SCPS029B - DECEMBER1998

- Compliant with PCI Hot-Plug Specification, Revision 1.0
- Supports up to Four Independently Controlled Hot-Plug Slots
- Provides Register Accessing Through Both Generic Parallel Bus and Two-Wire Serial Interface
- Provides Interrupt and Event Status/Enable State Compliant with ACPI Specification 1.0
- Provides an Automatic Bus Connection Sequencing Feature
- Supports 66-MHz PCI Clock Frequency
- Features Two Attention Indicators with Variable LED Blinking Rates per Slot

- Provides an Easy Scheme to Cascade the HPC3130 for Compact PCI Applications
- Provides Card Detection Mechanism Independent of PCI Present Signals for Advanced Card Protection
- Provides Path to Guarantee Idle State During PCI Bus Connections
- Fabricated in Advanced Low-Power CMOS Process
- Features a CBT Switch[†] Control Feature for REQ64 Implementation
- Package Options:
 - 120-pin QFP Package
 - 128-pin LQFP Package
 - 144-pin LQFP Package

Table of Contents

Description	66 MHz PCI Support
Functional Block Diagram	Configuration and Control Registers
Pin Assignments (120-Pin)	Absolute Maximum Ratings 32
Pin Assignments (128-Pin) 4	Recommended Operating Conditions
Pin Assignments (144-Pin)	Serial Bus Interface
Signal Name/Pin Number Sort Table (120-Pin)	Electrical Characteristics
Signal Name/Pin Number Sort Table (128-Pin)	PCI Clock/Reset Timing Requirements
Signal Name/Pin Number Sort Table (144-Pin) 10	PCI Timing Requirements
Terminal Functions	Mechanical Data (120-Pin)
HPC3130 Applications	Mechanical Data (128-Pin)
SLOTREQ64	Mechanical Data (144-Pin)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

[†] Contact Texas Instrument's Bus Interface product group for information related to CBT switches.

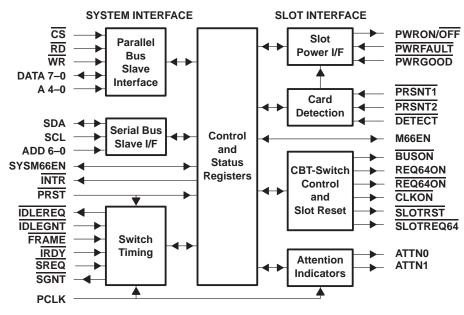
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1998, Texas Instruments Incorporated

SCPS029B - DECEMBER1998

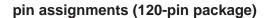
description

The Texas Instruments HPC3130 is a peripheral component interconnect (PCI) hot-plug controller, compliant with *PCI Hot-Plug Specification, Revision 1.0.* This device supports hot insertion/removal of up to four hot-plug slots on a PCI bus, provides a 64-bit data path in any of the four hot-plug slots, and supports 66-MHz systems for two slots.


The primary function of the HPC3130 is to allow noninterfering hot-plug slot connection/disconnection with the other PCI devices on the bus. The HPC3130 provides automatic bus connection sequencing and supports a protocol for connection during bus idle conditions. It also supports an interrupt pin to report hot-plug slot events. The interrupt event status and enable state are compliant with the *Advanced Configuration and Power Interface (ACPI) Specification*.

Internal registers may be accessed through either a two-signal serial interface or a generic parallel bus. The serial interface slave decoding circuit supports up to eight different controllers or other serial bus devices with the same system base. Decoding through the parallel interface supports multiple controllers with external chip-select logic. Two double-words of configuration and control registers are provided per slot. As a result, the HPC3130 decodes an address range of 32 bytes.

An advanced complementary metal-oxide semiconductor (CMOS) process provides low system power consumption while operating at PCI clock rates up to 66 MHz.


functional block diagram

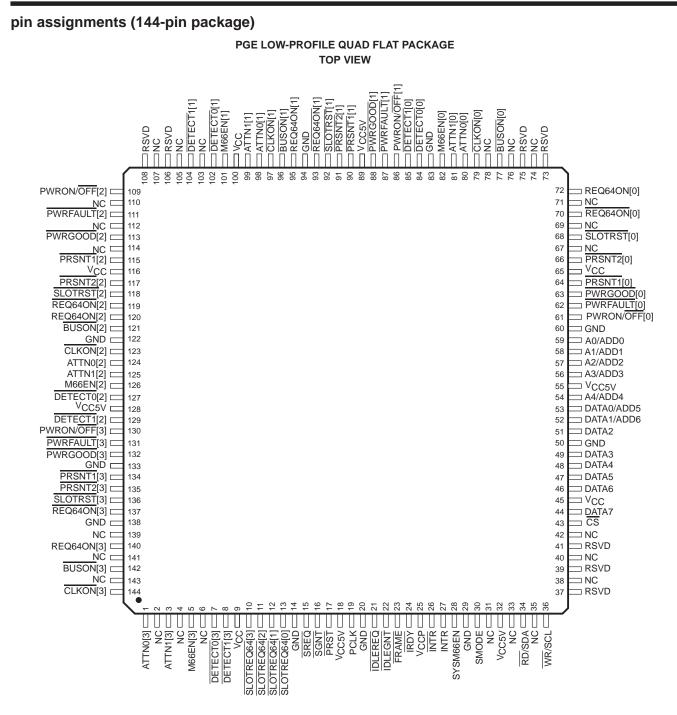
A simplified block diagram of the HPC3130 is provided below. The block diagram illustrates the HPC3130 functionality on a per slot basis. The SMODE chip input, not shown, is used for terminal multiplexing of the serial and parallel bus slave interfaces.

SCPS029B - DECEMBER1998

PBM QUAD FLAT PACKAGE TOP VIEW

ATTIVISI EEGORONII E
--

SCPS029B - DECEMBER1998


pin assignments (128-pin package)

PBK LOW-PROFILE QUAD FLAT PACKAGE TOP VIEW

NC 1 ATTN0[3] 2 ATTN1[3] 3 M66EN[3] 4 DETECT0[3] 5 DETECT1[3] 6 VCC 7 SLOTREQ64[3] 8 SLOTREQ64[2] 9 SLOTREQ64[1] 10 SLOTREQ64[2] 9 SLOTREQ64[1] 10 SLOTREQ64[2] 9 NC 13 SGNT 14 PRST 15 V_CC5V 16 PCLK 17 GND 18 IDLEGNT 20 FRAME 21 INTR 25	127 CLKON[3] 126 BUSON[3] 125 REQ640N[3] 124 GND 122 SLOTRST[3] 121 PRSNT2[3] 120 PRSNT7[3] 119 GND 117 PWRGOOD[3] 117 PWRFAULT[3] 116 PWRON/OFF[3]	Image: Second State Sta
GND ☐ 27 SMODE ☐ 28 V _{CC5V} ☐ 29 RD/SDA ☐ 30 WR/SCL ☐ 31 NC ☐ 32		70 ☐ ATTN0[0] 69 ☐ CLKON[0] 68 ☐ BUSON[0] 67 ☐ RSVD 66 ☐ RSVD 65 ☐ NC
33 U V	RSVD 34 RSVD 35 RSVD 35 CS 37 VCC 39 VCC 39 VCC 39 ATA7 38 ATA5 14 CATA5 14 ATA3 14 CND 14 ATA2 145 CND 14	PRSNT2[0] [60 SLOTR2[0] [61 61 REQ640N[0] [62 63 NC [64 NC [64

