

LDREQB R1,[R6,#5]; conditionally load byte at R6+5 into
; R1 bits 0 to 7, filling bits 8 to 31
; with zeros

STR R1,PLACE; generate PC relative offset to address
• ; PLACE
•

PLACE

ARM Processor Instruction Set - LDM, STM

ARM7100 Data Sheet
ARM DDI 0035A

5-27

P
re

lim
in

ar
y

5.8 Block Data Transfer (LDM, STM)
The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in ➲Figure
5-15: Block data transfer instructions on page 5-27.

Block data transfer instructions are used to load (LDM) or store (STM) any subset of
the currently visible registers. They support all possible stacking modes, maintaining
full or empty stacks which can grow up or down memory, and are very efficient
instructions for saving or restoring context, or for moving large blocks of data around
main memory.

5.8.1 The register list

The instruction can cause the transfer of any registers in the current bank (and non-
user mode programs can also transfer to and from the user bank, see below). The
register list is a 16-bit field in the instruction, with each bit corresponding to a register.
A 1 in bit 0 of the register field will cause R0 to be transferred, a 0 will cause it not to
be transferred; similarly bit 1 controls the transfer of R1, and so on.

Any subset of the registers, or all the registers, may be specified. The only restriction
is that the register list should not be empty.

Whenever R15 is stored to memory the stored value is the address of the STM
instruction plus 12.

 Figure 5-15: Block data transfer instructions

Cond Rn

015161920212425272831

P U W L

2223

100 S Register list

Base register
Load/Store bit

0 = Store to memory
1 = Load from memory

Write-back bit
0 = no write-back
1 = write address into base

Up/Down bit

Pre/Post indexing bit

0 = down; subtract offset from base
1 = up; add offset to base

0 = post; add offset after transfer
1 = pre; add offset before transfer

PSR & force user bit
0 = do not load PSR or force user mode
1 = load PSR or force user mode

Condition field

ARM Processor Instruction Set - LDM, STM

ARM7100 Data Sheet
ARM DDI 0035A

5-28

P
re

lim
in

ar
y

5.8.2 Addressing modes

The transfer addresses are determined by the contents of the base register (Rn), the
pre/post bit (P) and the up/down bit (U). The registers are transferred in the order
lowest to highest, so R15 (if in the list) will always be transferred last. The lowest
register also gets transferred to/from the lowest memory address. By way of
illustration, consider the transfer of R1, R5 and R7 in the case where Rn=0x1000 and
write back of the modified base is required (W=1). ➲Figure 5-16: Post-increment
addressing on page 5-28 to ➲Figure 5-19: Pre-decrement addressing on page 5-30
show the sequence of register transfers, the addresses used, and the value of Rn after
the instruction has completed.

In all cases, had write back of the modified base not been required (W=0), Rn would
have retained its initial value of 0x1000 unless it was also in the transfer list of a load
multiple register instruction, when it would have been overwritten with the loaded
value.

5.8.3 Address alignment

The address should normally be a word aligned quantity and non-word aligned
addresses do not affect the instruction. The bottom 2 address bits are ignored by the
LDM instruction. No rotating of data will occur for an LDM from a non-aligned address.
If this is required then a series of LDRs should be used instead. However, the bottom
2 bits of the address will appear on bits [1:0] at the address and might be interpreted
by the memory system.

 Figure 5-16: Post-increment addressing

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

ARM Processor Instruction Set - LDM, STM

ARM7100 Data Sheet
ARM DDI 0035A

5-29

P
re

lim
in

ar
y

 Figure 5-17: Pre-increment addressing

 Figure 5-18: Post-decrement addressing

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

ARM Processor Instruction Set - LDM, STM

ARM7100 Data Sheet
ARM DDI 0035A

5-30

P
re

lim
in

ar
y Figure 5-19: Pre-decrement addressing

5.8.4 Use of the S bit

When the S bit is set in a LDM/STM instruction its meaning depends on whether or not
R15 is in the transfer list and on the type of instruction. The S bit should only be set if
the instruction is to execute in a privileged mode.

LDM with R15 in transfer list and S bit set (Mode changes)

 If the instruction is a LDM then SPSR_<mode> is transferred to CPSR at the same
time as R15 is loaded.

STM with R15 in transfer list and S bit set (User bank transfer)

The registers transferred are taken from the User bank rather than the bank
corresponding to the current mode. This is useful for saving the user state on process
switches. Base writeback must not be used when this mechanism is employed.

R15 not in list and S bit set (User bank transfer)

For both LDM and STM instructions, the User bank registers are transferred rather
than the register bank corresponding to the current mode. This is useful for saving the
user state on process switches. Base writeback must not be used when this
mechanism is employed.

When the instruction is LDM, care must be taken not to read from a banked register
during the following cycle (inserting a dummy instruction such as MOV R0, R0 after
the LDM will ensure safety).

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

ARM Processor Instruction Set - LDM, STM

ARM7100 Data Sheet
ARM DDI 0035A

5-31

P
re

lim
in

ar
y

5.8.5 Use of R15 as the base

R15 must not be used as the base register in any LDM or STM instruction.

5.8.6 Inclusion of the base in the register list

When writeback is specified, the base is written back at the end of the second cycle of
the instruction. During a STM, the first register is written out at the start of the second
cycle. A STM which includes storing the base, with the base as the first register to be
stored, will therefore store the unchanged value, whereas with the base second or
later in the transfer order, will store the modified value. A LDM will always overwrite
the updated base if the base is in the list.

5.8.7 Data aborts

Some legal addresses may be unacceptable to a memory management system, and
the memory manager can indicate a problem with an address by taking the abort input
to the ARM7 CPU HIGH. This can happen on any transfer during a multiple register
load or store, and must be recoverable if the processor is to be used in a virtual
memory system.

Aborts during STM instructions

If the abort occurs during a store multiple instruction, the ARM processor takes little
action until the instruction completes, whereupon it enters the data abort trap. The
memory manager is responsible for preventing erroneous writes to the memory. The
only change to the internal state of the processor will be the modification of the base
register if writeback was specified, and this must be reversed by software (and the
cause of the abort resolved) before the instruction may be retried.

Aborts during LDM instructions

 When ARM processor detects a data abort during a load multiple instruction, it
modifies the operation of the instruction to ensure that recovery is possible.

1 Overwriting of registers stops when the abort happens. The aborting load will
not take place but earlier ones may have overwritten registers. The PC is
always the last register to be written and so will always be preserved.

2 The base register is restored, to its modified value if writeback was requested.
This ensures recoverability in the case where the base register is also in the
transfer list, and may have been overwritten before the abort occurred.

The data abort trap is taken when the load multiple has completed, and the system
software must undo any base modification (and resolve the cause of the abort) before
restarting the instruction.

ARM Processor Instruction Set - LDM, STM

ARM7100 Data Sheet
ARM DDI 0035A

5-32

P
re

lim
in

ar
y

5.8.8 Instruction cycle times

Normal LDM instructions take 1 instruction fetch, n data reads and 1 internal cycle and
LDM PC takes 3 instruction fetches, n data reads and 1 internal cycle. For more
information see ➲5.17 Instruction Speed Summary on page 5-52.

STM instructions take 1 instruction fetch, n data reads and 1 internal cycle to execute.

n is the number of words transferred.

5.8.9 Assembler syntax

<LDM|STM>{cond}<FD|ED|FA|EA|IA|IB|DA|DB> Rn{!},<Rlist>{^}

{cond} two character condition mnemonic, see ➲Figure 5-2: Condition codes
on page 5-3

Rn an expression evaluating to a valid register number

<Rlist> a list of registers and register ranges enclosed in {} (eg {R0,R2-
R7,R10}).

{!} if present requests writeback (W=1), otherwise W=0

{^} if present set S bit to load the CPSR along with the PC, or force
transfer of user bank when in privileged mode

Addressing mode names

There are different assembler mnemonics for each of the addressing modes,
depending on whether the instruction is being used to support stacks or for other
purposes. The equivalences between the names and the values of the bits in the
instruction are shown in the following table.

name stack other L bit P bit U bit

pre-increment load LDMED LDMIB 1 1 1

post-increment load LDMFD LDMIA 1 0 1

pre-decrement load LDMEA LDMDB 1 1 0

post-decrement load LDMFA LDMDA 1 0 0

pre-increment store STMFA STMIB 0 1 1

post-increment store STMEA STMIA 0 0 1

pre-decrement store STMFD STMDB 0 1 0

post-decrement store STMED STMDA 0 0 0

 Table 5-2: Addressing mode names

ARM Processor Instruction Set - LDM, STM

ARM7100 Data Sheet
ARM DDI 0035A

5-33

P
re

lim
in

ar
y

FD, ED, FA, EA define pre/post indexing and the up/down bit by reference to the form
of stack required. The F and E refer to a “full” or “empty” stack, ie. whether a pre-index
has to be done (full) before storing to the stack. The A and D refer to whether the stack
is ascending or descending. If ascending, a STM will go up and LDM down, if
descending, vice-versa.

IA, IB, DA, DB allow control when LDM/STM are not being used for stacks and simply
mean Increment After, Increment Before, Decrement After, Decrement Before.

5.8.10 Examples

LDMFD SP!,{R0,R1,R2} ; unstack 3 registers

STMIA R0,{R0-R15} ; save all registers

LDMFD SP!,{R15} ; R15 <- (SP),CPSR unchanged
LDMFD SP!,{R15}^ ; R15 <- (SP), CPSR <- SPSR_mode (allowed

; only in privileged modes)
STMFD R13,{R0-R14}^ ; Save user mode regs on stack (allowed

; only in privileged modes)

These instructions may be used to save state on subroutine entry, and restore it
efficiently on return to the calling routine:

STMED SP!,{R0-R3,R14} ; save R0 to R3 to use as workspace
; and R14 for returning

BL somewhere ; this nested call will overwrite R14

LDMED SP!,{R0-R3,R15} ; restore workspace and return

ARM Processor Instruction Set - SWP

ARM7100 Data Sheet
ARM DDI 0035A

5-34

P
re

lim
in

ar
y

5.9 Single Data Swap (SWP)

 Figure 5-20: Swap instruction

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in ➲Figure
5-20: Swap instruction.

The data swap instruction is used to swap a byte or word quantity between a register
and external memory. This instruction is implemented as a memory read followed by
a memory write which are “locked” together (the processor cannot be interrupted until
both operations have completed, and the memory manager is warned to treat them as
inseparable). This class of instruction is particularly useful for implementing software
semaphores.

The swap address is determined by the contents of the base register (Rn). The
processor first reads the contents of the swap address. Then it writes the contents of
the source register (Rm) to the swap address, and stores the old memory contents in
the destination register (Rd). The same register may be specified as both the source
and destination.

The ARM7 CPU’s lock output goes HIGH for the duration of the read and write
operations to signal to the external memory manager that they are locked together,
and should be allowed to complete without interruption. This is important in multi-
processor systems where the swap instruction is the only indivisible instruction which
may be used to implement semaphores; control of the memory must not be removed
from a processor while it is performing a locked operation.

5.9.1 Bytes and words

This instruction class may be used to swap a byte (B=1) or a word (B=0) between an
ARM processor register and memory. The SWP instruction is implemented as a LDR
followed by a STR and the action of these is as described in the section on single data
transfers. In particular, the description of big and little-endian configuration applies to
the SWP instruction.

0111215161920272831 23 78 4 3

Condition field

Cond Rn Rd 10010000 Rm00B00010

22 21

Destination register
Source register

Base register
Byte/Word bit

0 = swap word quantity
1 = swap byte quantity

ARM Processor Instruction Set - SWI

ARM7100 Data Sheet
ARM DDI 0035A

5-35

P
re

lim
in

ar
y

5.9.2 Use of R15

R15 must not be used as an operand (Rd, Rn or Rs) in a SWP instruction.

5.9.3 Data aborts

If the address used for the swap is unacceptable to a memory management system,
the memory manager can flag the problem by driving the aRM7 CPU’s abort input
HIGH. This can happen on either the read or the write cycle (or both), and in either
case, the Data Abort trap will be taken. It is up to the system software to resolve the
cause of the problem, then the instruction can be restarted and the original program
continued.

5.9.4 Instruction cycle times

Swap instructions take 1 instruction fetch, 1 data read, 1 data write and 1 internal
cycle. For more information see ➲5.17 Instruction Speed Summary on page 5-52..

5.9.5 Assembler syntax

<SWP>{cond}{B} Rd,Rm,[Rn]

{cond} two-character condition mnemonic, see ➲Figure 5-2:
Condition codes on page 5-3

{B} if B is present then byte transfer, otherwise word transfer

Rd,Rm,Rn are expressions evaluating to valid register numbers

5.9.6 Examples

SWP R0,R1,[R2] ; load R0 with the word addressed by R2, and
; store R1 at R2

SWPB R2,R3,[R4] ; load R2 with the byte addressed by R4, and
; store bits 0 to 7 of R3 at R4

SWPEQ R0,R0,[R1] ; conditionally swap the contents of the
; Software interrupt (SWI)

ARM Processor Instruction Set - SWI

ARM7100 Data Sheet
ARM DDI 0035A

5-36

P
re

lim
in

ar
y

5.10 Software Interrupt (SWI)

 Figure 5-21: Software interrupt instruction

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in ➲Figure
5-21: Software interrupt instruction on page 5-36.

The software interrupt instruction is used to enter Supervisor mode in a controlled
manner. The instruction causes the software interrupt trap to be taken, which effects
the mode change. The PC is then forced to a fixed value (0x08) and the CPSR is
saved in SPSR_svc. If the SWI vector address is suitably protected (by external
memory management hardware) from modification by the user, a fully protected
operating system may be constructed.

5.10.1 Return from the supervisor

The PC is saved in R14_svc upon entering the software interrupt trap, with the PC
adjusted to point to the word after the SWI instruction. MOVS PC,R14_svc will return
to the calling program and restore the CPSR.

Note that the link mechanism is not re-entrant, so if the supervisor code wishes to use
software interrupts within itself it must first save a copy of the return address and
SPSR.

5.10.2 Comment field

The bottom 24 bits of the instruction are ignored by the processor, and may be used
to communicate information to the supervisor code. For instance, the supervisor may
look at this field and use it to index into an array of entry points for routines which
perform the various supervisor functions.

5.10.3 Instruction cycle times

Software interrupt instructions take 3 instruction fetches. For more information see
➲5.17 Instruction Speed Summary on page 5-52.

31 28 27 24 23 0

Condition field

1111Cond Comment field (ignored by Processor)

ARM Processor Instruction Set - SWI

ARM7100 Data Sheet
ARM DDI 0035A

5-37

P
re

lim
in

ar
y

5.10.4 Assembler syntax

SWI{cond} <expression>

{cond} two character condition mnemonic, see ➲Figure 5-2:
Condition codes on page 5-3

<expression> is evaluated and placed in the comment field (which is
ignored by ARM processor).

5.10.5 Examples

SWI ReadC ; get next character from read stream
SWI WriteI+”k” ; output a “k” to the write stream
SWINE 0 ; conditionally call supervisor

; with 0 in comment field

The above examples assume that suitable supervisor code exists, for instance:

0x08 B Supervisor ; SWI entry point

EntryTable ; addresses of supervisor routines
DCD ZeroRtn
DCD ReadCRtn
DCD WriteIRtn

 . . .

Zero EQU 0
ReadC EQU 256
WriteIEQU 512

Supervisor

; SWI has routine required in bits 8-23 and data (if any) in
; bits 0-7.
; Assumes R13_svc points to a suitable stack

STMFD R13,{R0-R2,R14}; save work registers and return
address

LDR R0,[R14,#-4]; get SWI instruction
BIC R0,R0,#0xFF000000; clear top 8 bits
MOV R1,R0,LSR#8 ; get routine offset
ADR R2,EntryTable; get start address of entry table
LDR R15,[R2,R1,LSL#2]; branch to appropriate routine

WriteIRtn ; enter with character in R0 bits 0-7
.

LDMFD R13,{R0-R2,R15}^; restore workspace and return
; restoring processor mode and flags

ARM Processor Instruction Set - SWI

ARM7100 Data Sheet
ARM DDI 0035A

5-38

P
re

lim
in

ar
y

5.11 Coprocessor Instructions
The ARM processor macrocell does not have an external coprocessor interface. This
implementation of the ARM processor only supports a single on chip coprocessor,
#15, which is used to program the on-chip control registers. This only supports the
Coprocessor Register Transfer instructions (MRC and MCR).

All other coprocessor instructions will cause the ARM processor to take the undefined
instruction trap. These coprocessor instructions can be emulated in software by the
undefined trap handler. Even though external coprocessors cannot be connected to
the ARM processor, the coprocessor instructions are still described here in full for
completeness. Any external coprocessor referred to will be a software emulation.

ARM Processor Instruction Set - CDP

ARM7100 Data Sheet
ARM DDI 0035A

5-39

P
re

lim
in

ar
y

5.12 Coprocessor data operations (CDP)
Use of the CDP instruction on the ARM processor will cause an undefined instruction
trap to be taken, which may be used to emulate the coprocessor instruction.

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in ➲Figure
5-22: Coprocessor data operation instruction.

This class of instruction is used to tell a coprocessor to perform some internal
operation. No result is communicated back to the procesor, and it will not wait for the
operation to complete. The coprocessor could contain a queue of such instructions
awaiting execution, and their execution can overlap other activity, allowing the
coprocessor and the processor to perform independent tasks in parallel.

 Figure 5-22: Coprocessor data operation instruction

5.12.1 The coprocessor fields

Only bit 4 and bits 24 to 31 are significant to the processor. The remaining bits are
used by coprocessors. The above field names are used by convention, and particular
coprocessors may redefine the use of all fields except CP# as appropriate. The CP#
field is used to contain an identifying number (in the range 0 to 15) for each
coprocessor, and a coprocessor will ignore any instruction which does not contain its
number in the CP# field.

The conventional interpretation of the instruction is that the coprocessor should
perform an operation specified in the CP Opc field (and possibly in the CP field) on the
contents of CRn and CRm, and place the result in CRd.

Cond

011121516192024272831 23

CRd CP#

78

1110 CP Opc CRn CP 0 CRm

5 4 3

Coprocessor number

Condition field

Coprocessor information
Coprocessor operand register

Coprocessor destination register
Coprocessor operand register
Coprocessor operation code

ARM Processor Instruction Set - CDP

ARM7100 Data Sheet
ARM DDI 0035A

5-40

P
re

lim
in

ar
y

5.12.2 Instruction cycle times

All CDP instructions are emulated in software: the number of cycles taken will depend
on the coprocessor support software.

5.12.3 Assembler syntax

CDP{cond} p#,<expression1>,cd,cn,cm{,<expression2>}

{cond} two character condition mnemonic, see ➲Figure 5-2:
Condition codes on page 5-3

p# the unique number of the required coprocessor

<expression1> evaluated to a constant and placed in the CP Opc field

cd, cn and cm evaluate to the valid coprocessor register numbers CRd,
CRn and CRm respectively

<expression2> where present is evaluated to a constant and placed in the
CP field

5.12.4 Examples

CDP p1,10,c1,c2,c3 ; request coproc 1 to do operation 10
; on CR2 and CR3, and put the result in CR1

CDPEQ p2,5,c1,c2,c3,2 ; if Z flag is set request coproc 2 to do
; operation 5 (type 2) on CR2 and CR3,
; and put the result in CR1

ARM Processor Instruction Set - LDC, STC

ARM7100 Data Sheet
ARM DDI 0035A

5-41

P
re

lim
in

ar
y

5.13 Coprocessor Data Transfers (LDC, STC)
Use of the LDC or STC instruction on the ARM processor will cause an undefined
instruction trap to be taken, which may be used to emulate the coprocessor instruction.

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in ➲Figure
5-23: Coprocessor data transfer instructions on page 5-41.

This class of instruction is used to load (LDC) or store (STC) a subset of a
coprocessors’s registers directly to memory. The processor is responsible for
supplying the memory address, and the coprocessor supplies or accepts the data and
controls the number of words transferred.