SCPS029B-DECEMBER1998

SCPS029B - DECEMBER1998

signal names by terminal name

Table 1. Signals Sorted	Alphabetically by Terminal	Name (120-Pin Package)
Table II eignale eeltea	, up nabouodity by tormina	

TERMINAL NAME	NO	TERMINAL NAME	NO	TERMINAL NAME	NO
A0/ADD0	50	GND	17	RD/SDA	29
A1/ADD1	49	GND	26	REQ64ON[0]	59
A2/ADD2	48	GND	41	REQ64ON[1]	78
A3/ADD3	47	GND	51	REQ64ON [2]	98
A4/ADD4	45	GND	68	REQ64ON[3]	116
ATTN0[0]	65	GND	79	REQ64ON[0]	60
ATTN0[1]	83	GND	101	REQ64ON[1]	80
ATTN0[2]	103	GND	112	REQ64ON[2]	99
ATTN0[3]	1	GND	117	REQ64ON[3]	118
ATTN1[0]	66	IDLEGNT	19	RSVD	31
ATTN1[1]	84	IDLEREQ	18	RSVD	32
ATTN1[2]	104	INTR	24	RSVD	33
ATTN1[3]	2	INTR	23	RSVD	61
BUSON[0]	63	IRDY	21	RSVD	62
BUSON[1]	81	M66EN[0]	67	RSVD	89
BUSON[2]	100	M66EN[1]	86	RSVD	90
BUSON[3]	119	M66EN[2]	105	SGNT	13
CLKON[0]	64	M66EN[3]	3	SLOTREQ64[0]	10
CLKON[1]	82	PCLK	16	SLOTREQ64[1]	9
CLKON[2]	102	PRSNT1[0]	55	SLOTREQ64[2]	8
CLKON[3]	120	PRSNT1[1]	75	SLOTREQ64[3]	7
CS	34	PRSNT1[2]	94	SLOTRST[0]	58
DATA0/ADD5	44	PRSNT1[3]	113	SLOTRST[1]	77
DATA1/ADD6	43	PRSNT2[0]	57	SLOTRST[2]	97
DATA2	42	PRSNT2[1]	76	SLOTRST[3]	115
DATA3	40	PRSNT2[2]	96	SMODE	27
DATA4	39	PRSNT2[3]	114	SREQ	12
DATA5	38	PRST	14	SYSM66EN	25
DATA6	37	PWRFAULT[0]	53	VCC	6
DATA7	35	PWRFAULT[1]	72	Vcc	36
DETECT0[0]	69	PWRFAULT[2]	92	VCC	56
DETECT0[1]	87	PWRFAULT[3]	110	VCC	85
DETECT0[2]	106	PWRGOOD[0]	54	VCC	95
DETECT0[3]	4	PWRGOOD[1]	73	VCC5V	15
DETECT1[0]	70	PWRGOOD[2]	93	V _{CC5} V	28
DETECT1[1]	88	PWRGOOD[3]	111	V _{CC5} V	46
DETECT1[2]	108	PWRON/OFF[0]	52	V _{CC5} V	74
DETECT1[3]	5	PWRON/OFF[1]	71	V _{CC5} V	107
FRAME	20	PWRON/OFF[2]	91	VCCP	22
GND	11	PWRON/OFF[3]	109	WR/SCL	30

SCPS029B - DECEMBER1998

signal names by pin number

NO		NO	TERMINAL NAME	NO	TERMINAL NAME
1	ATTN0[3]	41	GND	81	BUSON[1]
2	ATTN1[3]	42	DATA2	82	CLKON[1]
3	M66EN[3]	43	DATA1/ADD6	83	ATTN0[1]
4	DETECT0[3]	44	DATA0/ADD5	84	ATTN1[1]
5	DETECT1[3]	45	A4/ADD4	85	Vcc
6	VCC	46	V _{CC5} V	86	M66EN[1]
7	SLOTREQ64[3]	47	A3/ADD3	87	DETECT0[1]
8	SLOTREQ64[2]	48	A2/ADD2	88	DETECT1[1]
9	SLOTREQ64[1]	49	A1/ADD1	89	RSVD
10	SLOTREQ64[0]	50	A0/ADD0	90	RSVD
11	GND	51	GND	91	PWRON/OFF[2]
12	SREQ	52	PWRON/OFF[0]	92	PWRFAULT[2]
13	SGNT	53	PWRFAULT[0]	93	PWRGOOD[2]
14	PRST	54	PWRGOOD[0]	94	PRSNT1[2]
15	V _{CC5} V	55	PRSNT1[0]	95	V _{CC}
16	PCLK	56	VCC	96	PRSNT2[2]
17	GND	57	PRSNT2[0]	97	SLOTRST[2]
18	IDLEREQ	58	SLOTRST[0]	98	REQ64ON[2]
19	IDLEGNT	59	REQ64ON[0]	99	REQ64ON[2]
20	FRAME	60	REQ64ON[0]	100	BUSON[2]
21	IRDY	61	RSVD	101	GND
22	VCCP	62	RSVD	102	CLKON[2]
23	INTR	63	BUSON[0]	103	ATTN0[2]
24	INTR	64	CLKON[0]	104	ATTN1[2]
25	SYSM66EN	65	ATTN0[0]	105	M66EN[2]
26	GND	66	ATTN1[0]	106	DETECT0[2]
27	SMODE	67	M66EN[0]	107	V _{CC5} V
28	V _{CC5} V	68	GND	108	DETECT1[2]
29	RD/SDA	69	DETECT0[0]	109	PWRON/OFF[3]
30	WR/SCL	70	DETECT1[0]	110	PWRFAULT[3]
31	RSVD	71	PWRON/OFF[1]	111	PWRGOOD[3]
32	RSVD	72	PWRFAULT[1]	112	GND
33	RSVD	73	PWRGOOD[1]	113	PRSNT1[3]
34	CS	74	VCC5V	114	PRSNT2[3]
35	DATA7	75	PRSNT1[1]	115	SLOTRST[3]
36	VCC	76	PRSNT2[1]	116	REQ64ON[3]
37	DATA6	77	SLOTRST[1]	117	GND
38	DATA5	78	REQ64ON[1]	118	REQ64ON[3]
39	DATA4	79	GND	119	BUSON[3]
40	DATA3	80	REQ64ON[1]	120	CLKON[3]

Table 2. Signals Sorted Numerically by Pin Number (120-Pin Package)