 Figure 5-23: Coprocessor data transfer instructions

5.13.1 The coprocessor fields

The CP# field is used to identify the coprocessor which is required to supply or accept
the data, and a coprocessor will only respond if its number matches the contents of
this field.

The CRd field and the N bit contain information for the coprocessor which may be
interpreted in different ways by different coprocessors, but by convention CRd is the
register to be transferred (or the first register where more than one is to be

Cond Rn

0111215161920212425272831

P U W L

2223

110 N CRd CP# Offset

78

Coprocessor number
Unsigned 8 bit immediate offset

Base register
Load/Store bit

0 = Store to memory
1 = Load from memory

Write-back bit
0 = no write-back
1 = write address into base

Coprocessor source/destination register

Pre/Post indexing bit

Up/Down bit
0 = down; subtract offset from base
1 = up; add offset to base

0 = post; add offset after transfer

Transfer length

Condition field
1 = pre; add offset before transfer

ARM Processor Instruction Set - LDC, STC

ARM7100 Data Sheet
ARM DDI 0035A

5-42

P
re

lim
in

ar
y

transferred), and the N bit is used to choose one of two transfer length options. For
instance N=0 could select the transfer of a single register, and N=1 could select the
transfer of all the registers for context switching.

5.13.2 Addressing modes

The processor is responsible for providing the address used by the memory system
for the transfer, and the addressing modes available are a subset of those used in
single data transfer instructions. Note, however, that for coprocessor data transfers the
immediate offsets are 8 bits wide and specify word offsets, whereas for single data
transfers they are 12 bits wide and specify byte offsets.

The 8-bit unsigned immediate offset is shifted left 2 bits and either added to (U=1) or
subtracted from (U=0) the base register (Rn); this calculation may be performed either
before (P=1) or after (P=0) the base is used as the transfer address. The modified
base value may be overwritten back into the base register (if W=1), or the old value of
the base may be preserved (W=0). Note that post-indexed addressing modes require
explicit setting of the W bit, unlike LDR and STR which always write back when post-
indexed.

The value of the base register, modified by the offset in a pre-indexed instruction, is
used as the address for the transfer of the first word. The second word (if more than
one is transferred) will go to or come from an address one word (4 bytes) higher than
the first transfer, and the address will be incremented by one word for each
subsequent transfer.

5.13.3 Address alignment

The base address should normally be a word aligned quantity. The bottom 2 bits of the
address will appear on bits [1:0] at the address and might be interpreted by the
memory system.

5.13.4 Use of R15

If Rn is R15, the value used will be the address of the instruction plus 8 bytes. Base
writeback to R15 must not be specified.

5.13.5 Data aborts

If the address is legal but the memory manager generates an abort, the data trap will
be taken. The writeback of the modified base will take place, but all other processor
state will be preserved. The coprocessor is partly responsible for ensuring that the
data transfer can be restarted after the cause of the abort has been resolved, and must
ensure that any subsequent actions it undertakes can be repeated when the
instruction is retried.

5.13.6 Instruction cycle times

All LDC instructions are emulated in software: the number of cycles taken will depend
on the coprocessor support software.

ARM Processor Instruction Set - LDC, STC

ARM7100 Data Sheet
ARM DDI 0035A

5-43

P
re

lim
in

ar
y

5.13.7 Assembler syntax

<LDC|STC>{cond}{L} p#,cd,<Address>

LDC load from memory to coprocessor

STC store from coprocessor to memory

{L} when present perform long transfer (N=1), otherwise perform short
transfer (N=0)

{cond} two character condition mnemonic, see ➲Figure 5-2: Condition codes
on page 5-3

p# the unique number of the required coprocessor

cd an expression evaluating to a valid coprocessor register number that
is placed in the CRd field

<Address> can be:

• An expression which generates an address:
<expression>

The assembler will attempt to generate an instruction using the PC as a base
and a corrected immediate offset to address the location given by evaluating
the expression. This will be a PC relative, pre-indexed address. If the address
is out of range, an error will be generated.

• A pre-indexed addressing specification:

[Rn] offset of zero

[Rn,<#expression>]{!} offset of <expression> bytes

• A post-indexed addressing specification:

[Rn],<#expression> offset of <expression> bytes

Rn is an expression evaluating to a valid processor register number. Note, if Rn is R15
then the assembler will subtract 8 from the offset value to allow for processor
pipelining.

{!} write back the base register (set the W bit) if ! is present

5.13.8 Examples

LDC p1,c2,table ; load c2 of coproc 1 from address
; table, using a PC relative address.

STCEQL p2,c3,[R5,#24]! ; conditionally store c3 of coproc 2
; into an address 24 bytes up from R5,
; write this address back to R5, and use
; long transfer option (probably to
; store multiple words)

Note that though the address offset is expressed in bytes, the instruction offset field is
in words. The assembler will adjust the offset appropriately.

ARM Processor Instruction Set - MRC, MCR

ARM7100 Data Sheet
ARM DDI 0035A

5-44

P
re

lim
in

ar
y

5.14 Coprocessor Register Transfers (MRC, MCR)
Use of the MRC or MCR instruction on the ARM processor to a coprocessor other than
number 15 will cause an undefined instruction trap to be taken, which may be used to
emulate the coprocessor instruction.

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in ➲Figure
5-24: Coprocessor register transfer instructions on page 5-44.

This class of instruction is used to communicate information directly between ARM
processor and a coprocessor. An example of a coprocessor to processor register
transfer (MRC) instruction would be a FIX of a floating point value held in a
coprocessor, where the floating point number is converted into a 32-bit integer within
the coprocessor, and the result is then transferred to a processor register. A FLOAT of
a 32-bit value in a processor register into a floating point value within the coprocessor
illustrates the use of a processor register to coprocessor transfer (MCR).

An important use of this instruction is to communicate control information directly from
the coprocessor into the processor CPSR flags. As an example, the result of a
comparison of two floating point values within a coprocessor can be moved to the
CPSR to control the subsequent flow of execution.

Note The ARM processor has an internal coprocessor (#15) for control of on-chip functions.
Accesses to this coprocessor are performed by coprocessor register transfers.

 Figure 5-24: Coprocessor register transfer instructions

21

Cond

011121516192024272831 23

CP#

78

1110 CRn CP CRm

5 4 3

1LCP Opc Rd

Coprocessor number
Coprocessor information
Coprocessor operand register

Coprocessor operation mode
Condition field

Load/Store bit
0 = Store to Co-Processor
1 = Load from Co-Processor

ARM source/destination register
Coprocessor source/destination register

ARM Processor Instruction Set - MRC, MCR

ARM7100 Data Sheet
ARM DDI 0035A

5-45

P
re

lim
in

ar
y

5.14.1 The coprocessor fields

The CP# field is used, as for all coprocessor instructions, to specify which coprocessor
is being called upon.

The CP Opc, CRn, CP and CRm fields are used only by the coprocessor, and the
interpretation presented here is derived from convention only. Other interpretations
are allowed where the coprocessor functionality is incompatible with this one. The
conventional interpretation is that the CP Opc and CP fields specify the operation the
coprocessor is required to perform, CRn is the coprocessor register which is the
source or destination of the transferred information, and CRm is a second coprocessor
register which may be involved in depending on the particular operation specified.

5.14.2 Transfers to R15

When a coprocessor register transfer to ARM processor has R15 as the destination,
bits 31, 30, 29 and 28 of the transferred word are copied into the N, Z, C and V flags
respectively. The other bits of the transferred word are ignored, and the PC and other
CPSR bits are unaffected by the transfer.

5.14.3 Transfers from R15

A coprocessor register transfer from ARM processor with R15 as the source register
will store the PC+12.

5.14.4 Instruction cycle times

Access to the internal configuration register takes 1 instruction fetch cycle and 3
internal cycles. All other MRC instructions default to software emulation, and the
number of cycles taken will depend on the coprocessor support software.

5.14.5 Assembler syntax

<MCR|MRC>{cond} p#,<expression1>,Rd,cn,cm{,<expression2>}

MRC move from coprocessor to ARM processor register (L=1)

MCR move from ARM processor register to coprocessor (L=0)

{cond} two character condition mnemonic, see ➲Figure 5-2:
Condition codes on page 5-3

p# the unique number of the required coprocessor

<expression1> evaluated to a constant and placed in the CP Opc field

Rd an expression evaluating to a valid ARM processor register
number

cn and cm expressions evaluating to the valid coprocessor register
numbers CRn and CRm respectively

<expression2> where present is evaluated to a constant and placed in the
CP field

ARM Processor Instruction Set - MRC, MCR

ARM7100 Data Sheet
ARM DDI 0035A

5-46

P
re

lim
in

ar
y

5.14.6 Examples

MRC p2,5,R3,c5,c6 ; request coproc 2 to perform operation 5
; on c5 and c6, and transfer the (single
; 32 bit word) result back to R3

MCR p6,0,R4,c6 ; request coproc 6 to perform operation 0
; on R4 and place the result in c6

MRCEQ p3,9,R3,c5,c6,2 ; conditionally request coproc 3 to
; perform operation 9 (type 2) on c5 and
; c6, and transfer the result back to R3

ARM Processor Instruction Set - Undefined

ARM7100 Data Sheet
ARM DDI 0035A

5-47

P
re

lim
in

ar
y

5.15 Undefined Instruction

 Figure 5-25: Undefined instruction

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction format is shown in ➲Figure 5-
25: Undefined instruction.

If the condition is true, the undefined instruction trap will be taken.

5.15.1 Assembler syntax

At present the assembler has no mnemonics for generating this instruction. If it is
adopted in the future for some specified use, suitable mnemonics will be added to the
assembler. Until such time, this instruction must not be used.

Cond

024272831 5 4 3

1011 xxxx

25

xxxxxxxxxxxxxxxxxxxx

ARM Processor Instruction Set - Examples

ARM7100 Data Sheet
ARM DDI 0035A

5-48

P
re

lim
in

ar
y

5.16 Instruction Set Examples
The following examples show ways in which the basic ARM processor instructions can
combine to give efficient code. None of these methods saves a great deal of execution
time (although they may save some), mostly they just save code.

5.16.1 Using the conditional instructions

1 using conditionals for logical OR

CMP Rn,#p ; if Rn=p OR Rm=q THEN GOTO Label
BEQ Label
CMP Rm,#q
BEQ Label

can be replaced by

CMP Rn,#p
CMPNE Rm,#q ; if condition not satisfied try other test
BEQ Label

2 absolute value

TEQ Rn,#0 ; test sign
RSBMI Rn,Rn,#0 ; and 2's complement if necessary

3 multiplication by 4, 5 or 6 (run time)

MOV Rc,Ra,LSL#2 ; multiply by 4
CMP Rb,#5 ; test value
ADDCS Rc,Rc,Ra ; complete multiply by 5
ADDHI Rc,Rc,Ra ; complete multiply by 6

4 combining discrete and range tests

TEQ Rc,#127 ; discrete test
CMPNE Rc,#” “-1 ; range test
MOVLS Rc,#”.” ; IF Rc<=” “ OR Rc=ASCII(127)

; THEN Rc:=”.”

5 division and remainder

A number of divide routines for specific applications are provided in source form as
part of the ANSI C library provided with the ARM Cross Development Toolkit, available
from your supplier. A short general purpose divide routine follows.

; enter with numbers in Ra and Rb
;

MOV Rcnt,#1 ; bit to control the division
Div1 CMP Rb,#0x80000000; move Rb until greater than Ra

CMPCC Rb,Ra
MOVCC Rb,Rb,ASL#1
MOVCC Rcnt,Rcnt,ASL#1
BCC Div1
MOV Rc,#0

Div2 CMP Ra,Rb ; test for possible subtraction
SUBCS Ra,Ra,Rb ; subtract if ok

ARM Processor Instruction Set - Examples

ARM7100 Data Sheet
ARM DDI 0035A

5-49

P
re

lim
in

ar
y

ADDCS Rc,Rc,Rcnt; put relevant bit into result
MOVS Rcnt,Rcnt,LSR#1; shift control bit
MOVNE Rb,Rb,LSR#1; halve unless finished
BNE Div2

;
; divide result in Rc
; remainder in Ra

5.16.2 Pseudo random binary sequence generator

It is often necessary to generate (pseudo-) random numbers and the most efficient
algorithms are based on shift generators with exclusive-OR feedback rather like a
cyclic redundancy check generator. Unfortunately the sequence of a 32-bit generator
needs more than one feedback tap to be maximal length (ie. 2^32-1 cycles before
repetition), so this example uses a 33-bit register with taps at bits 33 and 20. The basic
algorithm is newbit:=bit 33 eor bit 20, shift left the 33-bit number and put in newbit at
the bottom; this operation is performed for all the newbits needed (ie. 32 bits). The
entire operation can be done in 5 S cycles:

; enter with seed in Ra (32 bits),
 Rb (1 bit in Rb lsb), uses Rc
;

TST Rb,Rb,LSR#1 ; top bit into carry
MOVS Rc,Ra,RRX ; 33 bit rotate right
ADC Rb,Rb,Rb ; carry into lsb of Rb
EOR Rc,Rc,Ra,LSL#12; (involved!)
EOR Ra,Rc,Rc,LSR#20; (similarly involved!)

;
; new seed in Ra, Rb as before

5.16.3 Multiplication by constant using the barrel shifter

1 Multiplication by 2^n (1,2,4,8,16,32..)

MOV Ra, Rb, LSL #n

2 Multiplication by 2^n+1 (3,5,9,17..)

ADD Ra,Ra,Ra,LSL #n

3 Multiplication by 2^n-1 (3,7,15..)

RSB Ra,Ra,Ra,LSL #n

4 Multiplication by 6

ADD Ra,Ra,Ra,LSL #1; multiply by 3
MOV Ra,Ra,LSL#1 ; and then by 2

ARM Processor Instruction Set - Examples

ARM7100 Data Sheet
ARM DDI 0035A

5-50

P
re

lim
in

ar
y

5 Multiply by 10 and add in extra number

ADD Ra,Ra,Ra,LSL#2; multiply by 5
ADD Ra,Rc,Ra,LSL#1; multiply by 2 and add in next digit

6 General recursive method for Rb := Ra*C, C a constant:

a) If C even, say C = 2^n*D, D odd:

D=1: MOV Rb,Ra,LSL #n
D<>1: {Rb := Ra*D}

MOV Rb,Rb,LSL #n

b) If C MOD 4 = 1, say C = 2^n*D+1, D odd, n>1:

D=1: ADD Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}

ADD Rb,Ra,Rb,LSL #n

c) If C MOD 4 = 3, say C = 2^n*D-1, D odd, n>1:

D=1: RSB Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}

RSB Rb,Ra,Rb,LSL #n

This is not quite optimal, but close. An example of its non-optimality is multiply by 45
which is done by:

RSB Rb,Ra,Ra,LSL#2; multiply by 3
RSB Rb,Ra,Rb,LSL#2; multiply by 4*3-1 = 11
ADD Rb,Ra,Rb,LSL# 2; multiply by 4*11+1 = 45

rather than by:

ADD Rb,Ra,Ra,LSL#3; multiply by 9
ADD Rb,Rb,Rb,LSL#2; multiply by 5*9 = 45

5.16.4 Loading a word from an unknown alignment

; enter with address in Ra (32 bits)
; uses Rb, Rc; result in Rd.
; Note d must be less than c e.g. 0,1
;

BIC Rb,Ra,#3 ; get word aligned address
LDMIA Rb,{Rd,Rc} ; get 64 bits containing answer
AND Rb,Ra,#3 ; correction factor in bytes
MOVS Rb,Rb,LSL#3 ; ...now in bits and test if aligned
MOVNE Rd,Rd,LSR Rb ; produce bottom of result word

; (if not aligned)
RSBNE Rb,Rb,#32 ; get other shift amount
ORRNE Rd,Rd,Rc,LSL Rb; combine two halves to get result

ARM Processor Instruction Set - Examples

ARM7100 Data Sheet
ARM DDI 0035A

5-51

P
re

lim
in

ar
y

5.16.5 Loading a halfword (Little-endian)

LDR Ra, [Rb,#2] ; Get halfword to bits 15:0
MOV Ra,Ra,LSL #16 ; move to top
MOV Ra,Ra,LSR #16 ; and back to bottom

; use ASR to get sign extended version

5.16.6 Loading a halfword (Big-endian)

LDR Ra, [Rb,#2] ; Get halfword to bits 31:16
MOV Ra,Ra,LSR #16 ; and back to bottom

; use ASR to get sign extended version

ARM Processor Instruction Set - Examples

ARM7100 Data Sheet
ARM DDI 0035A

5-52

P
re

lim
in

ar
y

5.17 Instruction Speed Summary
Due to the pipelined architecture of the CPU, instructions overlap considerably. In a
typical cycle one instruction may be using the data path while the next is being
decoded and the one after that is being fetched. For this reason the following table
presents the incremental number of cycles required by an instruction, rather than the
total number of cycles for which the instruction uses part of the processor. Elapsed
time (in cycles) for a routine may be calculated from these figures which are shown in
➲Table 5-3: ARM instruction speed summary on page 5-52. These figures assume
that the instruction is actually executed. Unexecuted instructions take one instruction
fetch cycle.

Instruction Cycle count

Data Processing - normal
 with register specified shift
 with PC written
 with register specified shift and PC written

1 instruction fetch
1 instruction fetch and 1 internal cycle
3 instruction fetches
3 instruction fetches and 1 internal cycle

MSR, MRS 1 instruction fetch

LDR - normal
 if the destination is the PC

1 instruction fetch, 1 data read and 1 internal cycle
3 instruction fetches, 1 data read and 1 internal cycle

STR 1 instruction fetch and 1 data write

LDM - normal
 if the destination is the PC

1 instruction fetch, n data reads and 1 internal cycle
3 instruction fetches, n data reads and 1 internal cycle

STM 1 instruction fetch and n data writes

SWP 1 instruction fetch, 1 data read, 1 data write and 1 internal cycle

B,BL 3 instruction fetches

SWI, trap 3 instruction fetches

MUL,MLA 1 instruction fetch and m internal cycles

CDP the undefined instruction trap will be taken

LDC the undefined instruction trap will be taken

STC the undefined instruction trap will be taken

MCR 1 instruction fetch and 3 internal cycles for coproc 15

MRC 1 instruction fetch and 3 internal cycles for coproc 15

 Table 5-3: ARM instruction speed summary

ARM Processor Instruction Set - Examples

ARM7100 Data Sheet
ARM DDI 0035A

5-53

P
re

lim
in

ar
y

Where:

n is the number of words transferred.

m is the number of cycles required by the multiply algorithm, which is
determined by the contents of Rs. Multiplication by any number
between 2^(2m-3) and 2^(2m-1)-1 takes 1S+mI cycles for 1<m>16.
Multiplication by 0 or 1 takes 1S+1I cycles, and multiplication by any
number greater than or equal to 2^(29) takes 1S+16I cycles. The
maximum time for any multiply is thus 1S+16I cycles.

The time taken for:

• an internal cycle - will always be one FCLK cycle

• an instruction fetch and data read - will be FCLK if a cache hit occurs,
otherwise a full memory access is performed.

• a data write - will be FCLK if the write buffer (if enabled) has available space,
otherwise the write will be delayed until the write buffer has free space. If the
write buffer is not enabled a full memory access is always performed.

• Co-processor cycles - all coprocessor operations except MCR or MRC to
registers 0 to 7 on coprocessor #15 (used for internal control) will cause the
undefined instruction trap to be taken.

ARM Processor Instruction Set - Examples

ARM7100 Data Sheet
ARM DDI 0035A

5-54

P
re

lim
in

ar
y

ARM7100 Data Sheet
ARM DDI 0035A

6-1

111

P
re

lim
in

ar
y

Cache, Write Buffer and
Coprocessors

This chapter describes the ARM Processor configuration, instruction and data cache
and the write buffer.