SCPS029B - DECEMBER1998

signal names by terminal name

TERMINAL NAME	NO	TERMINAL NAME	NO	TERMINAL NAME	NO	TERMINAL NAME	NO
A0/ADD0	53	DETECT0[2]	113	NC	97	REQ640N[3]	125
A1/ADD1	52	DETECT0[3]	5	NC	128	RSVD	34
A2/ADD2	51	DETECT1[0]	75	PCLK	17	RSVD	35
A3/ADD3	50	DETECT1[1]	93	PRSNT1[0]	58	RSVD	36
A4/ADD4	48	DETECT1[2]	115	PRSNT1[1]	80	RSVD	66
ATTN0[0]	70	DETECT1[3]	6	PRSNT1[2]	101	RSVD	67
ATTN0[1]	88	FRAME	21	PRSNT1[3]	120	RSVD	94
ATTN0[2]	110	GND	12	PRSNT2[0]	60	RSVD	95
ATTN0[3]	2	GND	18	PRSNT2[1]	81	SGNT	14
ATTN1[0]	71	GND	27	PRSNT2[2]	103	SLOTREQ64[0]	11
ATTN1[1]	89	GND	44	PRSNT2[3]	121	SLOTREQ64[1]	10
ATTN1[2]	111	GND	54	PRST	15	SLOTREQ64[2]	9
ATTN1[3]	3	GND	73	PWRFAULT[0]	56	SLOTREQ64[3]	8
BUSON[0]	68	GND	84	PWRFAULT[1]	77	SLOTRST[0]	61
BUSON[1]	86	GND	108	PWRFAULT[2]	99	SLOTRST[1]	82
BUSON[2]	107	GND	119	PWRFAULT[3]	117	SLOTRST[2]	104
BUSON[3]	126	GND	124	PWRGOOD[0]	57	SLOTRST[3]	122
CLKON[0]	69	IDLEGNT	20	PWRGOOD[1]	78	SMODE	28
CLKON[1]	87	IDLEREQ	19	PWRGOOD[2]	100	SREQ	13
CLKON[2]	109	INTR	25	PWRGOOD[3]	118	SYSM66EN	26
CLKON[3]	127	INTR	24	PWRON/OFF[0]	55	Vcc	7
CS	37	IRDY	22	PWRON/OFF[1]	76	Vcc	39
DATA0/ADD5	47	M66EN[0]	72	PWRON/OFF[2]	98	Vcc	59
DATA1/ADD6	46	M66EN[1]	91	PWRON/OFF[3]	116	Vcc	90
DATA2	45	M66EN[2]	112	RD/SDA	30	V _{CC}	102
DATA3	43	M66EN[3]	4	REQ64ON[0]	62	V _{CC5} V	16
DATA4	42	NC	1	REQ64ON[1]	83	V _{CC5} V	29
DATA5	41	NC	32	REQ64ON[2]	105	V _{CC5} V	49
DATA6	40	NC	33	REQ64ON[3]	123	V _{CC5} V	79
DATA7	38	NC	64	REQ64ON[0]	63	V _{CC5} V	114
DETECT0[0]	74	NC	65	REQ64ON[1]	85	V _{CCP}	23
DETECT0[1]	92	NC	96	REQ64ON[2]	106	WR/SCL	31

Table 3. Signals Sorted Alphabetically by Terminal Name (128-Pin Package)

SCPS029B - DECEMBER1998

signal names by pin number

NO	TERMINAL NAME	NO	TERMINAL NAME	NO	TERMINAL NAME	NO	TERMINAL NAME
1	NC	33	NC	65	NC	97	NC
2	ATTN0[3]	34	RSVD	66	RSVD	98	PWRON/OFF[2]
3	ATTN1[3]	35	RSVD	67	RSVD	99	PWRFAULT[2]
4	M66EN[3]	36	RSVD	68	BUSON[0]	100	PWRGOOD[2]
5	DETECT0[3]	37	CS	69	CLKON[0]	101	PRSNT1[2]
6	DETECT1[3]	38	DATA7	70	ATTN0[0]	102	V _{CC}
7	VCC	39	VCC	71	ATTN1[0]	103	PRSNT2[2]
8	SLOTREQ64[3]	40	DATA6	72	M66EN[0]	104	SLOTRST[2]
9	SLOTREQ64[2	41	DATA5	73	GND	105	REQ64ON[2]
10	SLOTREQ64[1]	42	DATA4	74	DETECT0[0]	106	REQ64ON[2]
11	SLOTREQ64[0]	43	DATA3	75	DETECT1[0]	107	BUSON[2]
12	GND	44	GND	76	PWRON/OFF[1]	108	GND
13	SREQ	45	DATA2	77	PWRFAULT[1]	109	CLKON[2]
14	SGNT	46	DATA1/ADD6	78	PWRGOOD[1]	110	ATTN0[2]
15	PRST	47	DATA0/ADD5	79	V _{CC5} V	111	ATTN1[2]
16	V _{CC5} V	48	A4/ADD4	80	PRSNT1[1]	112	M66EN[2]
17	PCLK	49	V _{CC5} V	81	PRSNT2[1]	113	DETECT0[2]
18	GND	50	A3/ADD3	82	SLOTRST[1]	114	V _{CC5} V
19	IDLEREQ	51	A2/ADD2	83	REQ64ON[1]	115	DETECT1[2]
20	IDLEGNT	52	A1/ADD1	84	GND	116	PWRON/OFF[3]
21	FRAME	53	A0/ADD0	85	REQ64ON[1]	117	PWRFAULT[3]
22	IRDY	54	GND	86	BUSON[1]	118	PWRGOOD[3]
23	VCCP	55	PWRON/OFF[0]	87	CLKON[1]	119	GND
24	INTR	56	PWRFAULT[0]	88	ATTN0[1]	120	PRSNT1[3]
25	INTR	57	PWRGOOD[0]	89	ATTN1[1]	121	PRSNT2[3
26	SYSM66EN	58	PRSNT1[0]	90	V _{CC}	122	SLOTRST[3]
27	GND	59	VCC	91	M66EN[1]	123	REQ64ON[3]
28	SMODE	60	PRSNT2[0]	92	DETECT0[1]	124	GND
29	V _{CC5} V	61	SLOTRST[0]	93	DETECT1[1]	125	REQ64ON[3]
30	RD/SDA	62	REQ64ON[0]	94	RSVD	126	BUSON[3]
31	WR/SCL	63	REQ64ON[0]	95	RSVD	127	CLKON[3]
32	NC	64	NC	96	NC	128	NC

Table 4. Signals Sorted Numerically by Pin Number (128-Pin Package)

SCPS029B - DECEMBER1998

signal names by terminal name

TERMINAL NAME	NO	TERMINAL NAME NO		TERMINAL NAME	NO	TERMINAL NAME	NO
A0/ADD0	59	DETECT1[2]	129	NC	78	REQ64ON[3]	137
A1/ADD1	58	DETECT1[3]	8	NC	103	REQ64ON[0]	72
A2/ADD2	57	FRAME	23	NC	105	REQ64ON[1]	95
A3/ADD3	56	GND	14	NC	107	REQ64ON[2]	120
A4/ADD4	50 54	GND	20	NC	1107	REQ64ON[3]	140
ATTN0[0]	80	GND	20	NC	112	RSVD	37
ATTN0[0]	98	GND	23 50	NC	114	RSVD	39
ATTN0[1]	90 124	GND	60	NC	139	RSVD	39 41
ATTN0[2]	124	GND	83	NC	141	RSVD	73
ATTN1[0]	81	GND	94	NC	141	RSVD	75
ATTN1[0] ATTN1[1]	99	GND	94 122	PCLK	143	RSVD	75 106
ATTN1[1] ATTN1[2]	99 125	GND	122	PRSNT1[0]	64	RSVD	108
ATTN1[2] ATTN1[3]	3	GND		PRSNT1[0]	90	SGNT	108
BUSON[0]	3 77		138 22	PRSNTI[1] PRSNT1[2]		SLOTREQ64[0]	10
BUSON[0]		IDLEGNT		PRSNT1[2]	115	SLOTREQ64[0]	
BUSON[1]	96 121	INTR	21 27	PRSNT[3]	134 66	SLOTREQ64[1]	12 11
BUSON[2] BUSON[3]				PRSNT2[0]		SLOTREQ64[2]	
CLKON[0]	142 79		26 24	PRSNT2[1] PRSNT2[2]	91 117	SLOTREQ64[3]	10 68
CLKON[0]			24 82	PRSNT2[2] PRSNT2[3]		SLOTRST[0]	
CLKON[1]	97	M66EN[0]		PRSNT2[3]	135	SLOTRST[1]	92
	123	M66EN[1]	101	PWRFAULT[0]	17		118
CLKON[3] CS	144	M66EN[2]	126		62	SLOTRST[3]	136
	43	M66EN[3]	5	PWRFAULT[1]	87	SMODE SREQ	30
DATA0/ADD5	53	NC	2	PWRFAULT[2]	111		15
DATA1/ADD6	52	NC	4	PWRFAULT[3]	131	SYSM66EN	28
DATA2	51	NC	6	PWRGOOD[0] PWRGOOD[1]	63	Vcc	9
DATA3	49	NC	31		88	Vcc	45
DATA4	48	NC	33	PWRGOOD[2]	113	Vcc	65
DATA5	47	NC	35	PWRGOOD[3]	132	Vcc	100
DATA6	46	NC	38	PWRON/OFF[0]	61	Vcc	116
DATA7	44	NC	40	PWRON/OFF[1]	86	VCC5V	18
DETECT0[0]	84	NC	42	PWRON/OFF[2]	109	V _{CC5} V	32
DETECT0[1]	102	NC	67	PWRON/OFF[3]	130	V _{CC5} V	55
DETECT0[2]	127	NC	69	RD/SDA	34	VCC5V	89
DETECT0[3]	7	NC	71	REQ64ON[0]	70	VCC5V	128
DETECT1[0]	85	NC	74	REQ64ON[1]	93	VCCP	25
DETECT1[1]	104	NC	76	REQ64ON[2]	119	WR/SCL	36

Table 5. Signals Sorted Alphabetically by Terminal Name (144-Pin Package)

SCPS029B - DECEMBER1998

signal names by pin number

NO	TERMINAL NAME	NO	TERMINAL NAME	NO	TERMINAL NAME	NO	TERMINAL NAME
1	ATTN0[3]	37	RSVD	73	RSVD	109	PWRON/OFF[2]
2	NC	38	NC	74	NC	110	NC
3	ATTN1[3]	39	RSVD	75	RSVD	111	PWRFAULT[2]
4	NC	40	NC	76	NC	112	NC
5	M66EN[3]	41	RSVD	77	BUSON[0]	113	PWRGOOD[2]
6	NC	42	NC	78	NC	114	NC
7	DETECT0[3]	43	CS	79	CLKON[0]	115	PRSNT1[2]
8	DETECT1[3]	44	DATA7	80	ATTN0[0]	116	VCC
9	VCC	45	VCC	81	ATTN1[0]	117	PRSNT2[2]
10	SLOTREQ64[3]	46	DATA6	82	M66EN[0]	118	SLOTRST[2]
11	SLOTREQ64[2]	47	DATA5	83	GND	119	REQ64ON[2]
12	SLOTREQ64[1]	48	DATA4	84	DETECT0[0]	120	REQ64ON[2]
13	SLOTREQ64[0]	49	DATA3	85	DETECT1[0]	121	BUSON[2]
14	GND	50	GND	86	PWRON/OFF[1]	122	GND
15	SREQ	51	DATA2	87	PWRFAULT[1]	123	CLKON[2]
16	SGNT	52	DATA1/ADD6	88	PWRGOOD[1]	124	ATTN0[2]
17	PRST	53	DATA0/ADD5	89	V _{CC5} V	125	ATTN1[2]
18	V _{CC5} V	54	A4/ADD4	90	PRSNT1[1]	126	M66EN[2]
19	PCLK	55	V _{CC5V}	91	PRSNT2[1]	127	DETECT0[2]
20	GND	56	A3/ADD3	92	SLOTRST[1]	128	V _{CC5} V
21	IDLEREQ	57	A2/ADD2	93	REQ64ON[1]	129	DETECT1[2]
22	IDLEGNT	58	A1/ADD1	94	GND	130	PWRON/OFF[3]
23	FRAME	59	A0/ADD0	95	REQ64ON[1]	131	PWRFAULT[3]
24	IRDY	60	GND	96	BUSON[1]	132	PWRGOOD[3]
25	VCCP	61	PWRON/OFF[0]	97	CLKON[1]	133	GND
26	INTR	62	PWRFAULT[0]	98	ATTN0[1]	134	PRSNT1[3]
27	INTR	63	PWRGOOD[0]	99	ATTN1[1]	135	PRSNT2[3]
28	SYSM66EN	64	PRSNT1[0]	100	VCC	136	SLOTRST[3]
29	GND	65	VCC	101	M66EN[1]	137	REQ64ON[3]
30	SMODE	66	PRSNT2[0]	102	DETECT0[1]	138	GND
31	NC	67	NC	103	NC	139	NC
32	V _{CC5} V	68	SLOTRST[0]	104	DETECT1[1]	140	REQ64ON[3]
33	NC	69	NC	105	NC	141	NC
34	RD/SDA	70	REQ64ON[0]	106	RSVD	142	BUSON[3]
35	NC	71	NC	107	NC	143	NC
36	WR/SCL	72	REQ64ON[0]	108	RSVD	144	CLKON[3]

Table 6. Signals Sorted Numerically by Pin Number (144-Pin Package)

SCPS029B - DECEMBER1998

Terminal Functions

This section describes the HPC3130 terminal functions. The terminals are grouped in tables by function.