6.1 Instruction and Data Cache 6-2

6.2 Read-lock-write 6-3

6.3 IDC Enable/Disable and Reset 6-3

6.4 Write Buffer 6-4

6.5 Coprocessors 6-5

6

Cache, Write Buffer and Coprocessors

ARM7100 Data Sheet
ARM DDI 0035A

6-2

P
re

lim
in

ar
y

6.1 Instruction and Data Cache
The ARM Processor contains a 8kByte mixed instruction and data cache. The IDC has
512 lines of 16 bytes (4 words), arranged as a 4 way set associative cache, and uses
the virtual addresses generated by the processor core. The IDC is always reloaded a
line at a time (4 words). It may be enabled or disabled via the ARM Processor Control
Register and is disabled on the internal nRESET. The operation of the cache is further
controlled by the Cacheable, or C, bit stored in the Memory Management Page Table.
For this reason, in order to use the IDC, the MMU must be enabled. The two functions
may however be enabled simultaneously, with a single write to the Control Register.

6.1.1 Cacheable bit

The Cacheable bit determines whether data being read may be placed in the IDC and
used for subsequent read operations. Typically main memory will be marked as
Cacheable to improve system performance, and I/O space as Non-cacheable to stop
the data being stored in ARM7100's cache. For example if the processor is polling a
hardware flag in I/O space, it is important that the processor is forced to read data from
the external peripheral, and not a copy of initial data held in the cache. The Cacheable
bit can be configured for both pages and sections.

6.1.2 IDC operation

In the ARM Processor the cache will be searched regardless of the state of the C bit,
only reads that miss the cache will be affected. The only effect of setting the cacheable
bit to 0 is to inhibit cache replacement from occurring.

Cacheable reads C = 1

A linefetch of 4 words will be performed when a cache miss occurs in a cacheable area
of memory and it will be randomly placed in a cache bank.

Uncacheable reads C = 0

An external memory access will be performed and the cache will not be written.

6.1.3 IDC validity

The IDC operates with virtual addresses, so care must be taken to ensure that its
contents remain consistent with the virtual to physical mappings performed by the
Memory Management Unit. If the Memory Mappings are changed, the IDC validity
must be ensured.

Software IDC flush

The entire IDC may be marked as invalid by writing to the ARM Processor IDC Flush
Register (Register 7). The cache will be flushed immediately the register is written, but
note that the following two instruction fetches may come from the cache before the
register is written.

Cache, Write Buffer and Coprocessors

ARM7100 Data Sheet
ARM DDI 0035A

6-3

P
re

lim
in

ar
y

6.1.4 Doubly mapped space

Since the cache works with virtual addresses, it is assumed that every virtual address
maps to a different physical address. If the same physical location is accessed by
more than one virtual address, the cache cannot maintain consistency, since each
virtual address will have a separate entry in the cache, and only one entry will be
updated on a processor write operation. To avoid any cache inconsistencies, both
doubly-mapped virtual addresses should be marked as uncacheable.

6.2 Read-lock-write
The IDC treats the Read-Locked-Write instruction as a special case. The read phase
always forces a read of external memory, regardless of whether the data is contained
in the cache. The write phase is treated as a normal write operation (and if the data is
already in the cache, the cache will be updated).The two phases are flagged as
indivisible by asserting the lock signal from the ARM7 core.

6.3 IDC Enable/Disable and Reset
The IDC is automatically disabled and flushed on the internal nRESET. Once enabled,
cacheable read accesses will cause lines to be placed in the cache.

To enable the IDC

To enable the IDC, make sure that the MMU is enabled first by setting bit 0 in Control
Register, then enable the IDC by setting bit 2 in Control Register. The MMU and IDC
may be enabled simultaneously with a single control register write.

To disable the IDC

To disable the IDC clear bit 2 in the Control Register and perform a flush by writing to
the flush register.

Cache, Write Buffer and Coprocessors

ARM7100 Data Sheet
ARM DDI 0035A

6-4

P
re

lim
in

ar
y

6.4 Write Buffer
The ARM Processor write buffer is provided to improve system performance. It can
buffer up to 8 words of data, and 4 independent addresses. It may be enabled or
disabled via the W bit (bit 3) in the ARM Processor Control Register and the buffer is
disabled and flushed on reset. The operation of the write buffer is further controlled by
one bit, B, or Bufferable, which is stored in the Memory Management Page Tables. For
this reason, in order to use the write buffer, the MMU must be enabled. The two
functions may however be enabled simultaneously, with a single write to the Control
Register. For a write to use the write buffer, both the W bit in the Control Register, and
the B bit in the corresponding page table must be set.

6.4.1 Bufferable bit

This bit controls whether a write operation may or may not use the write buffer.
Typically main memory will be bufferable and I/O space unbufferable. The Bufferable
bit can be configured for both pages and sections.

6.4.2 Write buffer operation

When the CPU performs a write operation, the translation entry for that address is
inspected and the state of the B bit determines the subsequent action. If the write
buffer is disabled via the ARM Processor Control Register, bufferable writes are
treated in the same way as unbuffered writes.

Bufferable write

If the write buffer is enabled and the processor performs a write to a bufferable area,
the data is placed in the write buffer at MCLK speeds and the CPU continues
execution. The write buffer then performs the external write in parallel. If however the
write buffer is full (either because there are already 8 words of data in the buffer, or
because there is no slot for the new address) then the processor is stalled until there
is sufficient space in the buffer.

Unbufferable writes

If the write buffer is disabled or the CPU performs a write to an unbufferable area, the
processor is stalled until the write buffer empties and the write completes externally,
which may require synchronisation and several external clock cycles.

Read-lock-write

The write phase of a read-lock-write sequence is treated as an Unbuffered write, even
if it is marked as buffered.

Cache, Write Buffer and Coprocessors

ARM7100 Data Sheet
ARM DDI 0035A

6-5

P
re

lim
in

ar
y

6.5 Coprocessors
The ARM7100 has no external coprocessor bus, so it is not possible to add external
coprocessors to this device.

The ARM Processor still has an internal coprocessor designated #15 for internal
control of the device. All coprocessor operations except MCR or MRC to registers 0 to
7 on coprocessor #15 will cause the undefined instruction trap to be taken.

Cache, Write Buffer and Coprocessors

ARM7100 Data Sheet
ARM DDI 0035A

6-6

P
re

lim
in

ar
y

ARM7100 Data Sheet
ARM DDI 0035A

7-1

111

P
re

lim
in

ar
y

ARM Processor MMU

This chapter describes the ARM Processor Memory Management Unit.

7.1 Introduction 7-2

7.2 MMU Program Accessible Registers 7-3

7.3 Address Translation 7-4

7.4 Translation Process 7-5

7.5 Translating Section References 7-8

7.6 Translating Small Page References 7-10

7.7 Translating Large Page References 7-11

7.8 MMU Faults and CPU Aborts 7-12

7.9 Fault Address and Fault Status Registers (FAR and FSR) 7-13

7.10 Domain Access Control 7-14

7.11 Fault Checking Sequence 7-15

7.12 Interaction of the MMU, IDC and Write Buffer 7-18

7.13 Effect of Reset 7-19

7

ARM Processor MMU

ARM7100 Data Sheet
ARM DDI 0035A

7-2

P
re

lim
in

ar
y

7.1 Introduction
The Memory Management MMU performs two primary functions: it translates virtual
addresses into physical addresses, and it controls memory access permissions. The
MMU hardware required to perform these functions consists of a Translation Look-
aside Buffer (TLB), access control logic, and translation table walking logic.

The MMU supports memory accesses based on Sections or Pages. Sections are
comprised of 1MB blocks of memory. Two different page sizes are supported: Small
Pages consist of 4kB blocks of memory and Large Pages consist of 64kB blocks of
memory. (Large Pages are supported to allow mapping of a large region of memory
while using only a single entry in the TLB). Additional access control mechanisms are
extended within Small Pages to 1kB Sub-Pages and within Large Pages to 16kB Sub-
Pages.

The MMU also supports the concept of domains - areas of memory that can be defined
to possess individual access rights. The Domain Access Control Register is used to
specify access rights for up to 16 separate domains.

The TLB caches 64 translated entries. During most memory accesses, the TLB
provides the translation information to the access control logic.

If the TLB contains a translated entry for the virtual address, the access control logic
determines whether access is permitted. If access is permitted, the MMU outputs the
appropriate physical address corresponding to the virtual address. If access is not
permitted, the MMU signals the CPU to abort.

If the TLB misses (it does not contain a translated entry for the virtual address), the
translation table walk hardware is invoked to retrieve the translation information from
a translation table in physical memory. Once retrieved, the translation information is
placed into the TLB, possibly overwriting an existing value. The entry to be overwritten
is chosen by cycling sequentially through the TLB locations.

When the MMU is turned off (as happens on reset), the virtual address is output
directly onto the physical address bus.

ARM Processor MMU

ARM7100 Data Sheet
ARM DDI 0035A

7-3

P
re

lim
in

ar
y

7.2 MMU Program Accessible Registers
The ARM Processor provides several 32-bit registers which determine the operation
of the MMU. The format for these registers is shown in ➲Figure 7-1: MMU register
summary on page 7-3. A brief description of the registers is provided below. Each
register will be discussed in more detail within the section that describes its use.

Data is written to and read from the MMU's registers using the ARM CPU's MRC and
MCR coprocessor instructions.

The Translation Table Base Register holds the physical address of the base of the
translation table maintained in main memory. Note that this base must reside on a
16kB boundary.

The Domain Access Control Register consists of sixteen 2-bit fields, each of which
defines the access permissions for one of the sixteen Domains (D15-D0).

 Figure 7-1: MMU register summary

Note The registers not shown are reserved and should not be used.

The Fault Status Register indicates the domain and type of access being attempted
when an abort occurred. Bits 7:4 specify which of the sixteen domains (D15-D0) was
being accessed when a fault occurred. Bits 3:1 indicate the type of access being
attempted. The encoding of these bits is different for internal and external faults (as
indicated by bit 0 in the register) and is shown in ➲Table 7-4: Priority encoding of fault
status on page 7-13. A write to this register flushes the TLB.

The Fault Address Register holds the virtual address of the access which was
attempted when a fault occurred. A write to this register causes the data written to be
treated as an address and, if it is found in the TLB, the entry is marked as invalid. (This
operation is known as a TLB purge). The Fault Status Register and Fault Address
Register are only updated for data faults, not for prefetch faults.

Domain Access Control

0 Control 1 D P W AC M

Translation Table Base

0123456789101112131415

0 0 0 0 Domain Status

012345678910111213141516171819202122232425262728293031

Flush TLB

Purge Address

Fault Address

Register

1 write

2 write

3 write

5 read

5 write

6 read

6 write

Fault Status

S B0Control0 0 0 0 R

ARM Processor MMU

ARM7100 Data Sheet
ARM DDI 0035A

7-4

P
re

lim
in

ar
y

7.3 Address Translation
The MMU translates virtual addresses generated by the CPU into physical addresses
to access external memory, and also derives and checks the access permission.
Translation information, which consists of both the address translation data and the
access permission data, resides in a translation table located in physical memory. The
MMU provides the logic needed to traverse this translation table, obtain the translated
address, and check the access permission.

There are three routes by which the address translation (and hence permission check)
takes place. The route taken depends on whether the address in question has been
marked as a section-mapped access or a page-mapped access; and there are two
sizes of page-mapped access (large pages and small pages). However, the translation
process always starts out in the same way, as described below, with a Level One fetch.
A section-mapped access only requires a Level One fetch, but a page-mapped access
also requires a Level Two fetch.

ARM Processor MMU

ARM7100 Data Sheet
ARM DDI 0035A

7-5

P
re

lim
in

ar
y

7.4 Translation Process

7.4.1 Translation table base

The translation process is initiated when the on-chip TLB does not contain an entry for
the requested virtual address. The Translation Table Base (TTB) Register points to the
base of a table in physical memory which contains Section and/or Page descriptors.
The 14 low-order bits of the TTB Register are set to zero as illustrated in ➲Figure 7-2:
Translation table base register; the table must reside on a 16kB boundary.

 Figure 7-2: Translation table base register

7.4.2 Level one fetch

Bits 31:14 of the Translation Table Base register are concatenated with bits 31:20 of
the virtual address to produce a 30-bit address as illustrated in ➲Figure 7-3: Accessing
the translation table first level descriptors. This address selects a four-byte translation
table entry which is a First Level Descriptor for either a Section or a Page (bit1 of the
descriptor returned specifies whether it is for a Section or Page)

.

 Figure 7-3: Accessing the translation table first level descriptors

0131431

Translation Table Base

0192031

031

Table Index Section Index

Virtual Address

Translation Base

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

18
12

First Level Descriptor
031

ARM Processor MMU

ARM7100 Data Sheet
ARM DDI 0035A

7-6

P
re

lim
in

ar
y

7.4.3 Level one descriptor

The Level One Descriptor returned is either a Page Table Descriptor or a Section
Descriptor, and its format varies accordingly. The following figure illustrates the format
of Level One Descriptors.

 Figure 7-4: Level one descriptors

The two least significant bits indicate the descriptor type and validity, and are
interpreted as shown below..

7.4.4 Page table descriptor

Bits 3:2 are always written as 0.

Bit 4 should be written to 1 for backward compatibility.

Bits 8:5 specify one of the sixteen possible domains (held in the Domain Access
Control Register) that contain the primary access controls.

Bits 31:10 form the base for referencing the Page Table Entry. (The page table index
for the entry is derived from the virtual address as illustrated in ➲Figure 7-7: Small
page translation on page 7-10).

If a Page Table Descriptor is returned from the Level One fetch, a Level Two fetch is
initiated as described below.

Value Meaning Notes

 0 0 Invalid Generates a Section Translation Fault

 0 1 Page Indicates that this is a Page Descriptor

 1 0 Section Indicates that this is a Section Descriptor

 1 1 Reserved Reserved for future use

 Table 7-1: Interpreting level one descriptor bits [1:0]

01234589101112192031

0 Fault

Page

Section

Reserved

0

0 1

1 0

1 1

C B

Domain

DomainAP

Page Table Base Address

Section Base Address 1

1

ARM Processor MMU

ARM7100 Data Sheet
ARM DDI 0035A

7-7

P
re

lim
in

ar
y

7.4.5 Section descriptor

Bits 3:2 (C, and B) control the cache- and write-buffer-related functions as follows:

C - Cacheable : indicates that data at this address will be placed in the cache (if the
cache is enabled).

B - Bufferable : indicates that data at this address will be written through the write
buffer (if the write buffer is enabled).

Bit 4 should be written to 1 for backward compatibility.

Bits 8:5 specify one of the sixteen possible domains (held in the Domain Access
Control Register) that contain the primary access controls.

Bits 11:10 (AP) specify the access permissions for this section and are interpreted as
shown in ➲Table 7-2: Interpreting access permission (AP) bits on page 7-7. Their
interpretation is dependent upon the setting of the S and R bits (control register bits 8
and 9). Note that the Domain Access Control specifies the primary access control; the
AP bits only have an effect in client mode. Refer to section on access permissions

Bits 19:12 are always written as 0.

Bits 31:20 form the corresponding bits of the physical address for the 1MByte section.

AP S R Permissions
Supervisor User

Notes

00 0 0 No Access No Access Any access generates a permission fault

00 1 0 Read Only No Access Supervisor read only permitted

00 0 1 Read Only Read Only Any write generates a permission fault

00 1 1 Reserved

01 x x Read/Write No Access Access allowed only in Supervisor mode

10 x x Read/Write Read Only Writes in User mode cause permission
fault

11 x x Read/Write Read/Write All access types permitted in both
modes.

xx 1 1 Reserved

 Table 7-2: Interpreting access permission (AP) bits

ARM Processor MMU

ARM7100 Data Sheet
ARM DDI 0035A

7-8

P
re

lim
in

ar
y

7.5 Translating Section References
➲Figure 7-5: Section translation illustrates the complete Section translation sequence.
Note that the access permissions contained in the Level One Descriptor must be
checked before the physical address is generated. The sequence for checking access
permissions is described below.

 Figure 7-5: Section translation

0192031

1 0C BDomainAPSection Base Address

031

Table Index Section Index

Virtual Address

Translation Base

01234589101112192031

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

First Level Descriptor

0192031

Section Base Address Section Index

Physical Address
12

20

18
12

1

ARM Processor MMU

ARM7100 Data Sheet
ARM DDI 0035A

7-9

P
re

lim
in

ar
y

7.5.1 Level two descriptor

If the Level One fetch returns a Page Table Descriptor, this provides the base address
of the page table to be used. The page table is then accessed as described in ➲Figure
7-7: Small page translation on page 7-10, and a Page Table Entry, or Level Two
Descriptor, is returned. This in turn may define either a Small Page or a Large Page
access. The figure below shows the format of Level Two Descriptors

.

 Figure 7-6: Page table entry (Level Two descriptor)

The two least significant bits indicate the page size and validity, and are interpreted as
follows.

Bit 2 B - Bufferable : indicates that data at this address will be written through the write
buffer (if the write buffer is enabled).

Bit 3 C - Cacheable : indicates that data at this address will be placed in the IDC (if the
cache is enabled).

Bits 11:4 specify the access permissions (ap3 - ap0) for the four sub-pages and
interpretation of these bits is described earlier in ➲Table 7-1: Interpreting level one
descriptor bits [1:0] on page 7-6.

For large pages, bits 15:12 are programmed as 0.

Bits 31:12 (small pages) or bits 31:16 (large pages) are used to form the
corresponding bits of the physical address - the physical page number. (The page
index is derived from the virtual address as illustrated in ➲Figure 7-7: Small page
translation on page 7-10 and ➲Figure 7-8: Large page translation on page 7-11).

Value Meaning Notes

 0 0 Invalid Generates a Page Translation Fault

 0 1 Large Page Indicates that this is a 64 kB Page

 1 0 Small Page Indicates that this is a 4 kB Page

 1 1 Reserved Reserved for future use

 Table 7-3: Interpreting page table entry bits 1:0

01234589101112192031

0 Fault

Large Page

Small Page

Reserved

0

0 1

1 0

1 1

C Bap3

Large Page Base Address

Small Page Base Address

671516

ap3

ap2

ap2

ap1

ap1

ap0

ap0 C B

ARM Processor MMU

ARM7100 Data Sheet
ARM DDI 0035A

7-10

P
re

lim
in

ar
y

7.6 Translating Small Page References
➲Figure 7-7: Small page translation illustrates the complete translation sequence for
a 4kB Small Page. Page translation involves one additional step beyond that of a
section translation: the Level One descriptor is the Page Table descriptor, and this is
used to point to the Level Two descriptor, or Page Table Entry. (Note that the access
permissions are now contained in the Level Two descriptor and must be checked
before the physical address is generated. The sequence for checking access
permissions is described later).

 Figure 7-7: Small page translation

0192031

031

Table Index Page Index

Virtual Address

Translation Base

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

First Level Descriptor

18

12

0 1DomainPage Table Base Address

01245891031

0 0Page Table Base Address

01291031

L2 Table Index

1112

L2 Table Index

1 0C Bap3Page Base Address

0123458910111231

Second Level Descriptor
67

ap2 ap1 ap0

Page Base Address

0111231

Page Index

Physical Address

12

8

1

ARM Processor MMU

ARM7100 Data Sheet
ARM DDI 0035A

7-11

P
re

lim
in

ar
y

7.7 Translating Large Page References
➲Figure 7-8: Large page translation illustrates the complete translation sequence for
a 64 kB Large Page. Note that since the upper four bits of the Page Index and low-
order four bits of the Page Table index overlap, each Page Table Entry for a Large
Page must be duplicated 16 times (in consecutive memory locations) in the Page
Table.

 Figure 7-8: Large page translation

0192031

031

Table Index Page Index

Virtual Address

Translation Base

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

First Level Descriptor

18

12

0 1DomainPage Table Base Address

01245891031

0 0Page Table Base Address

01291031

L2 Table Index

1112

L2 Table Index

0 1C Bap3Page Base Address

0123458910111231

Second Level Descriptor
67

ap2 ap1 ap0

Page Base Address

031

Page Index

Physical Address

12

8

1516

1516

1516

1

ARM Processor MMU

ARM7100 Data Sheet
ARM DDI 0035A

7-12

P
re

lim
in

ar
y

7.8 MMU Faults and CPU Aborts
The MMU generates four types of faults:

Alignment Fault

Translation Fault

Domain Fault

Permission Fault

The access control mechanisms of the MMU detect the conditions that produce these
faults. If a fault is detected as the result of a memory access, the MMU will abort the
access and signal the fault condition to the CPU. The MMU is also capable of retaining
status and address information about the abort. The CPU recognises two types of
abort: data aborts and prefetch aborts, and these are treated differently by the MMU.

If the MMU detects an access violation, it will do so before the external memory access
takes place, and it will therefore inhibit the access.

If the ARM Processor is operating in fastbus mode an internally aborting access may
cause the address on the external address bus to change, even though the external
bus cycle has been cancelled. The address that is placed on the bus will be the
translation of the address that caused the abort, though in the case of the a Translation
Fault the value of this address will be undefined. No memory access will be performed
to this address.

ARM Processor MMU

ARM7100 Data Sheet
ARM DDI 0035A

7-13

P
re

lim
in

ar
y

7.9 Fault Address and Fault Status Registers (FAR and FSR)
Aborts resulting from data accesses (data aborts) are acted upon by the CPU
immediately, and the MMU places an encoded 4-bit value FS[3:0], along with the 4-bit
encoded Domain number, in the Fault Status Register (FSR). In addition, the virtual
processor address which caused the data abort is latched into the Fault Address
Register (FAR). If an access violation simultaneously generates more than one source
of abort, they are encoded in the priority given in ➲Table 7-4: Priority encoding of fault
status on page 7-13.

CPU instructions on the other hand are prefetched, so a prefetch abort simply flags
the instruction as it enters the instruction pipeline. Only when (and if) the instruction is
executed does it cause an abort; an abort is not acted upon if the instruction is not
used (ie. it is branched around). Because instruction prefetch aborts may or may not
be acted upon, the MMU status information is not preserved for the resulting CPU
abort; for a prefetch abort, the MMU does not update the FSR or FAR.

The sections that follow describe the various access permissions and controls
supported by the MMU and detail how these are interpreted to generate faults.

x is undefined, and may read as 0 or 1

Notes

1 Any abort masked by the priority encoding may be regenerated by fixing the
primary abort and restarting the instruction.

2 In fact this register will contain bits[8:5] of the Level 1 entry which are
undefined, but would encode the domain in a valid entry.

Source FS[3210] Domain[3:0] FAR

Highest Alignment 00x1 x valid

Bus Error (translation) level1
level2

1100
1110

x
valid

valid
valid

Translation Section
Page

0101
0111

Note 2
valid

valid
valid

Domain Section
Page

1001
1011

valid
valid

valid
valid

Permission Section
Page

1101
1111

valid
valid

valid
valid

Bus Error (linefetch) Section
Page

0100
0110

valid
valid

valid
valid

Lowest Bus Error (other) Section
Page

1000
1010

valid
valid

valid
valid

 Table 7-4: Priority encoding of fault status

ARM Processor MMU

ARM7100 Data Sheet
ARM DDI 0035A

7-14

P
re

lim
in

ar
y

7.10 Domain Access Control
MMU accesses are primarily controlled via domains. There are 16 domains, and each
has a 2-bit field to define it. Two basic kinds of users are supported: Clients and
Managers. Clients use a domain; Managers control the behaviour of the domain. The
domains are defined in the Domain Access Control Register. ➲Figure 7-9: Domain
access control register format on page 7-14 illustrates how the 32 bits of the register
are allocated to define the sixteen 2-bit domains.

 Figure 7-9: Domain access control register format

➲Table 7-5: Interpreting access bits in domain access control register defines how the
bits within each domain are interpreted to specify the access permissions.

Value Meaning Notes

00 No Access Any access will generate a Domain Fault.

01 Client Accesses are checked against the access permission bits in the Section or Page
descriptor.

10 Reserved Reserved. Currently behaves like the no access mode.

11 Manager Accesses are NOT checked against the access Permission bits so a Permission
fault cannot be generated.

 Table 7-5: Interpreting access bits in domain access control register

012345678910111213141516171819202122232425262728293031

0123456789101112131415

ARM Processor MMU

ARM7100 Data Sheet
ARM DDI 0035A

7-15

P
re

lim
in

ar
y

7.11 Fault Checking Sequence
The sequence by which the MMU checks for access faults is slightly different for
Sections and Pages. The figure below illustrates the sequence for both types of
accesses. The sections and figures that follow describe the conditions that generate
each of the faults.

 Figure 7-10: Sequence for checking faults

violation

no access(00)
reserved(10)

Virtual Address

Check Address Alignment

get Level One Descriptor

Section Page

misaligned Alignment
Fault

invalid
Section

Translation
Fault

get Page
Table Entry

check Domain Status

invalid
Page

Translation
Fault

no access(00) Page
Domain

Fault
reserved(10)

Section
Domain

Fault

Section Page

client(01)client(01)

manager(01)

Check Access
Permissions

Check Access
Permissions

Physical Address

Section
Permission

Fault
violation

sub-Page
Permission

Fault

ARM Processor MMU

ARM7100 Data Sheet
ARM DDI 0035A

7-16

P
re

lim
in

ar
y

7.11.1 Alignment fault

If Alignment Fault is enabled (bit 1 in Control Register set), the MMU will generate an
alignment fault on any data word access the address of which is not word-aligned
irrespective of whether the MMU is enabled or not; in other words, if either of virtual
address bits [1:0] are not 0. Alignment fault will not be generated on any instruction
fetch, nor on any byte access. Note that if the access generates an alignment fault, the
access sequence will abort without reference to further permission checks.

7.11.2 Translation fault

There are two types of translation fault: section and page.

1 A Section Translation Fault is generated if the Level One descriptor is marked
as invalid. This happens if bits[1:0] of the descriptor are both 0 or both 1.

2 A Page Translation Fault is generated if the Page Table Entry is marked as
invalid. This happens if bits[1:0] of the entry are both 0 or both 1.

7.11.3 Domain fault

There are two types of domain fault: section and page. In both cases the Level One
descriptor holds the 4-bit Domain field which selects one of the sixteen 2-bit domains
in the Domain Access Control Register. The two bits of the specified domain are then
checked for access permissions as detailed in ➲Table 7-2: Interpreting access
permission (AP) bits on page 7-7. In the case of a section, the domain is checked once
the Level One descriptor is returned, and in the case of a page, the domain is checked
once the Page Table Entry is returned.

If the specified access is either No Access (00) or Reserved (10) then either a Section
Domain Fault or Page Domain Fault occurs.

7.11.4 Permission fault

There are two types of permission fault: section and sub-page. Permission fault is
checked at the same time as Domain fault. If the 2-bit domain field returns client (01),
then the permission access check is invoked as follows:

section:

If the Level One descriptor defines a section-mapped access, then the AP bits of the
descriptor define whether or not the access is allowed according to ➲Table 7-2:
Interpreting access permission (AP) bits on page 7-7. Their interpretation is dependent
upon the setting of the S bit (Control Register bit 8). If the access is not allowed, then
a Section Permission fault is generated.

ARM Processor MMU

ARM7100 Data Sheet
ARM DDI 0035A

7-17

P
re

lim
in

ar
y

sub-page:

If the Level One descriptor defines a page-mapped access, then the Level Two
descriptor specifies four access permission fields (ap3..ap0) each corresponding to
one quarter of the page. Hence for small pages, ap3 is selected by the top 1kB of the
page, and ap0 is selected by the bottom 1kB of the page; for large pages, ap3 is
selected by the top 16kB of the page, and ap0 is selected by the bottom 16kB of the
page. The selected AP bits are then interpreted in exactly the same way as for a
section (see ➲Table 7-2: Interpreting access permission (AP) bits on page 7-7), the
only difference being that the fault generated is a sub-page permission fault.

ARM Processor MMU

ARM7100 Data Sheet
ARM DDI 0035A

7-18

P
re

lim
in

ar
y

7.12 Interaction of the MMU, IDC and Write Buffer
The MMU, IDC and WB may be enabled/disabled independently. However, in order for
the write buffer or the cache to be enabled the MMU must also be enabled. There are
no hardware interlocks on these restrictions, so invalid combinations will cause
undefined results.

The following procedures must be observed.

 To enable the MMU:

1 Program the Translation Table Base and Domain Access Control Registers

2 Program Level 1 and Level 2 page tables as required

3 Enable the MMU by setting bit 0 in the Control Register.

Note Care must be taken if the translated address differs from the untranslated address as
the two instructions following the enabling of the MMU will have been fetched using
“flat translation” and enabling the MMU may be considered as a branch with delayed
execution. A similar situation occurs when the MMU is disabled. Consider the following
code sequence:

MOV R1, #0x1
MCR 15,0,R1,0,0 ; Enable MMU
Fetch Flat
Fetch Flat
Fetch Translated

To disable the MMU:

1 Disable the WB by clearing bit 3 in the Control Register.

2 Disable the IDC by clearing bit 2 in the Control Register.

3 Disable the MMU by clearing bit 0 in the Control Register.

Note If the MMU is enabled, then disabled and subsequently re-enabled the contents of the
TLB will have been preserved. If these are now invalid, the TLB should be flushed
before re-enabling the MMU.

Disabling of all three functions may be done simultaneously.

MMU IDC WB

off off off

on off off

on on off

on off on

on on on

 Table 7-6: Valid MMU, IDC and write buffer combinations

ARM Processor MMU

ARM7100 Data Sheet
ARM DDI 0035A

7-19

P
re

lim
in

ar
y

7.13 Effect of Reset
See ➲4.7 Reset on page 4-16.

ARM Processor MMU

ARM7100 Data Sheet
ARM DDI 0035A

7-20

P
re

lim
in

ar
y

ARM7100 Data Sheet
ARM DDI 0035A

8-1

111

P
re

lim
in

ar
y

ARM7100 Programmer’s Model

This chapter details the programmable registers for ARM7100.

8.1 Introduction 8-2

8.2 Summary of Registers 8-3

8.3 Register Descriptions 8-5

8

ARM7100 Programmer’s Model

ARM7100 Data Sheet
ARM DDI 0035A

8-2

P
re

lim
in

ar
y

8.1 Introduction
ARM7100 contains internal programmable registers in addition to those in the ARM
processor.

The registers internal to ARM7100 are all programmed by writing to memory locations
8000.0000 to 8000.FFFF. Accessing memory in this range will not cause any external
bus activity unless broadcast mode is enabled. Any access to the undefined range
from 8000.1000 to C000.0000 will have no effect.

Writes to bits that are not explicitly defined in the internal area are legal and will have
no effect. Reads from bits not explicitly defined in the internal area are legal but will
read undefined values.

It is only possible to access internal addresses as 32-bit words and they are always
on a word boundary, except for the PIO port registers which can be accessed as bytes.
Each internal register is valid for 256 bytes, since address bits in the range A[0:5] are
not decoded, for example, the SYSFLG register appears at locations 8000.0140 to
8000.017C. The PIO port registers are byte wide but can be accessed as a word.
These registers additionally decode A0 and A1.

ARM7100 Programmer’s Model

ARM7100 Data Sheet
ARM DDI 0035A

8-3

P
re

lim
in

ar
y

8.2 Summary of Registers

Key

✓ can write/read

✗ do not write/read

Name Address Size Read Write Function

PADR 8000.0000 8 ✓ ✓ Port A data register.

PBDR 8000.0001 8 ✓ ✓ Port B data register.

PCDR 8000.0002 8 ✓ ✓ Port C data register.

PDDR 8000.0003 8 ✓ ✓ Port D data register.

PADDR 8000.0040 8 ✓ ✓ Port A data direction register.

PBDDR 8000.0041 8 ✓ ✓ Port B data direction register.

PCDDR 8000.0042 8 ✓ ✓ Port C data direction register.

PDDDR 8000.0043 8 ✓ ✓ Port D data direction register.

PEDR 8000.0080 4 ✓ ✓ Port E data register.

PEDDR 8000.00C0 4 ✓ ✓ Port E data direction register.

SYSCON 8000.0100 32 ✓ ✓ System control register

SYSFLG 8000.0140 32 ✓ ✗ System status flags.

MEMCFG1 8000.0180 32 ✓ ✓ Expansion and ROM memory configuration
register 1.

MEMCFG2 8000.01C0 32 ✓ ✓ Expansion and ROM memory configuration
register 2.

DRFPR 8000.0200 8 ✓ ✓ DRAM refresh period register.

INTSR 8000.0240 16 ✓ ✗ Interrupt status register.

INTMR 8000.0280 16 ✓ ✓ Interrupt mask register.

LCDCON 8000.02C0 32 ✓ ✓ LCD control register.

TC1D 8000.0300 16 ✓ ✓ Read-write data to TC1.

TC2D 8000.0340 16 ✓ ✓ Read-write data to TC2.

RTCDR 8000.0380 32 ✓ ✓ Real time clock data register.

RTCMR 8000.03C0 32 ✓ ✓ Real time clock match register.

PMPCON 8000.0400 12 ✓ ✓ DC to DC pump control register.

 Table 8-1: ARM7100 registers

ARM7100 Programmer’s Model

ARM7100 Data Sheet
ARM DDI 0035A

8-4

P
re

lim
in

ar
y

CODR 8000.0440 8 ✓ ✓ CODEC data I/O register.

UARTDR 8000.0480 8 ✓ ✓ UART FIFO data register.

UBLCR 8000.04C0 32 ✓ ✓ UART bit rate and line control register.

SYNCIO 8000.0500 16 ✓ ✓ Synchronous serial I/O data register

PALLSW 8000.0540 32 ✓ ✓ Least significant 32-bit word of LCD palette
register

PALMSW 8000.0580 32 ✓ ✓ Most significant 32-bit word of LCD palette
register

STFCLR 8000.05C0 - ✗ ✓ Write to clear all start up reason flags.

BLEOI 8000.0600 - ✗ ✓ Write to clear battery low interrupt.

MCEOI 8000.0640 - ✗ ✓ Write to clear MEDCHG interrupt.

TEOI 8000.0680 - ✗ ✓ Write to clear tick and watchdog interrupt.

TC1EOI 8000.06C0 - ✗ ✓ Write to clear TC1 interrupt.

TC2EOI 8000.0700 - ✗ ✓ Write to clear TC2 interrupt.

RTCEOI 8000.0740 - ✗ ✓ Write to clear RTC match interrupt.

UMSEOI 8000.0780 - ✗ ✓ Write to clear UART modem status changed
interrupt.

COEOI 8000.07C0 - ✗ ✓ Write to clear CODEC sound interrupt

HALT 8000.0800 - ✗ ✓ Write to enter idle state

STDBY 8000.0840 - ✗ ✓ Write to enter standby state

Reserved 8000.0880 -
8000.0FFF

- Write will have no effect, read is undefined

Name Address Size Read Write Function

 Table 8-1: ARM7100 registers (Continued)

ARM7100 Programmer’s Model

ARM7100 Data Sheet
ARM DDI 0035A

8-5

P
re

lim
in

ar
y

8.3 Register Descriptions
All internal registers in ARM7100 are reset (cleared to zero) by a system reset (nPOR,
nRESET or nPWRFL signals becoming active), except for the DRAM refresh period
register (DRFPR) which is only reset by nPOR becoming active. This ensures that the
contents of DRAM are preserved though a user reset or power fail condition.
Additionally, the real time clock registers are only cleared by nPOR.

8.3.1 Port A data register (PADR)

Values written to this 8-bit read-write register are output on port A pins if the
corresponding data direction bits are set HIGH (port output). Values read from this
register reflect the external state of port A, not necessarily the value written to it. All
bits are cleared by a system reset.

8.3.2 Port B data register (PBDR)

Values written to this 8-bit read-write register are output on port B pins if the
corresponding data direction bits are set HIGH (port output). Values read from this
register reflect the external state of port B, not necessarily the value written to it. All
bits are cleared by a system reset.

8.3.3 Port C data register (PCDR)

Values written to this 8-bit read-write register are output on port C pins if the
corresponding data direction bits are set LOW (port output). Values read from this
register reflect the external state of port C, not necessarily the value written to it. All
bits are cleared by a system reset.

8.3.4 Port D data register (PDDR)

Values written to this 8-bit read-write register are output on port D pins if the
corresponding data direction bits are set LOW (port output). Values read from this
register reflect the external state of port C, not necessarily the value written to it. All
bits are cleared by a system reset.

8.3.5 Port A data direction register (PADDR)

Bits set in this 8-bit read-write register select the corresponding pin in port A to become
an output. Clearing a bit sets the pin to input. All bits are cleared by a system reset.

8.3.6 Port B data direction register (PBDDR)

Bits set in this 8-bit read-write register select the corresponding pin in port B to become
an output. Clearing a bit sets the pin to input. All bits are cleared by a system reset.

ARM7100 Programmer’s Model

ARM7100 Data Sheet
ARM DDI 0035A

8-6

P
re

lim
in

ar
y

8.3.7 Port C data direction register (PCDDR)

Bits cleared in this 8-bit read-write register select the corresponding pin in port C to
become an output. Setting a bit sets the pin to input. All bits are cleared by a system
reset so that port C is output by default.

8.3.8 Port D data direction register (PDDDR)

Bits cleared in this 8-bit read-write register select the corresponding pin in port D to
become an output, setting a bit sets the pin to input. All bits are cleared by a system
reset so that port D is output by default.

8.3.9 Port E data register (PEDR)

Values written to this 4-bit read-write register will be output on port E pins if the
corresponding data direction bits are set HIGH (port output). Values read from this
register reflect the external state of port E, not necessarily the value written to it. All
bits are cleared by a system reset.

8.3.10 Port E data direction register (PDDDR)

Bits set in this 4-bit read-write register will select the corresponding pin in port E to
become an output, clearing bit sets the pin to input. All bits are cleared by a system
reset so that port E is input by default.

8.3.11 The system control register (SYSCON)

The system control register is a 21-bit read /write register controlling all the general
configuration of ARM7100 as well as operating modes for peripheral devices. All bits
in this register are cleared by a system reset.

The bits in the system control register SYSCON are shown in ➲Figure 8-1: The system
control register.

 Figure 8-1: The system control register

Keyboard scan This 4-bit field defines the state of the keyboard column
drives. ➲Table 8-2: Keyboard scan field gives definitions of
these states.

Keyboard scanTCIMTC2S TCISTC2M

ADCKSEL

SIREN CDENTXCDENRX UARTENBZMODDBGENLCDEN

034567

101112131415

17181920212223 16

9 8

BZTOG

EXCKENWAKEDISIRTXM

ARM7100 Programmer’s Model

ARM7100 Data Sheet
ARM DDI 0035A

8-7

P
re

lim
in

ar
y

TC1M Timer counter 1 mode. Setting this bit sets TC1 to prescale
mode. Clearing it sets free running mode.

TC1S Timer counter 1 clock source. Setting this bit sets the TC1
clock source to 512 KHz. Clearing it sets the clock source to
2KHz.

TC2M Timer counter 2 mode. Setting this bit sets TC2 to prescale
mode. Clearing it sets free running mode.

TC2S Timer counter 2 clock source. Setting this bit sets the TC2
clock source to 512 KHz. Clearing it sets the clock source to
2KHz.

UARTEN Internal UART enable bit. Setting this bit enables the internal
UART.

BZTOG This bit is used to drive the BUZ output directly.

BZMOD This bit sets the BUZ output mode:

0 BUZ is connected directly to the BZTOG bit
1 BUZ is connected to the TC1 under flow bit

ADCKSEL Microwire / SPI peripheral clock speed select. This 2-bit field
selects the frequency of the ADC sample clock. This is twice
the frequency of the synchronous serial ADC interface clock.
➲Table 8-3: ADCCLK frequencies shows the available
frequencies.