power supply terminal functions

		TERMINAL				
NAME	NO. 120	NO. 128	NO. 144	I/O	FUNCTION	
GND	11, 17, 26, 41, 51, 68, 79, 101, 112, 117	12, 18, 27, 44, 54, 73, 84, 108, 119, 124	14, 20, 29, 50, 60, 83, 94, 122, 133, 138	I	Device ground terminals	
VCC	6, 36, 56, 85, 95	7, 39, 59, 90, 102	9, 45, 65, 100, 116	I	3.3-V power supply	
V _{CC5V}	15, 28, 46, 74, 107	16, 29, 49, 79, 114	18, 32, 55, 89, 128	Ι	5-V clamp-rail voltage supply	
VCCP	22	23	25	I	Clamp rail voltage for PCI signaling (5V or 3.3V)	

control bus interface

TERMINAL					
NAME	NO. 120	NO. 128	NO. 144	I/O	FUNCTION
A2/ADD2 A1/ADD1 A0/ADD0	48 49 50	51 52 53	57 58 59	I	Parallel bus address. These terminals are address inputs in generic parallel bus cycles and are only used when the SMODE is input low. These lower address terminals select one of the eight registers for read/write access.
					Serial bus address select. These terminals indicate the full serial bus address of the HPC3130 when the SMODE is input high.
A4/ADD4 A3/ADD3	45 47	48 50	54 56	I	Parallel bus address. These terminals are address inputs in generic parallel bus cycles, and are only used when SMODE is input low. These upper address terminals select one of four hot-plug slots supported by the HPC3130.
					Serial bus address select. These terminals indicate the full serial bus address of the HPC3130 when the SMODE is input high.
CS	34	37	43	I	Chip selection. This active low input selects the HPC3130 chip as addressed in the current generic parallel bus cycle. This chip input is only valid if the SMODE is input low. Multiple HPC3130 chips may exist in a system with external logic driving this signal.
DATA1/ADD6 DATA0/ADD5	43 44	46 47	52 53	I/O	Parallel bus data. This bus is the data bus in generic parallel bus cycles and is selected when the SMODE is input low. The data path is used during both read and write transactions to internal registers when the parallel control bus interface is implemented.
					Serial bus address selection. These terminals indicate the full serial bus address of the HPC3130 when the SMODE is input high.
DATA7 DATA6 DATA5 DATA4 DATA3 DATA2	35 37 38 39 40 42	38 40 41 42 43 45	44 46 47 48 49 51	I/O	Parallel bus data. This bus is the data bus in generic parallel bus cycles and is selected when the SMODE is input low. The data path is used during both read and write transactions to internal registers when the parallel control bus interface is implemented.
RD/SDA	29	30	34	I/O	Read selection. This terminal indicates a register read cycle when the SMODE input is low and the $\overline{\text{CS}}$ terminal input is asserted. This is used to read an internal HPC3130 register.
					Serial bus data. This terminal signals the serial bus data when the SMODE input is high. It is used during internal register read and write transactions.
WR/SCL	30	31	36	I	Write selection. This terminal indicates a register write cycle when the SMODE input is low and the $\overline{\text{CS}}$ terminal input is asserted. This input is used to write to an internal HPC3130 register.
					Serial bus clock. This terminal inputs serial bus clock in when the SMODE input is high. It is used during internal register read and write transactions.

SCPS029B - DECEMBER1998

Terminal Functions (Continued)

system interface

-	TERMINAL							
NAME	NO. 120	NO. 128	NO. 144	1/0	FUNCTION			
FRAME	20	21	23	I	Frame. This input and the IRDY input indicate that the PCI bus is idle. When the HPC3130 senses the PCI bus is idle after IDLEGNT is low, a hot-plug slot can be connected to the PCI bus. This input must be wired to a valid logic level if the bus idling procedure is not implemented.			
IDLEGNT	19	20	22	I	Idle grant. This input indicates when the PCI bus is idled by the HOST-PCI bridge after a request is made by IDLEREQ. The protocol is identical to PCI request/grant. This input must be wired to a valid logic level if the bus idling procedure is not implemented.			
IDLEREQ	18	19	21	0	Idle request. This output is driven to request the HOST-PCI bridge to idle the PCI bus before connecting a hot-plug slot. The protocol is identical to PCI request/grant. A pullup resistor must be implemented on this terminal if the bus idling procedure is not implemented.			
INTR	24	25	27	0	System interrupt. This output provides a system interrupt. The HPC3130 can be programmed to assert this interrupt under various conditions, which may be serviced by the hot-plug service. Furthermore, the event status/enable state is compliant with the <i>ACPI Specification</i> and, as a result, supports ACPI control methods for switching the HPC3130.			
INTR	23	24	26	0	System interrupt. This open drain output provides a system interrupt. The HPC3130 can be programmed to assert this interrupt under various conditions, which may be serviced by the hot-plug. Furthermore, the event status/enable state is compliant with the <i>ACPI Specification</i> and, as a result, supports ACPI control methods for switching the HPC3130.			
IRDY	21	22	24	I	Initiator ready. This and the FRAME input indicate that the PCI bus is idle. When the HPC3130 senses the PCI bus is idle after IDLEGNT is low, a hot-plug slot may be connected to the PCI bus. This input must be wired to a valid logic level if the bus idling procedure is not implemented.			
PCLK	16	17	19	I	PCI clock input. These terminals provide the PCI clock to the HPC3130, which uses it only for activity indicator timing, IDLEREQ/IDLEGNT protocol, and connection sequencing.			
PRST	14	15	17	I	PCI reset. This signal provides the PCI reset to the HPC3130. After a PCI reset, the HPC3130 resides in a state where all slots are enabled, as in a non-hot-plug system. The HPC3130 passes PCI resets from the host to all hot-plug slots.			
SGNT	13	14	16	0	Secondary grant. This output provides a scheme to cascade a secondary HPC3130 device in order to provide more than four slots. The SGNT output from the primary HPC3130 is input to the IDLEGNT terminal for the secondary HPC3130. After the secondary HPC3130 requests the primary HPC3130 to idle the bus, the primary HPC3130 arbitrates for the bus using IDLEREQ. Once IDLEGNT is asserted, the primary HPC3130 asserts its SGNT output. This indicates to the secondary HPC3130 device that it can connect to the bus.			
SMODE	27	28	30	I	Serial bus mode. When this input is asserted high, the internal HPC3130 registers are accessible through serial bus interface; otherwise, they are accessed through the generic parallel bus interface. This input selects the control bus interface.			
SREQ	12	13	15	I	Secondary request. This input provides a scheme to cascade a second HPC3130 device in order to provide more than four slots. The IDLEREQ from the second HPC3130 device is input to the SREQ terminal of the primary HPC3130. If the second HPC3130 device arbitrates for the bus by asserting its IDLEREQ output, this scheme causes the primary HPC3130 to assert its IDLEREQ. If cascading is not used, this input is pulled high.			
SYSM66EN	25	26	28	I/O	PCI bus frequency indicator. This signal indicates the PCI clock frequency requirements of the hot-plug slots, and must be tied to the system PCI bus M66EN signal. The output from this terminal only changes state after a PCI reset and is only required in a 66-MHz system.			

SCPS029B - DECEMBER1998

Terminal Functions (Continued)

slot control and status functions

TERMINAL							
NAME	NO. 120	NO. 128	NO. 144	I/O	FUNCTION		
ATTN0[3] ATTN0[2] ATTN0[1] ATTN0[0] ATTN1[3] ATTN1[2] ATTN1[1] ATTN1[0]	1 103 83 65 2 104 84 66	2 110 88 70 3 111 89 71	1 124 98 80 3 125 99 81	0	Attention indicators. These two outputs are provided per slot as attention indicators and can be independently programmed to drive high, low, fast blink, and slow blink. The timer is based on the PCI clock frequency and the state of SYSM66EN.		
BUSON[3] BUSON[2] BUSON[1] BUSON[0]	119 100 81 63	126 107 86 68	142 121 96 77	0	CBT switch control for PCI bus. This output controls the CBT switch that connects the hot-plug slot to the system PCI bus. This output is only driven by the HPC3130 under programmed control.		
CLKON[3] CLKON[2] CLKON[1] CLKON[0]	120 102 82 64	127 109 87 69	144 123 97 79	0	PCI clock connection control. This output is used to control the CBT switch or clock driver that connects the hot-plug slot to the system PCI clock. This output is only driven by the HPC3130 under programmed control.		
DETECTO[3] DETECTO[2] DETECTO[1] DETECTO[0] DETECT1[3] DETECT1[2] DETECT1[1] DETECT1[1] DETECT1[0]	4 106 87 69 5 108 88 70	5 113 92 74 6 115 93 75	7 127 102 84 8 129 104 85	Ι	Card detection signals. These two card detect input signals, DETECT0 and DETECT1, are provided as additional card detection signals to the PRSNT1 and PRSNT2. Since only one present input must be tied to ground to indicate a card is present per the <i>PCI Specification</i> , these optional inputs are provided for designers of a more mechanically robust system. If the protection enable bit is set to 1 in the general configuration register, the HPC3130 does not power a hot-plug slot unless DETECT0 and DETECT1 are input low. A design not implementing additional card detection must tie these signals to ground. When this feature is utilized, the HPC3130 guarantees that power can not be applied to an empty slot or a slot with a partially inserted card.		
M66EN[3] M66EN[2] M66EN[1] M66EN[0]	3 105 86 67	4 112 91 72	5 126 101 82	I/O	PCI bus frequency indicator. This signal indicates the PCI clock frequency requirements of the hot-plug slots and is only required in a 66-MHz system (two slot maximum electrical loading limits). The two slot interfaces that provide the M66EN terminals are sensed at PCI reset and are driven afterwards.		
PRSNT1[3] PRSNT1[2] PRSNT1[1] PRSNT2[3] PRSNT2[2] PRSNT2[1] PRSNT2[0]	113 94 75 55 114 96 76 57	120 101 80 58 121 103 81 60	134 115 90 64 135 117 91 66	I	Present signals. These inputs are provided by hot-plug slots to indicate that an add-in card is physically present in the slot and to power requirements to the system. Only one of these signals must be tied to ground to indicate a card is present in an expansion slot. A set of PRSNT1 and PRSNT2 inputs are provided for each hot-plug slot.		
PWRFAULT[3] PWRFAULT[2] PWRFAULT[1] PWRFAULT[0]	110 92 72 53	117 99 77 56	131 111 87 62	I	Power fault. This input is provided per slot power switch to indicate if there is a power fault. The HPC3130 can be programmed to generate an interrupt through INTR when this input is asserted.		
PWRGOOD[3] PWRGOOD[2] PWRGOOD[1] PWRGOOD[0]	111 93 73 54	118 100 78 57	132 113 88 63	I	Power good. This input is provided per slot power switch to indicate when power is successfully switched. The HPC3130 can be programmed to generate an interrupt through INTR when this input is asserted.		

SCPS029B-DECEMBER1998

Terminal Functions (Continued)

TE	RMINAL	-			
NAME	NO. 120	NO. 128	NO. 144	I/O	FUNCTION
PWRON/OFF[3] PWRON/OFF[2] PWRON/OFF[1] PWRON/OFF[0]	109 91 71 52	116 98 76 55	130 109 86 61	0	Power ON/OFF. This output is provided per slot and is driven to the power switch to control the slot power state.
REQ64ON[3] REQ64ON[2] REQ64ON[1] REQ64ON[0]	116 98 78 59	123 105 83 62	137 119 93 70	0	CBT switch control for SLOTREQ64. A CBT switch can be implemented to reduce trace loading of the additional REQ64 signal inherent to the HPC3130 controller. This output can be used to control the CBT switch. This output is only driven by the HPC3130 under programmed control.
REQ64ON[3] REQ64ON[2] REQ64ON[1] REQ64ON[0]	118 99 80 60	125 106 85 63	140 120 95 72	0	CBT switch control for SLOTREQ64. A CBT switch can be implemented to reduce trace loading of the additional REQ64 signal inherent to the HPC3130 controller. This output can be used to control the CBT switch. This output is only driven by the HPC3130 under programmed control.
SLOTREQ64[3] SLOTREQ64[2] SLOTREQ64[1] SLOTREQ64[0]	7 8 9 10	8 9 10 11	10 11 12 13	0	Slot request 64. This output is driven in conjunction with SLOTRST to the hot-plug slot to indicate to option cards whether or not they are plugged into a 64-bit slot. If a 64-bit device is plugged into a 32-bit slot, then it must ensure that its high-word path inputs do not oscillate and that there is not a significant power drain through the input buffer. This output is only driven by the HPC3130 under programmed control.
SLOTRST[3] SLOTRST[2] SLOTRST[1] SLOTRST[0]	115 97 77 58	122 104 82 61	136 118 92 68	0	Slot PCI reset. This output is driven to the hot-plug slot to reset it after power up. When a card is inserted into a hot-plug slot it must be reset independent of the other PCI devices on the bus. This output is only driven by the HPC3130 under programmed control.

slot control and status functions (continued)

HPC3130 applications

This section discusses the various features of the HPC3130 in detail, and presents design considerations including a general connection sequencing guideline.

system implementation

Figure 1 illustrates the HPC3130 implementation. The PCI bus signals are switched to the hot–plug PCI slot by the BUSON output, which controls a CBT switch. The PCI clock, PCI reset, M66EN, and REQ64 must not be routed through the CBT switch. The HPC3130 drives the slot PCI reset and SLOTREQ64, which can be controlled by internal HPC3130 registers. The SLOTREQ64 requires special consideration during reset, as described. The PCI clock to the slot is driven by a clock driver, which is enabled by the HPC3130 CLKON output.

The HPC3130 also provides other features such as mechanical detection circuits, attention indicators, and interrupt signaling. The mechanical detection circuitry using the DETECT[1,0] inputs is displayed as a dotted line and is an optional feature. Two attention indicator outputs, ATTN[1,0], are provided: one indicator to draw the attention of the user to a particular slot for insertion/removal, and one optional indicator that can be used to indicate fault conditions. Additional features, such as 66-MHz capability and automatic sequencing, are discussed in the following sections.