Keyboard Scan Column

 0 All driven HIGH

 1 All driven LOW

 2 - 7 All Tristate

 8 Column 0 only driven HIGH

 9 Column 1 only driven HIGH

 10 Column 2 only driven HIGH

 11 Column 3 only driven HIGH

 12 Column 4 only driven HIGH

 13 Column 5 only driven HIGH

 14 Column 6 only driven HIGH

 15 Column 7 only driven HIGH

 Table 8-2: Keyboard scan field

ARM7100 Programmer’s Model

ARM7100 Data Sheet
ARM DDI 0035A

8-8

P
re

lim
in

ar
y

DBGEN Setting this bit enables debug/broadcast mode. In this mode,
all internal accesses are output as if they were reads or writes
to expansion memory addressed by CS6. CS6 will still be
active in its standard address range. In addition the internal
interrupt request and the fast interrupt request signals to the
processor are output on port E bits 1 and 2 ie. in debug mode:

CS6 = CS6 / internal strobe
PE1 = nIRQ
PE2 = nFIQ

LCDEN Setting this bit enables the LCD controller.

CDENTX CODEC interface enable Tx bit. Setting this bit enables the
CODEC interface for data transmission to an external
CODEC device.

CDENRX CODEC interface enable Rx bit. Setting this bit enables the
CODEC interface for data reception from an external CODEC
device.

SIREN SIR protocol encoding enable bit. This has no effect if the
UART is not enabled.

EXCLKEN External expansion clock enable. If this bit is set the EXPCLK
is enabled continuously with the same speed and phase as
the CPU clock and will free run all the time the main oscillator
is running. This bit should not be left set all the time for power
consumption reasons. If the system enters the standby state
the EXPCLK will become undefined. If this bit is clear
EXPCLK will be active during memory cycles to expansion
slots that have external wait state generation enabled only.

WAKEDIS Switch on via the wakeup input is disabled if this bit is set.

IRTXM IrDA Tx mode bit. This bit controls the IrDA encoding
strategy. Clearing it means each zero bit transmitted is
represented as a pulse of width 3/16th of the bit rate period.
Setting this bit means each zero bit is represented as a pulse
of width 3/16th of the period of 115,000 bit rate clock ie.
1.6µSec regardless of the selected bit rate. Setting this bit will
use less power but probably reduce transmission distances.

BITS 21-31 Reserved. Write will have no effect, will always read zero.

ADCKSEL ADC Sample
Frequency (kHz)

ADC Interface
Frequency (kHz)

00 8 4

01 32 16

10 128 64

11 256 128

 Table 8-3: ADCCLK frequencies

ARM7100 Programmer’s Model

ARM7100 Data Sheet
ARM DDI 0035A

8-9

P
re

lim
in

ar
y

8.3.12 The System Status Flags Register (SYSFLG)

The system status flags register (SYSFLG) is a 32-bit read only register which
indicates various system information. The bits in SYSFLG are defined in ➲Figure 8-2:
The System Status Flag Register and are described below.

 Figure 8-2: The System Status Flag Register

MCDR This bit reflects the non-latched status of the media changed
input.

DCDET This bit reflects the inverted state of the nEXTPWR input pin.

WUDR Wake up direct read. This bit reflects the non-latched state of
the WAKEUP signal.

WUON This bit is set if the system has been brought out of standby
by a rising edge on the WAKEUP signal. It is only cleared by
a system reset or by writing to the HALT or STDBY locations.

DID Display ID nibble. This 4-bit nibble reflects the latched state
of the 4 LCD data lines DO[3:0]. The state of the 4 LCD data
lines is latched by the LCDEN bit and so always reflects the
last state of these lines before the LCD controller was
enabled. These bits identify the LCD display panel fitted.

CTS This bit reflects the current status of the clear to send (CTS)
modem control input to the built in UART.

DSR This bit reflects the current status of the data set ready (DSR)
modem control input to the built in UART.

DCD This bit reflects the current status of the data carrier detect
(DCD) modem control input to the built in UART.

DID MCDRWUON DCDETWUDR

CLDFLG RSTFLGPFFLG CTSDSRDCDUBUSYNBFLG

SSIBUSY CRXFE

UTXFF UTXFE RTCDIV

034 127

101112131415

212223

31 30 29 28 27 26 25 24

16

9 8

CTXFFVERID Reserved Reserved BOOT8BIT

ARM7100 Programmer’s Model

ARM7100 Data Sheet
ARM DDI 0035A

8-10

P
re

lim
in

ar
y

UBUSY UART transmitter busy. Set while the internal UART is busy
transmitting data, it is guaranteed to remain set until the
complete byte has been sent, including all stop bits.

NBFLG The new battery flag bit is set if a LOW to HIGH transition has
occurred on the nBATCHG input. It is cleared by writing to the
STFCLR location.

RSTFLG The reset flag is set if the nURESET input has been forced
LOW. It is cleared by writing to the STFCLR location.

PFFLG The Power Fail Flag is set if the system has been reset by the
PWRFL input pin. It is cleared by writing to the STFCLR
location.

CLDFLG The cold start flag is set if ARM7100 has been reset with a
power on reset. It is cleared by writing to the STFCLR
location.

RTCDIV This 6-bit field reflects the number of 64Hz ticks that have
passed since the last increment of the RTC. It is the output of
the divide by 64 chain that divides the 64Hz tick clock down
to 1Hz for the RTC. The MSB is the 32Hz output, the LSB is
the 1Hz output.

URXFE UART receiver FIFO empty. The meaning of this bit depends
on the state of the UFIFOEN bit in the UART bit rate and line
control register. If the FIFO is disabled, this bit is set when the
Rx holding register is empty. If the FIFO is enabled the
URXFE bit will be set when the Rx FIFO is empty.

UTXFF UART transmit FIFO full. The meaning of this bit depends on
the state of the UFIFOEN bit in the UART bit rate and line
control register. If the FIFO is disabled, this bit is set when the
Tx holding register is full. If the FIFO is enabled the UTXFF
bit will be set when the Tx FIFO is full.

CRXFE The CODEC Rx FIFO empty bit is set if the 16 byte CODEC
Rx FIFO is empty.

CTXFF The CODEC Tx FIFO full bit is set if the 16 byte CODEC Tx
FIFO is full.

SSIBUSY The synchronous serial interface busy bit is set while data is
being shifted in or out of the synchronous serial interface.
When clear, data is valid to read.

Reserved This will always read zero.

VERID Version ID bits. These 2 bits determine the revision id for
ARM7100. It will read 0 for the first revision.

BOOT8BIT This bit indicates the default (power on reset) bus width of the
ROM interface. If set, the initial bus width will be 8 bits. If
clear, it will be 32 bits. See ➲8.3.13 Memory configuration
register 1 (MEMCFG1) on page 8-11 and ➲8.3.14 Memory
configuration register 2 (MEMCFG2) on page 8-11 for more

ARM7100 Programmer’s Model

ARM7100 Data Sheet
ARM DDI 0035A

8-11

P
re

lim
in

ar
y

details on the ROM interface bus width. The state of this bit is
determined by the state of Port E bit 0 during power on reset.
LOW during power on reset will clear the BOOT8BIT bit and
the system will boot from a 32-bit ROM. HIGH during power
on reset will set the BOOT8BIT bit and the system will boot
from an 8-bit ROM.

8.3.13 Memory configuration register 1 (MEMCFG1)

The memory configuration register 1 is a 32-bit read-write register which sets the
configuration of the four expansion and ROM selects nCS[0:3] . Each select is
configured with a one byte field, starting with expansion select 0.

 Figure 8-3: Memory configuration register 1

8.3.14 Memory configuration register 2 (MEMCFG2)

The memory configuration register 2 is a 32-bit read-write register which sets the
configuration of the four expansion and ROM selects CS[4:7]. Each select is
configured with a one byte field, starting with expansion select 4.

 Figure 8-4: Memory configuration register 2

Each of the 8-bit fields in the memory configuration registers are identical and define
the number of wait states, define the bus width, enable the EXPCLK output during
accesses and enable sequential mode access. This is shown in➲Figure 8-5: Byte
fields in the memory configuration register below.

 Figure 8-5: Byte fields in the memory configuration register

nCS3 configuration nCS2 configuration nCS0 configurationnCS1 configuration

81516232431 7 0

CS7 configuration CS6 configuration CS4 configurationCS5 configuration

81516232431 7 0

Sequential Access Wait StateSQAEN Bus WidthRandom Access Wait State

23456 1 0

CLKEN

7

ARM7100 Programmer’s Model

ARM7100 Data Sheet
ARM DDI 0035A

8-12

P
re

lim
in

ar
y

➲Table 8-4: Values of the bus width field defines the bus width field. The effect of this
field is dependent on the BOOT8BIT bit which can be read in the SYSFLG register. All
bits in the memory configuration register are cleared by a system reset and the state
of the BOOT8BIT bit is determined by Port E bit 0 pin on ARM7100 during power on
reset. In this way, pulling Port E bit 0 either LOW or HIGH during power on reset allows
ARM7100 to boot from either 32-bit wide or 8-bit wide ROMs.

When the bus width field is programmed to PCMCIA mode the bus width and bus
conversion is defined by the state of A[27] and A[26] . ➲Table 8-5: PCMCIA mode bus
widths on page 8-12 defines the bus width and bus conversion for values of A[27] and
A[26] . Word bus conversion converts an ARM 32-bit word access into a series of byte
or 16-bit accesses. A special case is 16-bit I/O accesses (A[26] and A[27] HIGH). In
this case, 32-bit ARM word accesses are not converted into two 16-bit accesses. This
is to allow individual 16-bit register access. In this mode D[16:31] will be invalid and
the output expansion address bit 1 is selected by the value of A[25] . ARM7100 will
always output 0 on expansion address bit 25, ie. in 16-bit I/O mode processor address
bit 25 becomes PCMIA address bit 1, and PCMIA address bit 25 is 0 limiting the 16-
bit I/O address space to 32 Mb.

Note 16-bit I/O accesses are not converted to 32-bit ARM word accesses. This means that
D[16:31] will be invalid during ARM word accesses to this memory area.

Bus Width Field BOOT8BIT Expansion Transfer Mode Port E bit 0 during power on reset

00 0 32-bit wide bus access LOW

01 0 16-bit wide bus access LOW

10 0 8-bit wide bus access LOW

11 0 PCMCIA mode LOW

00 1 8-bit wide bus access HIGH

01 1 PCMCIA mode HIGH

10 1 32-bit wide bus access HIGH

11 1 16-bit wide bus access HIGH

 Table 8-4: Values of the bus width field

A26 A27 Bus Width Word Bus Conversion PCMCIA Memory Area

0 0 8 Bits Yes 8-bit attribute memory access

1 0 16 Bits Yes 16-bit common memory access

0 1 8 Bits Yes 8-bit I/O access

1 1 16 Bits No 16-bit I/O access

 Table 8-5: PCMCIA mode bus widths

ARM7100 Programmer’s Model

ARM7100 Data Sheet
ARM DDI 0035A

8-13

P
re

lim
in

ar
y

➲Table 8-7: Values of the page mode access wait state field defines the values of the
Random access wait state field.

➲Table 8-7: Values of the page mode access wait state field defines the values of the
page mode access wait state field.

SQAEN Sequential access enable. Setting this bit enables sequential
accesses that are on a quad word boundary to take
advantage of faster access times from devices that support
page mode. The sequential access will be faulted after four
words, (to allow video refresh cycles to occur) even if the
access is part of a longer sequential access.

CLKEN Expansion clock enable. Setting this bit enables the EXPCLK
to be active during accesses to the selected expansion
device. This provides a timing reference for devices that need
to extend bus cycles using the EXPRDY input. Back to back
(but not necessarily page mode) accesses result in a
continuous clock.

For more details on bus timing, refer to ➲Chapter 20, DC and AC Parameters.

8.3.15 DRAM refresh period register (DRFPR)

The DRAM refresh period register is an 8-bit read-write register which enables refresh
and selects the refresh period used by the DRAM controller for its periodic CAS before
RAS refresh. The value in the DRAM refresh period register is only cleared by a power
on reset. Its state is maintained during a power fail or user reset.

Value No. Wait States Required Random Access Speed (nSEC)

00 4 250

01 3 200

10 2 150

11 1 100

 Table 8-6: Values of the random access wait state field

Value No. Wait States Required Random Access Speed (nSEC)

00 3 150

01 2 120

10 1 80

11 0 40

 Table 8-7: Values of the page mode access wait state field

ARM7100 Programmer’s Model

ARM7100 Data Sheet
ARM DDI 0035A

8-14

P
re

lim
in

ar
y

RFSHEN DRAM refresh enable. Setting this bit enables periodic
refresh cycles to be generated by ARM7100 at a rate set by
the RFDIV field. Setting this bit also enables self refresh
mode when ARM7100 is in the standby state.

RFDIV This 7-bit field sets the DRAM refresh rate. The refresh period
is derived from a 128 KHz clock and is given by the following
formula:

Frequency (KHz) = 128/(RFDIV + 1)

or

RFDIV = (128/Refresh frequency (KHz)) - 1

The maximum refresh frequency is 64 KHz, the minimum is 1KHz. The RFDIV field
should not be programmed with zero as this results in no refresh cycles being initiated.

8.3.16 Interrupt status register (INTSR)

The interrupt status register is a 16-bit read only register. It reflects the current state of
the 16 interrupt sources within ARM7100. Each bit is set if the appropriate interrupt is
active. The interrupt assignment is given in ➲Figure 8-6: Interrupt Assignment.

 Figure 8-6: Interrupt Assignment

EXTFIQ The external fast interrupt is active if the nEXTFIQ input pin
is forced LOW and is mapped to the nFIQ input on the ARM7
processor.

BLINT Battery low interrupt is active if no external supply is present
(nEXTPWR is HIGH) and the battery OK input pin BATOK is
forced LOW. This interrupt is de-glitched with a 16 KHz clock
so only generates an interrupt if it is active for longer than
62.5 mSec. It is mapped to the nFIQ input on the ARM7
processor and is cleared by writing to the BLEOI location.

RFSHEN RFDIV

67 0

EINT3 EINT1EINT2 EXTFIQBLINTWEINTMCINTCSINT

234567 1 8

SSEOTI URXINTUMSINT TC1OITC2OIRTCMITINTUTXINT

101112131415 9 8

ARM7100 Programmer’s Model

ARM7100 Data Sheet
ARM DDI 0035A

8-15

P
re

lim
in

ar
y

WEINT Watch dog expired interrupt becomes active on a rising edge
of the periodic 64 Hz tick interrupt clock if the tick interrupt is
still active, ie. if a tick interrupt has not been serviced for a
complete tick period. It is cleared by writing to the TEOI
location.

MCINT This interrupt is active after a rising edge on the MEDCHG
input pin has been detected, This input is de-glitched with a
16 KHz clock so only generates an interrupt if it is active for
longer than 62.5 mSec. It is mapped to the FIQ input on the
ARM7 processor and is cleared by writing to the MCEOI
location.

CSINT The CODEC sound interrupt is active if the CODEC interface
is enabled and the CODEC data FIFO has reached half full or
empty (depending on the interface direction). It is cleared by
writing to the COEOI location.

EINT1 The external interrupt input 1 is active if the nEINT1 input is
active (LOW). It is cleared by returning nEINT1 to the passive
(HIGH) state.

EINT2 The external interrupt input 2 is active if the NEINT2 input is
active (LOW). It is cleared by returning nEINT2 to the passive
(HIGH) state.

EINT3 External interrupt input 3. This input will be active if the EINT3
input is active (HIGH). It is cleared by returning EINT3 to the
passive (LOW) state.

TC1OI The TC1 under flow interrupt becomes active on the next
rising edge of the timer counter 1 clock after the timer counter
has under flowed (reached zero). It is cleared by writing to the
TC1EOI location.

TC2OI The TC2 under flow interrupt becomes active on the next
rising edge of the timer counter 2 clock after the timer counter
has under flowed (reached zero). It is cleared by writing to the
TC2EOI location.

RTCMI The RTC compare match interrupt becomes active on the
next rising edge of the 1Hz real time clock (one second later)
after the 32-bit time written to the real time clock match
register exactly matches the current time in the RTC. It is
cleared by writing to the RTCEOI location.

TINT 64 Hz tick interrupt. This interrupt becomes active on every
rising edge of the internal 64Hz clock signal. This 64 Hz clock
is derived from the 15 stage ripple counter that divides the
32.768 KHz oscillator input down to 1Hz for the real time
clock. This interrupt is cleared by writing to the TEOI location.

ARM7100 Programmer’s Model

ARM7100 Data Sheet
ARM DDI 0035A

8-16

P
re

lim
in

ar
y

UTXINT Internal UART transmit FIFO empty interrupt. The function of
this interrupt source depends on whether the UART FIFO is
enabled. If the FIFO is disabled (FIFOEN bit is clear in the
UART bit rate and line control register), this interrupt is active
when there is no data in the UART Tx data holding register. It
is cleared by writing to the UART data register. If the FIFO is
enabled, this interrupt is active when the UART Tx FIFO is
half or more empty, and is cleared by filling the FIFO to at
least half full.

URXINT Internal UART receive FIFO full interrupt. The function of this
interrupt source depends on whether the UART FIFO is
enabled. If the FIFO is disabled this interrupt is active when
there is valid Rx data in the UART Rx data holding register. It
is cleared by reading this data. If the FIFO is enabled this
interrupt is active when the UART Rx FIFO is half or more full
or if the FIFO is non empty and no more characters have
been received for a three character time out period. It is
cleared by reading all the data from the Rx FIFO.

UMSINT Internal UART modem status changed interrupt. This
interrupt will be active if either of the two modem status lines
(CTS or DSR) change state. It is cleared by writing to the
UMSEOI location.

SSEOTI Synchronous serial interface end of transfer interrupt. This
interrupt is active after a complete data transfer to and from
the external ADC has completed. It is cleared by reading the
ADC data from the SYNCIO register.

8.3.17 Interrupt mask register (INTMR)

The interrupt mask register is a 16-bit read-write register which is used to enable any
of the 16 interrupt sources selectively within ARM7100. The four shaded interrupts all
generate a fast interrupt request to the ARM7 processor. This causes a jump to
processor virtual address 0000.0001C. All other interrupts generate a standard
interrupt request causing a jump to processor virtual address 0000.00018. See
➲Table 9-1: Interrupt allocation on page 9-3 for the interrupt allocation. Setting the
appropriate bit in this register enables the corresponding interrupt. All bits are cleared
by a system reset.

EINT3 EINT1EINT2 EXTFIQBLINTWEINTMCINTCSINT

234567 1 8

SSEOTI URXINTUMSINT TC1OITC2OIRTCMITINTUTXINT

101112131415 9 8

ARM7100 Programmer’s Model

ARM7100 Data Sheet
ARM DDI 0035A

8-17

P
re

lim
in

ar
y

8.3.18 The LCD control register (LCDCON)

The LCD control register is a 32-bit read-write register which controls the size of the
LCD screen and the mode in which the LCD controller operates. Refer to the system
description of the LCD controller for more information on video buffer mapping.

Video buffer size The video buffer size field is a 13-bit field that sets the total
number of bytes (*128 quad words) in the video display
buffer. This is calculated from the following formula:

Video buffer size = (Total bytes in video buffer/128) - 1

For example, for a 640 x 240 LCD and 4 bits per pixel the size
of the video buffer = 640 x 240 x 4 = 614400 bits.
video buffer size field = (614400/128)-1

= 4799 or 0x12BF Hex

Line length The line length field is a 6-bit field that sets the number of
pixels in one complete line. This field is calculated from the
formula:

Line length = (No. pixels in line/16) - 1

For example:
640 x 240 LCD line length = (640/16)-1

= 39 or 0x27 Hex

Pixel prescale The pixel prescale field is a 6-bit number that sets the pixel
rate prescale. The pixel rate is derived from a 36.864 MHz
clock and is calculated from the following formula:

Pixel rate (MHz) = 36.864/ (Pixel prescale + 1)

The pixel rate should be chosen to give a complete screen
refresh frequency of approximately 70 Hz to avoid flicker.
Frequencies above 70 Hz should be avoided as this
consumes additional power. The pixel prescale value can be
expressed in terms of the LCD size by the following formula:

Pixel prescale = (526628/Total pixels in display)-1

The value should be rounded down to the nearest whole
number, and zero is illegal and results in no pixel clock. For
example:

640 x 240 LCD pixel prescale = 526628/(640x240)-1
= 2.428(2)

Actual pixel rate = 36.864E6/2+1
=12.288MHz

Actual refresh frequency = 12.288E6/(640x240)
= 80Hz

GSENGSMD Video buffer sizeLine lengthPixel prescaleAC prescale

1319293031 12 0182425

ARM7100 Programmer’s Model

ARM7100 Data Sheet
ARM DDI 0035A

8-18

P
re

lim
in

ar
y

As the CL2 low pulse time is doubled after every CL1 high
pulse, this refresh frequency is only an approximation, the
accurate formula is:

12.288E6/((640x240)+120) =79.937Hz.