SCPS029B - DECEMBER1998

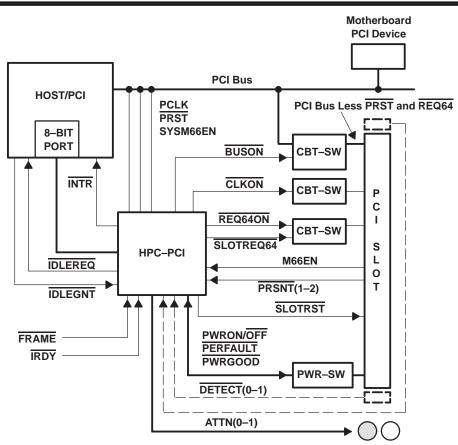
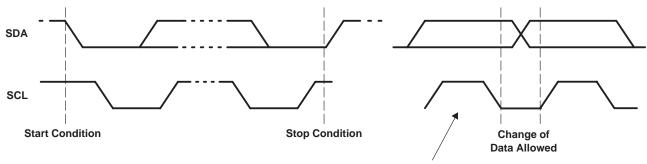


Figure 1. HPC3130 Implementation

The HPC3130 internal registers can be accessed through either a two-wire serial interface or an 8-bit generic parallel bus (ISA-like). The above figure illustrates the 8-bit port configuration. Not shown in the diagram is the SMODE chip input that must be wired low to indicate parallel bus interface mode. Also not shown in the diagram is the external chip-select logic required to select the HPC3130 in ISA bus cycles.

serial interface

The internal registers can be accessed either through a two-wire serial interface or through an 8-bit generic parallel interface. The SMODE input selects one of these modes.


The HPC3130 implements a two-pin serial slave interface with one clock signal (SCL) and one data signal (SDA). This serial interface can operate with a serial clock frequency up to 400 kHz. Both SCL and SDA require pullup resistors for the serial slave interface to function properly.

All data transfers are initiated by the serial bus master. The beginning of a data transfer is indicated by a START condition (S) when the SDA line transitions to a low state while SCL is in a high state as illustrated in Figure 2. The end of a requested data transfer is indicated by a STOP condition (P), which is the low-to-high transition of SDA while SCL is in the high state. Data on SDA must remain stable during the high state of the SCL signal. Changes on the SDA signal during the high state of SCL will be interpreted as control signals, that is, a START or STOP condition.

The SCL is an input into the HPC3130 and SDA is bidirectional.

SCPS029B-DECEMBER1998

Data Line Stable, Data Valid

Data is transferred on the bus in 8-bit bytes. The number of bytes that can be transmitted during a data transfer is unlimited; however, each byte must be completed with an acknowledge bit. An acknowledge (ACK) is indicated by the receiver pulling down the SDA signal so that it remains low during the high state of the SCL signal as shown in Figure 3.

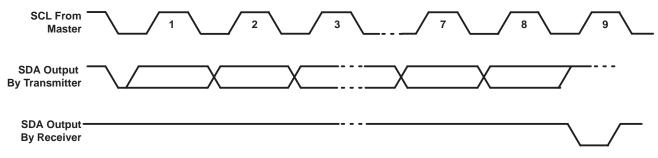


Figure 3. Serial Bus Protocol – Acknowledge

The HPC3130 serial bus slave interface protocol for write transactions is illustrated in Figure 4. The R/W command bit is set to zero to indicate a write transaction. For a write operation, the HPC3130 requires a word address field after the slave address. This address field is comprised of eight bits. Upon receipt of the word address, the HPC3130 responds with an acknowledge, and waits for the next eight bits of data, again responding with an acknowledge. After all the data bytes are transferred, the master then terminates the transfer by generating a STOP condition. The device automatically increments the address for subsequent data words. After the receipt of each word, the low order address bits are internally incremented by one.

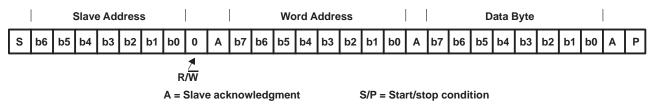


Figure 4. Serial Bus Protocol – Byte Write

A byte read operation is illustrated below. The read protocol is very similar to the write protocol, except the R/W command bit must be set to one to indicate a read data transfer. First the master issues a write command that includes the START condition and the slave address field (with the R/W bit set to write), followed by the address of the word it is to read. This procedure sets the internal address counter of the HPC3130 to the desired address. After the word address acknowledgment is received by the master, the master immediately reissues a START condition followed by another slave address field with the R/W bit set to read. The HPC3130 responds with an acknowledgment and transmits the eight data bits stored in the addressed location. If the master responds with

SCPS029B - DECEMBER1998

an acknowledge signal, indicating that it requires additional data, the HPC3130 continues to output data for each received acknowledge signal. The master terminates the sequential read operation by not responding with an acknowledge signal, and issues a STOP condition.

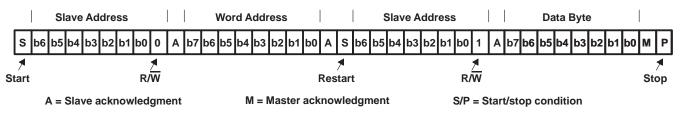


Figure 5. Serial Bus Protocol – Byte Read

parallel interface

The HPC3130 also implements an 8-bit parallel interface mode. When this mode is selected, the HPC3130 internal register addressed by the A[4:0] inputs can be accessed for a read/write transaction using the \overline{CS} , \overline{RD} , \overline{WR} strobes. The following signals have pullups on the mother board: $\overline{IO16}$, $\overline{M16}$, \overline{NOWS} , CHRDY, \overline{MEMR} , \overline{MEMW} , \overline{IOR} , \overline{IOW} , SD[15:0] to implement default states. Figure 6 shows write access using the default 8-bit standard ISA bus cycle with four wait states. A read cycle is similar.

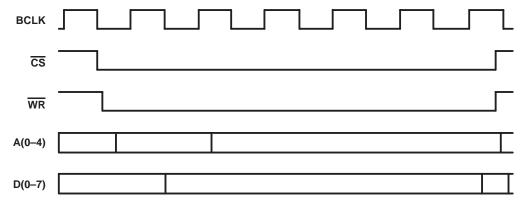


Figure 6. Parallel Bus Write Cycle

connection sequencing

Before an add-in card is hot plugged and made available to the slot, the various pins in the HPC3130 have to be controlled in a specific sequence. The HPC3130 provides the software interface to sequence the power to the slot, clocks, and signals to the add-in cards that are being live inserted. The switch-timing block is used to control the exact timing when the CBT switches are enabled.

The initial software sequencing is done by setting individual bits in the hot plug control register in the following sequence. First, the SLTPWR_CTL bit is set high to drive the PWRON/OFF signal high. After the power to the slot is applied, the SLOTRST_O bit is set low to drive the SLOTRST output. Next the CLKON_O bit is set low to enable the PCI clock to the slot. Also, the REQ64_O bit is set to a value of 0 and the SLOTREQ64 bit is set to indicate to the add-in card whether it is inserted into a 64-bit or 32-bit slot. SLOTREQ64 is set low for a 64-bit slot and is set high for a 32-bit slot.

After initial software sequencing of the above signals is complete, the next step is to enable the CBT switches. This can be done either by using the software to manually set the BUS_CTL bit or using the HPC3130 via the automatic connection sequence mode located in the general configuration register.