AC prescale The AC prescale field is a 5-bit number that sets LCD AC bias
frequency. This frequency is the required AC bias frequency
for a given manufacturer’s LCD plate. It is derived from the
frequency of the line clock (CL1).

The M signal toggles after n + 1 counts of the line clock (CL1)
where n is the number programmed into the AC prescale
field. This number must be chosen to match the
manufacturers recommendation. This is normally 13 but must
not be exactly divisible by the number of lines in the display.

GSEN Grey scale enable bit. Setting this bit enables grey scale
output to the LCD. When it is cleared, each bit in the video
map directly corresponds to a pixel in the display.

GSMD Grey scale mode bit. Clearing this bit sets the controller to 2
bits per pixel (4 grey scales). Setting it sets it to 4 bits per pixel
(15 grey scales).

8.3.19 Timer counter 1 data register (TC1D)

The timer counter 1 data register is a 16-bit read-write register which sets and reads
data to TC1. Any value written will be decremented on the next rising edge of the clock.

8.3.20 Timer counter 2 data register (TC2D)

The timer counter 2 data register is a 16-bit read-write register which sets and reads
data to TC2. Any value written will be decremented on the next rising edge of the clock.

8.3.21 Real time clock data register (RTCDR)

The real time clock data register is a 32-bit read-write register which sets and reads
the binary time in the RTC. Any value written will be incremented on the next rising
edge of the 1 Hz clock.

All bits in the real time clock data register are only cleared by an active nPOR.

8.3.22 Real time clock match register (RTCMR)

The real time clock match register is a 32-bit read-write register which sets and reads
the binary match time to RTC. Any value written will be compared to the current binary
time in the RTC, if they match it will assert the RTCMI interrupt source.

8.3.23 Pump control register (PMPCON)

The DC to DC converter pump control register is a 12-bit read-write only register which
sets and controls the variable mark space ratio drives for two DC to DC converters. All
bits in this register are cleared by a system reset.

ARM7100 Programmer’s Model

ARM7100 Data Sheet
ARM DDI 0035A

8-19

P
re

lim
in

ar
y

Vh from battery This 4-bit field controls the on time for the DC to DC pump for
a Vh rail while the nEXTPWR input is HIGH. Setting these
bits to 0 disables this pump. Setting them to 1 allows the
pump to be driven in a 1:16 duty ratio, 2 in a 2:16 duty ratio
etc. up to a 15:16 duty ratio. An 8:16 duty ratio results in a
square wave of 96 KHz.

Vh from mains This 4-bit field controls the on time for the DC to DC pump for
a Vh rail while the nEXTPWR input is LOW. Setting these bits
to 0 disables this pump. Setting them to 1 allows the pump to
be driven in a 1:16 duty ratio, 2 in a 2:16 duty ratio etc. up to
a 15:16 duty ratio. An 8:16 duty ratio results in a square wave
of 96 KHz.

VL pump ratio This 4-bit field controls the on time for the DC to DC pump for
the VL voltage rail. Setting these bits to 0 disables this pump.
Setting them to 1 allows the pump to be driven in a 1:16 duty
ratio, 2 in a 2:16 duty ratio etc. up to a 15:16 duty ratio. An
8:16 duty ratio results in a square wave of 96 KHz. The state
of the output drive pin (drive 1) is latched during power on
reset, this latched value is used to determine the polarity of
the bias voltage. The sense of the DC to DC converter control
lines is summarised in ➲Table 8-8: Sense of DC to DC
Converter Control Lines.

8.3.24 The CODEC interface data register (CODR)

The CODR register is an 8-bit read-write register. Data written to or read from this
register is pushed or popped onto a 16 byte FIFO buffer. Data from this buffer is then
serialised and sent to or received from the CODEC sound device. The CODEC
interrupt CSINT is generated repetitively at 1/8th of the byte transfer rate and the state
of the FIFOs can be read in the system flags register. The net data transfer rate to or
from the CODEC device is 8 Kb per second giving an interrupt rate of 1 KHz.

Initial State of Drive n during POR Sense of Drive n Polarity of Bias Voltage

LOW Active HIGH +ve

HIGH Active LOW -ve

 Table 8-8: Sense of DC to DC Converter Control Lines

Vh from battery ratioVh from mains ratioVL pump ratio

3711 048

ARM7100 Programmer’s Model

ARM7100 Data Sheet
ARM DDI 0035A

8-20

P
re

lim
in

ar
y

8.3.25 UART data register (UARTDR)

The UARTDR register is an 11-bit read and an 8-bit write register for all data transfers
to or from the internal UART. Data written to this register is pushed onto the 16-byte
data Tx holding FIFO if the FIFO is enabled, or stored in a one byte holding register.
This write initiates transmission from the UART. The UART data read register is made
up of the 8-bit data byte received from the UART together with three bits of error
status. Data read from this register is popped from the 16 byte data Rx FIFO if the
FIFO is enabled, or read from a one byte buffer register containing the last byte
received and error status if not enabled. Data received by the UART is automatically
pushed onto the Rx FIFO if it is enabled.

The Rx FIFO is 10 bits wide by 16 deep.

FRMERR UART framing error. This bit is set if the UART detected an
overrun or framing error while receiving the Rx data byte.

PARERR UART parity error. This bit is set if the UART detected a parity
error while receiving the Rx data byte.

OVERR UART overrun error. This bit is set if more data is received by
the UART and the FIFO is full. The overrun error bit is not
associated with any single character and so is not stored in
the FIFO. If this bit is set, the entire contents of the FIFO is
invalid and should be cleared. This error bit is cleared by
reading the UARTDR register.

8.3.26 UART bit rate and line control register (UBRLCR)

The bit rate divisor and line control register is a 19-bit read-write register. Writing to this
register sets the bit rate and mode of operation for the internal UART.

Bit rate divisor This 12-bit field sets the bit rate. The bit rate divider is fed by
a clock frequency of 3.6864 MHz. It is then further divided
internally by 16 to give the bit rate. The following formula
gives the divisor value for any bit rate:

Divisor = (230400/bit rate)-1

A value of zero in this field is illegal.

PARERROVERR Rx dataFRMERR

7910 08

XSTOPUFIFOEN Bit Rate DivisorBREAKPRTENEVENPRT

12131516 11 0131 14

WRDLEN

1718

ARM7100 Programmer’s Model

ARM7100 Data Sheet
ARM DDI 0035A

8-21

P
re

lim
in

ar
y

➲Table 8-9: Internal UART Bit Rates shows some example
bit rates with the corresponding divisor value.

BREAK Setting this bit drives the Tx output active (HIGH) to generate
a break.

PRTEN Parity enable bit. Setting this bit enables parity detection and
generation.

EVENPRT Even parity bit. Setting this bit sets parity generation and
checking to even parity, clearing it sets odd parity. This bit has
no effect if the PRTEN bit is clear.

XSTOP Extra stop bit. Setting this bit will cause the UART to transmit
two stop bits. Clearing it sets one stop bit after each data
byte.

FIFOEN Set to enable FIFO buffering of Rx and Tx data. Clear to
disable the FIFO, ie. set its depth to one byte.

WRDLEN This two bit field selects the word length according to ➲Table
8-10: UART word length on page 8-21.

Divisor Value Bit Rate

1 115200

2 76800

3 57600

5 38400

11 19200

15 14400

23 9600

95 2400

191 1200

2094 110

 Table 8-9: Internal UART Bit Rates

WRDLEN Word length

00 5 bits

01 6 bits

10 7 bits

11 8 bits

 Table 8-10: UART word length

ARM7100 Programmer’s Model

ARM7100 Data Sheet
ARM DDI 0035A

8-22

P
re

lim
in

ar
y

8.3.27 Least significant word - LCD palette register (PALLSW)

The least and most significant word LCD palette registers make up a 64-bit read-write
register which maps the logical pixel value to a physical grey scale level. The 64-bit
register is made up of 16 4-bit nibbles, each nibble defining the grey scale level
associated with the appropriate pixel value. If the LCD controller is operating in two
bits per pixel, only the lower 4 nibbles are valid (D[15:0] in the least significant word).
Similarly one bit per pixel means only the lower 2 nibbles are valid (D[7:0] in the least
significant word). The pixel to grey scale level assignments are shown in ➲Figure 8-7:
Least significant word palette assignments and ➲Figure 8-8: Most significant word
palette assignments.

 Figure 8-7: Least significant word palette assignments

8.3.28 Most significant word - LCD palette register (PALMSW)

 Figure 8-8: Most significant word palette assignments

The actual physical colour and pixel duty ratio for the grey scale values is shown in
➲Table 8-11: Grey scale value to colour mapping. Note that colours 8-15 are the
inverse of colours 7-0 respectively. This means that colours 7 and 8 are identical. The
steps in the grey scale are non linear but have been chosen to give a close
approximation to perceived linear grey scales. This is due to the eye being more
sensitive to changes in grey level close to 50% grey.

Grey scale

3 - 0

value for
pixel value

0

Grey scale

7 - 4

value for
pixel value

1

Grey scale

11 - 8

value for
pixel value

2

Grey scale

15 - 12

value for
pixel value

3

Grey scale

19 - 16

value for
pixel value

4

Grey scale

23 - 20

value for
pixel value

5

Grey scale

27 - 24

value for
pixel value

6

Grey scale

31 - 28

value for
pixel value

7

Grey scale

3 - 0

value for
pixel value

8

Grey scale

7 - 4

value for
pixel value

9

Grey scale

11 - 8

value for
pixel value

10

Grey scale

15 - 12

value for
pixel value

11

Grey scale

19 - 16

value for
pixel value

12

Grey scale

23 - 20

value for
pixel value

13

Grey scale

27 - 24

value for
pixel value

14

Grey scale

31 - 28

value for
pixel value

15

ARM7100 Programmer’s Model

ARM7100 Data Sheet
ARM DDI 0035A

8-23

P
re

lim
in

ar
y

8.3.29 Synchronous serial interface data register (SYNCIO)

SYNCIO is a 16-bit read-write register. The byte written to the SYNCIO register will be
serialised and transmitted out of the synchronous serial interface. The clock will
automatically be started at the programmed frequency and a synchronisation pulse
will be issued. The ADCIN pin is sampled on every clock edge and the result is shifted
in the SYNCIO read register.

During data transfer the SSIBUSY bit is set HIGH, at the end of a transfer the SSEOTI
interrupt will be asserted. This interrupt is cleared by reading the SYNCIO register.

The data read from the SYNCIO register will be the last 16 bits shifted out of the ADC.
The length of the data frame can be programmed by writing to the SYNCIO register
allowing many different ADCs to be accommodated. ➲Figure 8-9: Bits in SYNCIO
write register defines the bits in the SYNCIO register.

Grey scale value Duty cycle % pixels lit

0 0 0

1 1/9 11.1

2 1/5 20

3 4/15 26.7

4 3/9 33.3

5 2/5 40

6 4/9 44.4

7 1/2 50

8 1/2 50

9 5/9 55.6

10 3/5 60

11 6/9 66.7

12 11/15 73.3

13 4/5 80

14 8/9 88.9

15 1 100

 Table 8-11: Grey scale value to colour mapping

ARM7100 Programmer’s Model

ARM7100 Data Sheet
ARM DDI 0035A

8-24

P
re

lim
in

ar
y

 Figure 8-9: Bits in SYNCIO write register

ADC configuration 8-bit configuration data to be sent to the ADC.

Frame length The 5-bit frame length field is the total number of shift clocks
required to complete a data transfer. For many ADCs this is
25, 8 for configuration byte + 1 null bit + 16-bit result.

SMCKEN Setting this bit will enable a free running sample clock at the
programmed ADC clock frequency to be output on the
SMPLCK pin.

TXFRMEN Setting this bit causes an ADC data transfer to be initiated.
The value in the ADC field will be shifted out to the ADC and
depending on the frame length programmed, a number of bits
will be captured from the ADC. If the SYNCIO register is
written to with the TXFRMEN bit LOW, no ADC transfer will
take place but the frame length and SMCKEN bits will be
affected.

8.3.30 Clear all start up reason flags location (STFCLR)

A write to this location clears all the start up reason flags in the system flags status
register SYSFLG.

8.3.31 Battery low end of interrupt (BLEOI)

A write to this location clears the interrupt generated by a low battery (falling BATOK
with nEXTPWR HIGH).

8.3.32 Media changed end of interrupt (MCEOI)

A write to this location clears the interrupt generated by a rising edge of the MEDCHG
input pin.

8.3.33 Tick end of interrupt location (TEOI)

A write to this location clears the current pending tick interrupt and watchdog interrupt.

8.3.34 TC1 end of interrupt location (TC1EOI)

A write to this location clears the under flow interrupt generated by TC1.

8.3.35 TC2 end of interrupt location (TC2EOI)

A write to this location clears the under flow interrupt generated by TC2.

SMCKENTXFRMEN ADC configuration byteFrame length

781314 012

Reserved

15

ARM7100 Programmer’s Model

ARM7100 Data Sheet
ARM DDI 0035A

8-25

P
re

lim
in

ar
y

8.3.36 RTC match end of interrupt (RTCEOI)

A write to this location clears the RTC match interrupt.

8.3.37 UART modem status changed end of interrupt (UMSEOI)

A write to this location clears the modem status changed interrupt.

8.3.38 CODEC end of interrupt location (COEOI)

A write to this location clears the sound interrupt (CSINT).

8.3.39 Enter idle state location (HALT)

A write to this location puts the system into the idle state by halting the clock to the
processor until an interrupt is generated.

Note If the idle state is entered with no interrupts enabled, there is no mechanism for exiting
the idle state except for a system reset.

8.3.40 Enter standby state location (STDBY)

A write to this location puts the system into the standby state by halting the main
oscillator. It will automatically switch the DRAM's to self refresh if the RFSHEN bit is
set in the DRAM refresh period register. All transitions to the standby state are
synchronised with the DRAM cycles.

ARM7100 Programmer’s Model

ARM7100 Data Sheet
ARM DDI 0035A

8-26

P
re

lim
in

ar
y

ARM7100 Data Sheet
ARM DDI 0035A

9-1

111

P
re

lim
in

ar
y

Interrupt Controller

This chapter describes the interrupt controller.

9.1 Interrupt Controller 9-2

9

Interrupt Controller

ARM7100 Data Sheet
ARM DDI 0035A

9-2

P
re

lim
in

ar
y

9.1 Interrupt Controller
The ARM 710a has two interrupt types:

• interrupt request (IRQ)

• fast interrupt request (FIQ)

The interrupt controller in ARM7100 controls interrupts from 16 different sources.
Twelve interrupt sources are mapped to the IRQ input and four sources to the FIQ
input. FIQs have a higher priority than IRQs and if two interrupts at the same priority
are active, the priority they are serviced in must be resolved in software.

All interrupts are level sensitive, ie. they must conform to the following sequence:

1 The device asserts the appropriate interrupt request line.

2 If the appropriate bit is set in the interrupt mask register, either FIQ or IRQ is
asserted by the interrupt controller.

3 If interrupts are enabled, the processor jumps to the appropriate vector.

4 Interrupt despatch software reads the interrupt control and status register to
establish the source(s) of the interrupt and calls the appropriate interrupt
service routine(s).

5 Software in the interrupt service routine clears the interrupt source by an
action specific to the device requesting the interrupt, eg. reading the UART Rx
register.

6 The interrupt service routine may then re-enable interrupts and any other
pending interrupts will be serviced in a similar way, or return to the interrupt
dispatch code which can check for any more pending interrupts and dispatch
them accordingly.

See ➲Chapter 8, ARM7100 Programmer’s Model for details of interrupt registers.

Interrupt Controller

ARM7100 Data Sheet
ARM DDI 0035A

9-3

P
re

lim
in

ar
y

➲Table 9-1: Interrupt allocation shows the names and allocation of interrupts in
ARM7100.

Interrupt Bit in Mask and ISR Name Comment

FIQ 0 EXTFIQ External fast interrupt input

FIQ 1 BLINT Battery low interrupt

FIQ 2 WEINT Watch dog expired interrupt

FIQ 3 MCINT MEDCHG interrupt

IRQ 4 CSINT CODEC sound interrupt

IRQ 5 EINT1 External interrupt input 1

IRQ 6 EINT2 External interrupt input 2

IRQ 7 EINT3 External interrupt input 3

IRQ 8 TC1OI TC1 under flow interrupt

IRQ 9 TC2OI TC2 under flow interrupt

IRQ 10 RTCMI RTC compare match interrupt

IRQ 11 TINT 64 Hz tick interrupt

IRQ 12 UTXINT Internal UART transmit FIFO empty interrupt

IRQ 13 URXINT Internal UART receive FIFO full interrupt

IRQ 14 UMSINT Internal UART modem status changed interrupt

IRQ 15 SSEOTI Synchronous serial interface end of transfer interrupt

 Table 9-1: Interrupt allocation

Interrupt Controller

ARM7100 Data Sheet
ARM DDI 0035A

9-4

P
re

lim
in

ar
y

ARM7100 Data Sheet
ARM DDI 0035A

10-1

111

P
re

lim
in

ar
y

The Expansion and
ROM Interface

This chapter describes the ROM Interface.

10.1 The Expansion and ROM Interface 10-2

10

The Expansion and ROM Interface

ARM7100 Data Sheet
ARM DDI 0035A

10-2

P
re

lim
in

ar
y

10.1 The Expansion and ROM Interface
Eight separate linear memory or expansion segments are decoded by the ARM7100.
Each segment is 256 Mb and can be interfaced to a conventional SRAM-like interface.

Each segment can be programmed individually to:

• be 8, 16 or 32 bits wide

• support page mode access

• execute from 0 to 4 wait states.

In addition, bus cycles can be extended using the EXPRDY input signal.

Page mode access is accomplished by running up to four accesses together. This can
significantly improve bus bandwidth to devices such as ROMs. Sequential burst mode
access is always faulted (the bus returned to idle) after four accesses regardless of
bus width to allow DMA and refresh cycles.

See ➲Chapter 8, ARM7100 Programmer’s Model for details of the expansion and
ROM interface registers.

ARM7100 Data Sheet
ARM DDI 0035A

11-1

111

P
re

lim
in

ar
y

DRAM controller

This chapter describes the DRAM controller.

11.1 DRAM Controller 11-2

11

DRAM controller

ARM7100 Data Sheet
ARM DDI 0035A

11-2

P
re

lim
in

ar
y

11.1 DRAM Controller
The DRAM controller in ARM7100 provides connections allowing a direct interface to
up to four banks of DRAM. Each bank is 32 bits wide and up to 256 Mb in size. Four
RAS lines are provided (one per bank) and four CAS lines (one per byte line). The
DRAM device size is not programmable if devices smaller than the largest size
supported (1 Gbit) are used. This leads to a segmented memory map with each bank
separated by 256 MBytes. Segments that are smaller than the bank size will repeat
within the bank.

➲Table 11-1: Physical to DRAM address mapping shows the mapping of physical
address to DRAM row and column address. This mapping has been organised to
support any DRAM device size from 4 Mbit to 1 Gbit with a square row and column
configuration, ie. the number of column addresses is equal to the number of row
addresses. If a non-square DRAM is used, further fragmentation of the memory map
will occur. However the smallest contiguous segment will always be 1 Mb.

➲Table 11-2: DRAM address mapping shows the address mapping for various
DRAMs with square and non-square row and address inputs, assuming two x16
devices are connected to each RAS line. This mapping is repeated every 256 Mb for
each DRAM bank. n is given by n = 0xC + bank number, eg. 0 for bank 0.

Memory Address DRAM Column DRAM Row Pin Name

0 A2 A10 A[27]/DRA[0]

1 A3 A11 A[26]/DRA[1]

2 A4 A12 A[25]/DRA[2]

3 A5 A13 A[24]/DRA[3]

4 A6 A14 A[23]/DRA[4]

5 A7 A15 A[22]/DRA[5]

6 A8 A16 A[21]/DRA[6]

7 A9 A17 A[20]/DRA[7]

8 A19 A18 A[19]/DRA[8]

9 A21 A20 A[18]/DRA[9]

10 A23 A22 A[17]/DRA[10]

11 A25 A24 A[16]/DRA[11]

12 A27 A26 A[15]/DRA[12]

 Table 11-1: Physical to DRAM address mapping

DRAM controller

ARM7100 Data Sheet
ARM DDI 0035A

11-3

P
re

lim
in

ar
y

The DRAM controller contains a programmable refresh counter. The refresh rate is
controlled using the DRAM refresh period register (DRFPR).

Device Size Address
Configuration

Total Size
of Bank

Address Range of Segment(s) Size of
Segment(s)

4 Mbit 9 Row x 9 Column 1 Mbyte n000.0000 - n00F.FFFF 1 Mbyte

16 Mbit 10 Row x 10 Column 4 MBytes n000.0000 - n03F.FFFF 4 MBytes

16 Mbit 12 Row x 8 Column 4 MBytes n000.0000 - n003.FFFF
n010.0000 - n013.FFFF
n040.0000 - n043.FFFF
n050.0000 - n053.FFFF
n100.0000 - n103.FFFF
n110.0000 - n113.FFFF
n140.0000 - n143.FFFF
n150.0000 - n153.FFFF
n400.0000 - n403.FFFF
n410.0000 - n413.FFFF
n440.0000 - n443.FFFF
n450.0000 - n453.FFFF
n500.0000 - n503.FFFF
n510.0000 - n513.FFFF
n540.0000 - n543.FFFF
n550.0000 - n553.FFFF

256 KBytes
256 KBytes
256 KBytes
256 KBytes
256 KBytes
256 KBytes
256 KBytes
256 KBytes
256 KBytes
256 KBytes
256 KBytes
256 KBytes
256 KBytes
256 KBytes
256 KBytes
256 KBytes

64 Mbit 11 Row x 11 Column 16 MBytes n000.0000 - n0FF.FFFF 16 MBytes

64 Mbit 13 Row x 9 Column 16 MBytes n000.0000 - n00F.FFFF
n020.0000 - n02F.FFFF
n080.0000 - n08F.FFFF
n0A0.0000 - n0AF.FFFF
n200.0000 - n20F.FFFF
n220.0000 - n22F.FFFF
n280.0000 - n28F.FFFF
n2A0.0000 - n2AF.FFFF
n800.0000 - n80F.FFFF
n820.0000 - n82F.FFFF
n880.0000 - n88F.FFFF
n8A0.0000 - n8AF.FFFF
nA00.0000 - nA0F.FFFF
nA20.0000 - nA2F.FFFF
nA80.0000 - nA8F.FFFF
nAA0.0000 - nAAF.FFFF

1 MByte
1 MByte
1 MByte
1 MByte
1 MByte
1 MByte
1 MByte
1 MByte
1 MByte
1 MByte
1 MByte
1 MByte
1 MByte
1 MByte
1 MByte
1 MByte

256 Mbit 12 Row x 12 Column 64 MBytes n000.0000 - n3FF.FFFF 64 MBytes

1 Gbit 13 Row x 13 Column 256 MBytes n000.0000 - nFFF.FFFF 256 MBytes

 Table 11-2: DRAM address mapping

DRAM controller

ARM7100 Data Sheet
ARM DDI 0035A

11-4

P
re

lim
in

ar
y

ARM7100 Data Sheet
ARM DDI 0035A

12-1

111

P
re

lim
in

ar
y

CODEC Interface

This chapter describes the ARM7100 CODEC interface.

12.1 CODEC Interface 12-2

12

CODEC Interface

ARM7100 Data Sheet
ARM DDI 0035A

12-2

P
re

lim
in

ar
y

12.1 CODEC Interface
The CODEC interface allows direct connection of a telephony type CODEC to
ARM7100. It provides all the necessary clocks and timing pulses and performs
serialisation or visa versa of the data stream to or from the CODEC. The interface is
full duplex and contains two separate data FIFOs.

Data is transferred to or from the CODEC at 64 k bits per second. This is either written
to or read from a 16-byte FIFO. The sound interrupt is generated every 8 bytes that
are transferred (FIFO half full/empty) which means the interrupt rate is reduced from
8 KHz to 1 KHz with a latency of 1 mSec.

See ➲Chapter 8, ARM7100 Programmer’s Model for details of the CODEC interface
registers.

ARM7100 Data Sheet
ARM DDI 0035A

13-1

111

P
re

lim
in

ar
y

Synchronous Serial Interface

This chapter describes the synchronous serial interface.

13.1 Synchronous Serial Interface 13-2

13

Synchronous Serial Interface

ARM7100 Data Sheet
ARM DDI 0035A

13-2

P
re

lim
in

ar
y

13.1 Synchronous Serial Interface
The synchronous serial interface provides a four wire interface to serial peripheral
devices such as ADCs that have a SPI or Microwire compatible interface. The
clock output frequency is programmable and only active during data transmissions to
save power. The output channel is fed by an 8-bit shift register. The input channel is
captured by a 16-bit shift register. The clock and synchronisation pulses are activated
by a write to the output shift register. During transfers, the SSIBUSY (synchronous
serial interface busy) bit in the system status flags register is set when the transfer is
complete. Valid data is in the 16-bit read shift register when the SSEOTI interrupt is
asserted and the SSIBUSY bit is cleared.

See ➲Chapter 8, ARM7100 Programmer’s Model for details of the synchronous serial
interface registers.

ARM7100 Data Sheet
ARM DDI 0035A

14-1

111

P
re

lim
in

ar
y

LCD Controller

This chapter describes the LCD controller.

14.1 LCD Controller 14-2

14

LCD Controller

ARM7100 Data Sheet
ARM DDI 0035A

14-2

P
re

lim
in

ar
y

14.1 LCD Controller
The LCD controller provides all the necessary control signals to interface directly to a
single panel multiplexed LCD. The panel size is programmable and can be any width
(line length) from 16 to 1024 pixels in 16 pixel increments. The number of lines is
achieved by programming the total number of pixels in the LCD. The total video frame
size is prgrammable up to 128Kb equating to a theoretical maximum panel size of 640
x 409 or 1024 x 256 pixels.

The video RAM is mapped into the base of the main DRAM memory area which is
fixed at the physical address 0xC000.0000. The number of bits per pixel is
programmable from 1 to 4.

The screen is mapped to the video buffer as one contiguous block where each
horizontal line of pixels is mapped to a set of consecutive bytes or words in the video
RAM. The video buffer can be accessed word wide as pixel 0 is mapped to the LSB in
the buffer ie. the pixels are arranged in a little-endian manner.

The pixel bit rate and hence the LCD refresh rate can be programmed from
18.432MHz to 576KHz. The LCD controller is programmed by writing to the LCD
control register (LCDCON).

The LCD controller also contains two 32-bit palette registers. These allow any 4, 2 or
1 bit pixel value to be mapped to any of the 15 grey scale values available.

➲Figure 14-1: Video Buffer Mapping on page 14-3 shows the organisation of the video
map for all combinations of bits per pixel.

LCD Controller

ARM7100 Data Sheet
ARM DDI 0035A

14-3

P
re

lim
in

ar
y

 Figure 14-1: Video Buffer Mapping

The refresh rate is not affected by the number of bits per pixel . However, the LCD
controller fetches twice the data per refresh for 4 bits per pixel compared to 2 bits per
pixel. The main reason for reducing the number of bits per pixel is to reduce the power
consumption of the DRAMs in bank 0 where the video buffer is mapped.

See ➲Chapter 8, ARM7100 Programmer’s Model for details of the LCD controller
registers.

Pixel 1 Pixel 2 Pixel 3 Pixel 4

Grey scale Grey scale

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

4 Bits per pixel

Pixel 1 Pixel 2 Pixel 3 Pixel 4

Grey scale Grey scale

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

2 Bits per pixel

Pixel 1 Pixel 2 Pixel 3 Pixel 4

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

1 Bit per pixel

Grey scale Grey scale

LCD Controller

ARM7100 Data Sheet
ARM DDI 0035A

14-4

P
re

lim
in

ar
y

ARM7100 Data Sheet
ARM DDI 0035A

15-1

111

P
re

lim
in

ar
y

UART and SiR Encoder

This chapter the UART and the SiR Encoder.

15.1 UART 15-2

15.2 SiR Encoder 15-2

15

UART and SiR Encoder

ARM7100 Data Sheet
ARM DDI 0035A

15-2

P
re

lim
in

ar
y

15.1 UART
ARM7100 contains a built in UART which offers similar functionality to National
Semiconductor’s 16C550 device. It can support bit rates of up to 115.2 K bps and
contains two 16 byte FIFOs for receive and transmit.

Only three MODEM control input signals, CTS, DSR and DCD are supported. The
additional RI input MODEM control line is not supported. Output Modem control lines
such as RTS and DTR are not explicitly supported but can be implemented using bits
from the general purpose I/O ports in ARM7100.

UART operation and line speed are controlled by the UART bit rate and line control
register (UBRLCR). Three interrupts can be generated by the UART:

Rx is asserted when the FIFO becomes half full or if the FIFO is
non empty for longer than 3 character length times with no
more characters being received

Tx is asserted if the FIFO buffer reaches half empty

Modem status is generated if either of the modem status bits change state

Framing and parity errors are detected as each byte is received and pushed onto the
Rx FIFO. An overrun error generates an Rx interrupt immediately. All error bits can be
read from the 11-bit wide data register. The FIFO can also be programmed to be one
byte depth only, like a conventional UART with double buffering.

15.2 SiR Encoder
ARM7100 also contains a IrDA (Infra-red data association) SiR protocol encoder.
Optionally, this encoder can be switched in to the Tx and Rx signals so they can be
used to drive an infra-red interface directly. For more details on the IrDA SiR protocol,
see the appropriate document detailing this protocol standard. If the SiR protocol
encoder is enabled, the UART Tx line is held in the passive state and transitions of the
modem status or the Rx line will have no effect.

See ➲Chapter 8, ARM7100 Programmer’s Model for details of the UART and SiR
encoder registers.

ARM7100 Data Sheet
ARM DDI 0035A

16-1

111

P
re

lim
in

ar
y

Timer Counters

This chapter describes the timer counters and the real time clock.

16.1 Timer Counters 16-2

16.2 Real Time Clock 16-2

16

Timer Counters

ARM7100 Data Sheet
ARM DDI 0035A

16-2

P
re

lim
in

ar
y

16.1 Timer Counters
Two timer counters are integrated in ARM7100. They are identical and are referred to
as TC1 and TC2. TC1 and TC2 each have an associated 16-bit read/write data
register and some control bits in the system control register.

The timer counters can be read at any time and each counter is loaded with the value
written to the data register immediately. This value is decremented on the second
clock edge to arrive after the write. When the timer counter under flows ie. reaches 0,
it asserts its appropriate interrupt. The timers can be read at any time. The clock
source and mode is selectable by writing to various bits in the system control register.
Clock sources are 512KHz and 2KHz.

The timer counters can operate in two modes:

• Free running mode

• Pre-scale mode

Free running mode

In free running mode, the counter wraps round to 0xFFFF when it under flows and
continues counting down. Any value written to TC1 or TC2 will be decremented on the
second edge of the selected clock.

Prescale mode

In prescale mode the value written to TC1 or TC2 is automatically re-loaded when the
counter under flows. Any value written to TC1 or TC2 will be decremented on the
second edge of the selected clock. This mode can be used to produce a
programmable frequency to drive the BUZ output or generate a periodic interrupt.

16.2 Real Time Clock
ARM7100 contains a 32-bit real time clock (RTC). This can be written to and read from
in the same way as the timer counters, but it is 32 bits wide. The RTC is always clocked
at 1 Hz. It also contains a 32-bit output match register which can be programmed to
generate an interrupt when the time in the RTC matches a specific time written to this
register.

See ➲Chapter 8, ARM7100 Programmer’s Model for details of the timer counter
registers.

ARM7100 Data Sheet
ARM DDI 0035A

17-1

111

P
re

lim
in

ar
y

DC to DC Converters

This chapter describes the two DC to DC Converter Interfaces.

17.1 DC to DC Converter Interfaces 17-2

17

DC to DC Converters

ARM7100 Data Sheet
ARM DDI 0035A

17-2

P
re

lim
in

ar
y

17.1 DC to DC Converter Interfaces
ARM7100 has two programmable duty ratio 96 KHz clock outputs which are intended
to be used as drives for DC to DC converters in the PSU subsystem. These clocks are
enabled by external input pins which would normally be connected to the output from
comparators monitoring the DC to DC converter output. The duty ratio (and hence the
converter on time) can be programmed from 1 in 16 to 15 in 16. The sense of the DC
to DC converter drive signal (active HIGH or LOW) is determined by latching the state
of this drive signal during power on reset. ie. a pull up on the drive signal results in an
active LOW drive output and vice versa. This allows either positive or negative
voltages to be generated by the DC to DC converter.

ARM7100 Data Sheet
ARM DDI 0035A

18-1

111

P
re

lim
in

ar
y

Power Management and Reset

This chapter describes the power management states supported by ARM7100.

18.1 State Control 18-2

18.2 Reset 18-3

18

Power Management and Reset

ARM7100 Data Sheet
ARM DDI 0035A

18-2

P
re

lim
in

ar
y

18.1 State Control
ARM7100 supports three basic power states:

Standby This equates to a computer being switched off, that is, no display. The
main oscillator is shut down.

Idle The device is functioning and all oscillators are running but the
processor clock is halted while it waits for an event such as a key
press.

Operating ARM7100 is fully operational.

In the standby state, all the system memory and state is maintained and the system
time is kept up to date. The main oscillator is disabled and the system is static except
for the low power watch crystal (32 KHz) oscillator and divider chain to the real time
clock. The RUN signal is driven LOW when in the standby state.

When first powered or reset by the nPOR (not Power on reset) signal, the system is
forced to the standby state. This is known as a cold reset and is the only completely
asynchronous reset to ARM7100. The transition to the operating state is caused by
one of the following:

• a rising edge on the wakeup input signal

• a selected interrupt being asserted

Once self refresh is enabled for the DRAMs, any transition to the standby state is
synchronised to DRAM refresh cycles and forces all the DRAMs into self refresh
mode.

Once in the operating state, the idle state is entered by writing to an internal memory
location in ARM7100. Execution of the next instruction continues in the operating state
if an interrupt becomes active. A write to another internal memory location causes the
transition from the operating state to the standby state.

The system can also be forced into the standby state by hardware if the nPWRFL or
nURESET inputs are forced LOW. In this case, the transition is synchronised with
DRAM cycles to avoid any glitches or short cycles.

The system only transitions to the operating state from the standby state if the
nEXTPWR, BATOK and nPWRFL inputs are HIGH. This prevents the system from
attempting to start when the power supply is inadequate.

➲Figure 18-1: State diagram on page 18-3 shows a state diagram for ARM7100.

Power Management and Reset

ARM7100 Data Sheet
ARM DDI 0035A

18-3

P
re

lim
in

ar
y

 Figure 18-1: State diagram

18.2 Reset
There are three asynchronous resets to ARM7100; these are nPOR, nPWRFL and
nURESET. If any of these are active a system reset is generated internally, this will
clear all the internal registers in ARM7100 to zero except for the DRAM refresh period
register and the real time clock data register which are only cleared by an active
nPOR. It will also reset the ARM710a and cause it to start execution at the reset vector
when ARM7100 returns to the operating state.

The RUN signal is HIGH when ARM7100 is in the operating or idle states and LOW
when in the standby state.

Standby Active

Idle

Interrupt or rising wakeup

Write to standby location
power fail or user reset

Interrupt, power fail
Write to idle locationor user reset

Power Management and Reset

ARM7100 Data Sheet
ARM DDI 0035A

18-4

P
re

lim
in

ar
y

ARM7100 Data Sheet
ARM DDI 0035A

19-1

111

P
re

lim
in

ar
y

Memory Map

This chapter describes the ARM7100 memory map.

19.1 Memory Map 19-2

19

Memory Map

ARM7100 Data Sheet
ARM DDI 0035A

19-2

P
re

lim
in

ar
y

19.1 Memory Map
The ARM7100 address space is allocated in the following way:

• The lower 2 Gb of the address space is allocated to ROM and expansion
space.

• The upper 1 Gb of address space is allocated to DRAM.

• The remaining 1 Gb, less 4Kb for internal registers, is not accessible in
ARM7100. The MMU should be programmed to cause an abort exception in
this space.

Internal peripheral devices are communicated and configured through a set of internal
memory locations from hex address 8000.000 to 8000.FFFF.

➲Figure 19-1: ARM7100 memory map on page 19-3 shows how the 4 Gb address
range of the ARM710 processor is mapped in ARM7100.

Memory Map

ARM7100 Data Sheet
ARM DDI 0035A

19-3

P
re

lim
in

ar
y

 Figure 19-1: ARM7100 memory map

DRAM Bank 3

DRAM Bank 2

DRAM Bank 1

DRAM Bank 0

Not Used

Internal Registers

Expansion (CS7)

Expansion (CS6)

Expansion (CS5)

Expansion (CS4)

Expansion (CS3)

Expansion (CS2)

ROM Bank 1 (CS1)

ROM Bank 0 (CS0)

256 Mbytes

256 Mbytes

256 Mbytes

256 Mbytes

~1 Gbyte

4 Kbytes

256 Mbytes

256 Mbytes

256 Mbytes

256 Mbytes

256 Mbytes

256 Mbytes

256 Mbytes

256 Mbytes

F000.0000

E000.0000

D000.0000

C000.0000

8000.1000

8000.0000

7000.0000

6000.0000

5000.0000

4000.0000

3000.0000

2000.0000

1000.0000

0000.0000

Memory Map

ARM7100 Data Sheet
ARM DDI 0035A

19-4

P
re

lim
in

ar
y

ARM7100 Data Sheet
ARM DDI 0035A

20-1

111

P
re

lim
in

ar
y

 DC and AC Parameters

This chapter describes the DC and AC Parameters.

20.1 Absolute Maximum Ratings 20-2

20.2 DC Operating Conditions 20-2

20.3 DC Characteristics 20-3

20.4 AC Characteristics 20-5

20

DC and AC Parameters

ARM7100 Data Sheet
ARM DDI 0035A

20-2

P
re

lim
in

ar
y

20.1 Absolute Maximum Ratings

20.2 DC Operating Conditions

Parameters Min Max Unit

DC Supply voltage -0.5 +6 V

DC input / output voltage -0.5 Vdd + 0.5 V

DC input current -20 +20 mA

Storage temperature -40 +125 °C

Lead temperature +300 °C

 Table 20-1: DC maximum ratings

Parameters Min Max Unit

DC Supply voltage +2.7 +5.5 V

DC input / output voltage 0 Vdd V

DC input current -15 +15 mA

Operating temperature 0 +70 °C

 Table 20-2: DC operating conditions

DC and AC Parameters

ARM7100 Data Sheet
ARM DDI 0035A

20-3

P
re

lim
in

ar
y

20.3 DC Characteristics
All characteristics are specified at Vdd = 3.0 to 3.6 volts and Vss = 0 volts over an
operating temperature of 0°C to +70°C.

Symbol Parameter Min Max Unit Conditions

VIH CMOS input
high voltage

0.7 x Vdd Vdd + 0.3 V

VIL CMOS input
low voltage

-0.3 0.2 x Vdd V

VT+ Schmitt trigger
positive going
threshold

1.52 2.26 V

VT- Schmitt trigger
negative going
threshold

0.72 1.29 V

Vhst Schmitt trigger
hysteresis

0.64 1.13 V VIL to VIH

VOH CMOS output
high voltage
Standard drive output
Medium drive output
High drive output
Very high drive output

Vdd - 0.1

Vdd - 1.0
Vdd - 1.0
Vdd - 1.0
Vdd - 1.0

V

V
V
V
V

IOH = 0.8 mA

IOH = 4 mA
IOH = 6 mA
IOH = 12 mA
IOH = 24 mA

VOL CMOS output
low voltage
Standard drive output
Medium drive output
High drive output
Very high drive output

0.1

0.5
0.5
0.5
0.5

V

V
V
V
V

IOL = -0.8 mA

IOL = -4 mA
IOL = -6 mA
IOL = -12 mA
IOL = -24 mA

IIN Input leakage
current

-10 +10 µA VIN = VDD or GND

IOZ Output Tri-state leak-
age current

-10 +10 µA VOUT = VDD or GND

CIN Input capacitance 5 pF

COUT Output capacitance 5 pF

CI/O Transceiver
capacitance

5 pF

 Table 20-3: DC characteristics

DC and AC Parameters

ARM7100 Data Sheet
ARM DDI 0035A

20-4

P
re

lim
in

ar
y

IDDstartup Startup current
consumption

100 µA Initial 100 mSec from
power up, 32 KHz oscillator not
stable, POR signal at VIL, all
other I/O static, VIH = VDD ±
0.1V, VIL = GND ± 0.1V

IDDstandby Standby current
consumption

50 µA Just 32 KHz oscillator
running, all other I/O static, VIH
= VDD ± 0.1V, VIL = GND ±
0.1V

IDDidle Idle current
consumption

5 mA Both oscillators running, CPU
static, LCD refresh active, VIH
= VDD ± 0.1V, VIL = GND ±
0.1V

IDDoperating Operating current con-
sumption

30 mA All system active, running typi-
cal program

VDDstandby Standby supply voltage 2.2 V Minimum standby voltage for
state retention and RTC
operation only.

Symbol Parameter Min Max Unit Conditions

 Table 20-3: DC characteristics

DC and AC Parameters

ARM7100 Data Sheet
ARM DDI 0035A

20-5

P
re

lim
in

ar
y

20.4 AC Characteristics
All characteristics are specified at Vdd = 3.0 to 3.6 volts and Vss = 0 volts over an
operating temperature of 0°C to +70°C.

Symbol Parameter Min Max Unit

T1 Falling CS to data bus Hi-Z 0 25 nS

T2 Address change to valid write data 0 35 nS

T3 DATA in to falling EXPCLK setup time 18 nS

T4 DATA in to falling EXPCLK hold time 0 nS

T5 EXPRDY to falling EXPCLK setup time 18 nS

T6 Falling EXPCLK to EXPRDY hold time 0 50 nS

T7 Rising nMWE to data nvalid hold time 5 nS

T8 Data valid to falling nMWE setup time 15 nS

T9 Row address to falling nCAS setup time 18 nS

T10 Falling nRAS to row address hold time 25 nS

T11 Column address to falling nCAS setup time 2 nS

T12 Falling nCAS to column address hold time 25 nS

T13 Write data valid to falling nCAS setup time 2 nS

T14 Write data valid from falling nCAS hold time 50 nS

T15 LCD CL2 low time 80 3475 nS

T16 LCD CL2 high time 80 3475 nS

T17 LCD rising CL2 to rising CL1 delay 0 25 nS

18 LCD falling CL1 to rising CL21 80 3475 nS

T19 LCD CL1 high time 80 3475 nS

T20 LCD falling CL1 to falling CL2 200 6950 nS

T21 LCD falling CL1 to frm toggle 300 10425 nS

T22 LCD falling CL1 to m toggle -10 20 nS

T23 LCD rising CL2 to display data change -10 20 nS

 Table 20-4: AC Characteristics

DC and AC Parameters

ARM7100 Data Sheet
ARM DDI 0035A

20-6

P
re

lim
in

ar
y

Symbol Parameter Min Max Unit

Textrd zero wait state memory read access time 70 nS

Texwr zero wait state memory write access time 70 nS

Trc DRAM cycle time 150 nS

Trac Access time from RAS 70 nS

Trp RAS precharge time 70 nS

Tcas CAS pulse width 20 nS

Tcp CAS precharge in page mode 12 nS

Tpc Page mode cycle time 45 nS

Tcsa CAS setup time 15 nS

Tras RAS pulse width 80 nS

 Table 20-5: System memory device parameter requirements

DC and AC Parameters

ARM7100 Data Sheet
ARM DDI 0035A

20-7

P
re

lim
in

ar
y

 Figure 20-1: Expansion and ROM read timing

Notes

1 Texrd = 70nS for maximum wait states and a main oscillator frequency of
18.432 MHz. This time can be extended by integer multiples of the clock
period (54nS), by either driving EXPRDY LOW or by by programming a
number of wait states. EXPRDY is sampled on the falling edge of EXPCLK
before the data transfer. If LOW at this point the transfer is delayed by one
clock period where EXPRDY is sampled again. EXPCLK need not be
referenced when driving EXPRDY but is shown for clarity.

2 Consecutive reads with sequential access enabled are identical except that
the sequential access wait state field is used to determine the number of wait
states.

EXPCLK

nCS[3:0]

CS[7:4]

nMOE

A[27:0]

WORD

D[31:0]

EXPRDY

Texrd

T1

Texrd
T3

T4
T3

T4

T5
T6

bus held data in data in

DC and AC Parameters

ARM7100 Data Sheet
ARM DDI 0035A

20-8

P
re

lim
in

ar
y

 Figure 20-2: Expansion and ROM write timing

Notes

1 Texwr = 70nS max for zero wait states. This time can be extended by integer
multiples of the clock period (54 nS), by either driving EXPRDY LOW or by
programming a number of wait states. EXPRDY is sampled on the falling
edge of EXPCLK before the data tansfer. If LOW at this point, the transfer is
delayed by one clock period where EXPRDY is sampled again. EXPCLK
need not be referenced when driving EXPRDY but is shown for clarity.

2 Consecutive writes with sequential access enabled are identical except that
the sequential access wait state filed is used to determine the number of wait
states.

3 Zero wait states for sequential writes is not supported, one state will
automatically be added.

EXPCLK

nCS[3:0]

CS[7:4]

nMWE

A[27:0]

WORD

D[31:0]

EXPRDY

Texwr

T8 T8

T2
T2

T7

Texwr

T5
T6

bus held write data write data

DC and AC Parameters

ARM7100 Data Sheet
ARM DDI 0035A

20-9

P
re

lim
in

ar
y

 Figure 20-3: DRAM read cycles

Notes

1 Trc (Read cycle time) = 150nS max

2 Trac (Read access time from RAS) = 70nS max

3 Trp (RAS precharge time) = 70nS max

4 Tcas (CAS pulse width) = 20nS max

5 Tcp (CAS precharge in page mode) = 12nS max

6 Tpc (page mode cycle time) = 45nS min at max

7 Word reads shown, for byte reads only one of CAS[3:0] will be active, CAS[0]
for byte 0 etc.

MCLK

DRA[12:0]

nRAS[3:0]

nCAS[3:0]

D[31:0]

nMOE

nMWE

WORD

WRITE

T11
T12T9

T10

Tras Trp
Trc

Tcas
Tcp

Tpc

row col row col 1 col 2 col n

DC and AC Parameters

ARM7100 Data Sheet
ARM DDI 0035A

20-10

P
re

lim
in

ar
y

 Figure 20-4: DRAM write cycles

Notes

1 Trc (Write cycle time) = 150nS max at MCLK = 18.432MHz

2 Trac (Write access time from RAS) = 70nS max at MCLK = 18.432MHz

3 Trp (RAS precharge time) = 70nS max at MCLK = 18.432MHz

4 Tcas (CAS pulse width) = 20nS max at MCLK = 18.432MHz

5 Tcp (CAS precharge in page mode) = 66nS max at MCLK = 18.432MHz

6 Tpc (page mode cycle time) = 45nS max at MCLK = 18.432MHz

7 Word writes shown, for byte writes only one off CAS[3:0] will be active,
CAS[0] for byte 0 etc.

MCLK

DRA[12:0]

nRAS[3:0]

nCAS[3:0]

D[31:0]

nMOE

nMWE

WORD

WRITE

T11
T12

T9
T10

Tras Trp
Trc

Tcas
Tcp

Tpc

T13
T14

row col row col 1 col 2 col n

Data out Data out 1 Data out 2 Data out n

DC and AC Parameters

ARM7100 Data Sheet
ARM DDI 0035A

20-11

P
re

lim
in

ar
y

 Figure 20-5: Video quad word read

Notes

1 Timings are the same as page mode word reads

2 Tvacc (video access cycle time) = 326nS at MCLK = 18.432 MHz

MCLK

DRA[12:0]

nRAS[0]

nCAS[3:0]

D[31:0]

nMOE

nMWE

Tvacc

Trp

Tcas
Tcp

Tpc

row col 0 col 1 col 2 col 3

DC and AC Parameters

ARM7100 Data Sheet
ARM DDI 0035A

20-12

P
re

lim
in

ar
y

 Figure 20-6: DRAM CAS before RAS refresh cycle

Notes

1 Tcsa (CAS set-up time) = 25nS min at MCLK = 18.432MHz

2 Tras (RAS pulse width) = 70nS min at MCLK = 18.432MHz

3 Trc (Cycle time) = 150nS min at MCLK = 18.432MHz

4 When DRAM’s are placed in self refresh (entering standby), the same timings
apply except that Tras is extended indefinitely.

MCLK

DRA[12:0]

nRAS[3:0]

nCAS[3:0]

D[31:0]

nMOE

nMWE

Tras

Trc
Tcsa

held row col

Held

DC and AC Parameters

ARM7100 Data Sheet
ARM DDI 0035A

20-13

P
re

lim
in

ar
y

 Figure 20-7: LCD controller timing

Notes

1 ➲Figure 20-7: LCD controller timing shows the end of a line.

2 If FRM is HIGH during the CL1 pulse, this marks the first line in the display.

3 CL2 LOW time is doubled during the CL1 high pulse.

CL2

CL1

FRM

M

DD[3:0]

T15
T16T20T17

T19
T18

T21

T22

T23

DC and AC Parameters

ARM7100 Data Sheet
ARM DDI 0035A

20-14

P
re

lim
in

ar
y

ARM7100 Data Sheet
ARM DDI 0035A

21-1

111

P
re

lim
in

ar
y

Physical Details

This chapter describes the physical details of the ARM7100.

21.1 Pin diagrams for the ARM7100 21-2

21

Physical Details

ARM7100 Data Sheet
ARM DDI 0035A

21-2

P
re

lim
in

ar
y

21.1 Pin diagrams for the ARM7100
The following two diagrams illustrate the top and side views of the ARM7100. All
dimensions are given in millimetres.

 Figure 21-1: Pin diagram for the ARM7100

D

D1

P
in

 1
57

P
in 104

Pin 105Pin 156

ARM7100 EE
1

P
in 53

Pin 52Pin 1

P
in

 2
08

e

Pin 1 identification

Physical Details

ARM7100 Data Sheet
ARM DDI 0035A

21-3

P
re

lim
in

ar
y

 Figure 21-2: Side view of ARM7100 chip

Notes
1 Controlling dimension is mm

2 Dimensions D1 and E1 do not include mold protrusion which is 0.25mm
(0.010 inch)

3 Lead frame material is copper

4 Lead finish is solder plate

5 Pin 1 identification may be either ink dot or dimple

6 Package top dimensions can be smaller than bottom dimensions by 0.20mm
(0.008 inch)

Symbol Description Min Max

A Package thckness plus stand off 1.4 1.6

A1 Stand off 0.05 0.15

A2 Package thickness 1.35 1.45

D Lead tip to Lead tip (X) 29.6 30.4

D1 Package body dimension (X) 27.8 28.2

E Lead tip to Lead tip (Y) 29.6 30.4

E1 Package body dimension (Y) 27.8 28.2

L Foot Length 0.45 0.75

L1 Total lead length 1.00 BSC

e Lead pitch 1.00 BSC

B Lead width with plating 0.17 0.27

 Table 21-1: Chip dimensions

A
1 L

A C

A
2

B

L1

Physical Details

ARM7100 Data Sheet
ARM DDI 0035A

21-4

P
re

lim
in

ar
y

ARM7100 Data Sheet
ARM DDI 0035A

22-1

111

P
re

lim
in

ar
y

Pinout

This chapter describes the ARM7100 pinout.

22.1 Pin details 22-2

22

Pinout

ARM7100 Data Sheet
ARM DDI 0035A

22-2

P
re

lim
in

ar
y

22.1 Pin details
The following table gives the signal name for each of the 208 pins of the ARM7100.

Pin number Signal name Pin number Signal name

1 CS[5] 27 PB[2]

2 CS[6] 28 PB[1]

3 CS[7] 29 PB[0]

4 VDD 30 PE[3]

5 VSS 31 PE[2]

6 EXPCLK 32 VDD

7 WORD 33 VSS

8 WRITE 34 PA[7]

9 RUN 35 PA[6]

10 EXPRDY 36 PA[5]

11 PC[7] 37 PA[4]

12 PC[6] 38 PA[3]

13 PC[5] 39 PA[2]

14 PC[4] 40 PA[1]

15 PC[3] 41 PA[0]

16 PC[2] 42 LEDDRV

17 PC[1] 43 TXD

18 PC[0] 44 PHDIN

19 VDD 45 CTS

20 VSS 46 RXD

21 VSS 47 DCD

22 PB[7] 48 DSR

23 PB[6] 49 VSS

24 PB[5] 50 RTCOUT

25 PB[4] 51 RTCIN

26 PB[3] 52 VDD

 Table 22-1: Pin numbers and signal names

Pinout

ARM7100 Data Sheet
ARM DDI 0035A

22-3

P
re

lim
in

ar
y

53 nTEST1 82 DRIVE0

54 nTEST0 83 ADCCLK

55 EINT3 84 ADCOUT

56 nEINT2 85 SMPLCK

57 nEINT1 86 FB1

58 nEXTFIQ 87 FB0

59 PE[1] 88 COL7

60 PE[0] 89 COL6

61 PD[7] 90 COL5

62 PD[6] 91 COL4

63 PD[5] 92 COL3

64 PD[4] 93 COL2

65 VDD 94 VDD

66 VSS 95 VSS

67 PD[3] 96 COL1

68 PD[2] 97 COL0

69 PD[1] 98 BUZ

70 PD[0] 99 D[31]

71 PCMIN 100 D[30]

72 PCMCK 101 D[29]

73 PCMOUT 102 D[28]

74 PCMSYNC 103 A[27]/DRA[0]

75 ADCIN 104 D[27]

76 nADCCS 105 A[26]/DRA[1]

77 VSS 106 D[26]

78 VDD 107 A[25]/DRA[2]

79 VSS 108 D[25]

80 VDD 109 A[24]/DRA[3]

81 DRIVE1 110 VDD

Pin number Signal name Pin number Signal name

 Table 22-1: Pin numbers and signal names (Continued)

Pinout

ARM7100 Data Sheet
ARM DDI 0035A

22-4

P
re

lim
in

ar
y

111 VSS 140 A[11]

112 D[24] 141 VDD

113 A[23]/DRA[4] 142 VSS

114 D[23] 143 D[11]

115 A[22]/DRA[5] 144 A[10]

116 D[22] 145 D[10]

117 A[21]/DRA[6] 146 A[9]

118 D[21] 147 D[9]

119 A[20]/DRA[7] 148 A[8]

120 D[20] 149 D[8]

121 A[19]/DRA[8] 150 A[7]

122 D[19] 151 D[7]

123 A[18]/DRA[9] 152 nBATCHG

124 D[18] 153 nEXTPWR

125 VDD 154 BATOK

126 VSS 155 nPOR

127 VSS 156 MEDCHG

128 A[17]/DRA[10] 157 VDD

129 D[17] 158 MOSCIN

130 A[16]/DRA[11] 159 MOSCOUT

131 D[16] 160 VSS

132 A[15]/DRA[12] 161 nURESET

133 D[15] 162 WAKEUP

134 A[14] 163 nPWRFL

135 D[14] 164 A[6]

136 A[13] 165 D[6]

137 D[13] 166 A[5]

138 A[12] 167 D[5]

139 D[12] 168 VDD

Pin number Signal name Pin number Signal name

 Table 22-1: Pin numbers and signal names (Continued)

Pinout

ARM7100 Data Sheet
ARM DDI 0035A

22-5

P
re

lim
in

ar
y

169 VSS 189 DD[2]

170 A[4] 190 DD[1]

171 D[4] 191 DD[0]

172 A[3] 192 nRAS[3]

173 D[3] 193 nRAS[2]

174 A[2] 194 nRAS[1]

175 D[2] 195 nRAS[0]

176 A[1] 196 nCAS[3]

177 D[1] 197 nCAS[2]

178 A[0] 198 VDD

179 D[0] 199 VSS

180 VSS 200 nCAS[1]

181 VDD 201 nCAS[0]

182 VSS 202 nMWE

183 VDD 203 nMOE

184 CL2 204 nCS[0]

185 CL1 205 nCS[1]

186 FRM 206 nCS[2]

187 M 207 nCS[3]

188 DD[3] 208 CS[4]

Pin number Signal name Pin number Signal name

 Table 22-1: Pin numbers and signal names (Continued)

Pinout

ARM7100 Data Sheet
ARM DDI 0035A

22-6

P
re

lim
in

ar
y

ARM7100 Data Sheet
ARM DDI 0035A

Index-i

111

Index

P
re

lim
in

ar
yA

Abort operating mode 4-4
Access faults

checking 7-15
Address translation 7-4

B
Backward compatibility

configuration bits 4-3
block diagram

ARM704 3-3
Branch instructions 5-4

C
CDP instruction 5-39
compilers 3-2
Condition codes 5-3
Configuration bits

for backward compatibility 4-3
Configuration settings

register 4-2
Control register

big endian format 4-2
little endian format 4-2

Coprocessor data operations 5-39

Coprocessor instructions 5-38
CPSR flags 5-7

D
Data processing instructions 5-6
DC parameters 20-1
Domain access control 7-14
Domain access control register 7-3

E
Examples

instruction set 5-48
Exceptions 4-7

abort 4-8
FIQ 4-7
IRQ 4-8
priorities 4-10

F
Fault address register 7-3, 7-13
Fault checking 7-15
Fault status register 7-3, 7-13
FIQ exception 4-7
FIQ operating mode 4-4

ARM7100

ARM7100 Data Sheet
ARM DDI 0010E

Index-ii

P
re

lim
in

ar
y

I
IDC

cacheable bit 6-2
disable 6-3
enable 6-3
interaction with MMU and write buffer 7-18
operation 6-2
read-lock-write 6-3
reset 6-3
validity 6-2

instruction set
ARM704 3-2

Instruction set examples
loading a halfword 5-51
loading a word from an unknown alignment 5-

50
multiply by constant 5-49
pseudo random binary sequence gneerator 5-

49
using conditional instructions 5-48

Instruction set summary 5-2
Instruction speed summary 5-52
Internal coprocessor instructions 4-11
IRQ exception 4-8
IRQ operating mode 4-4

L
LDC instruction 5-41
LDM instruction 5-27
LDR instruction 5-21

M
MCR instruction 5-44
MLA instruction 5-19
MMU

interaction with IDC and write buffer 7-18
MRC instruction 5-44
MRS instruction 5-15
MSR instruction 5-15
MUL instruction 5-19

O
Operating modes

selecting 4-4

P
Parameters

DC 20-1
physical details 21-2
pin details 22-2
pin diagrams 21-2

R
Register confidurations 4-2
Registers 4-4, 4-11

MMU 7-3

S
Shifts 5-9
Signal descriptions 2-2
Software interrupt instruction 4-9, 5-36
STC instruction 5-41
STM instruction 5-27
STR instruction 5-21
Supervisor operating mode 4-4
SWP instruction 5-34

T
Translating references 7-5
Translation table base register 7-3

U
Undefined instruction 5-47
Undefined instruction trap 4-9
Undefined operating mode 4-4
User operating mode 4-4

W
Write buffer

interaction with MMU and IDC 7-18