SCPS029B-DECEMBER1998

If automatic sequencing mode 1 is selected, then the BUS_CTL bit controls the sequencing by using idling protocol. When this bit is set to zero, the switch-timing block will arbitrate for the PCI Bus by asserting IDLEREQ. Subsequently, IDLEGNT is asserted and the HPC3130 waits for bus idle condition. When FRAME and IRDY are deasserted, the CBT switches are enabled. Following this, the SLOTRST, SLOTREQ64 and REQ64ON are deasserted. Figure 7 depicts the sequencing of events when automatic sequencing mode 1 is enabled.

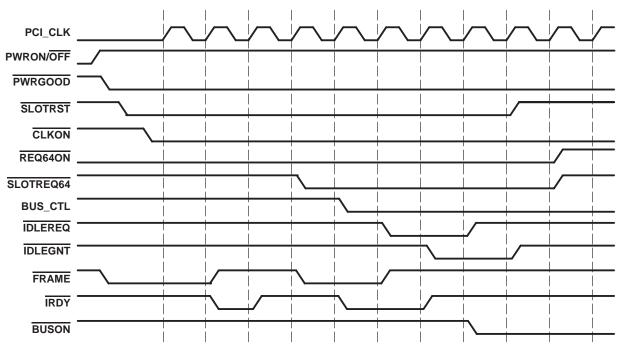
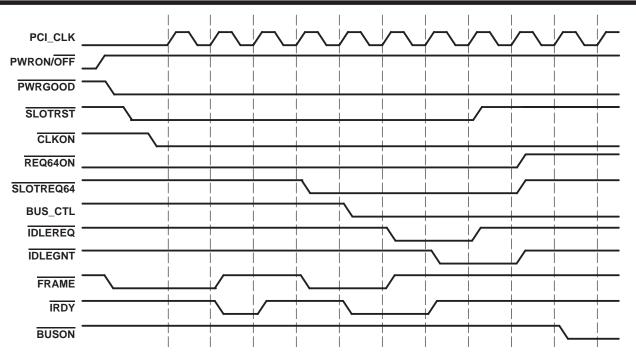



Figure 7. Automatic Connection Sequencing Mode 1

If automatic sequencing mode 2 is selected, then the BUS_CTL bit controls the sequencing by using idling protocol. When this bit is set to zero, the switch timing block arbitrates for the PCI bus by asserting IDLEREQ. Subsequently, IDLEGNT is asserted and the HPC3130 waits for the bus idle condition. When FRAME and IRDY are deasserted, the SLOTRST is deasserted. Following this, the SLOTREQ64 and REQ64ON are deasserted and the CBT switches are enabled. Figure 8 depicts the sequencing of events when automatic sequencing mode 2 is enabled.

SCPS029B-DECEMBER1998

Figure 8. Automatic Connection Sequencing Mode 2

The protocol described above is identical to the PCI REQ/GNT protocol used by PCI bus masters, which also must wait for bus idle through PCI FRAME and IRDY before initiating a PCI cycle. If the HPC3130 is connected to PCI FRAME and IRDY, the HPC3130 arbitrates for the bus; although it does not drive the PCI bus or assert FRAME to start a cycle.

There are some issues with this implementation such as bus parking and additional loading on the PCI FRAME and IRDY signals, which need to be considered when designing a system. The system designer may have a level of confidence that PCI adapter cards can tolerate connection to a non-idle bus. In the scenario where the HPC3130 is not connected to the bus, then the FRAME, IRDY, and IDLEGNT must be wired to valid logic levels and the automatic sequencing will start without any relationship to the bus.

SCPS029B-DECEMBER1998

IDLEREQ, IDLEGNT, FRAME, and IRDY pins are not connected in manual mode. In contrast, during automatic connection, the HPC3130 requests the PCIBus to make sure it is idle before it sequences through the connection sequence.

In manual mode, software has to perform each part of the connection sequence. Figure 9 is an example of the manual connection sequence. There could be several other ways to implement this protocol.

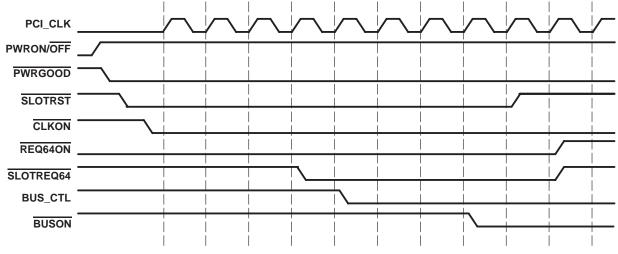


Figure 9. Manual Connection Sequencing

disconnecting sequence

The HPC3130 provides two mechanisms to isolate a PCI slot from the PCI bus so an add–in card can be removed. One of the mechanisms is called manual sequencing and is enabled by default. This mechanism allows the software to control the entire disconnect sequence. This means it is the software's responsibility to remove a powered slot from the PCI bus without any impact to the system.

The second mechanism is called auto sequencing and can be enabled by programming either Auto-Sequence 1 or Auto-Sequence 2 in the general configuration register. Unlike the connection sequence, which has two different auto-connection sequencing modes, the autodisconnect sequence has only one mode of operation. The steps in the auto-disconnect sequence are as follows:

- 1. Software may assert SLOTRST to the appropriate slot by writing a 0 to the SLOTRST_O bit in the hot-plug control register. This is optional.
- 2. Next the software must set the BUS_CTL bit in the hot-plug control register to a 1.
- 3. Once the BUS_CTL bit is set to a 1, the HPC3130 asserts IDLEREQ.
- 4. Once IDLEGNT is asserted and FRAME and IRDY are deasserted, the HPC3130 deasserts BUSON and CLKON and asserts REQ64ON to isolate the slot from the PCI bus.
- 5. The HPC3130 then drives PWRON/OFF low to power off the slot.

SCPS029B - DECEMBER1998

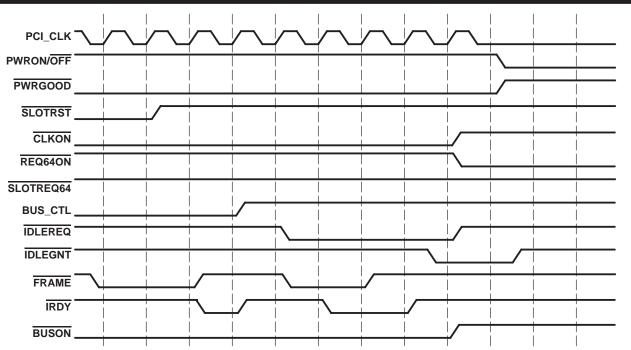


Figure 10. Automatic Disconnect Sequencing Mode

In manual disconnect mode, software has to perform each part of the disconnection sequence. Figure 11 is an example of the manual disconnection sequence. There could be several other ways to implement this protocol. During the manual disconnection, PCIBus may or may not idle; it will depend on the software implementation of the system.

Figure 11. Manual Disconnect Sequencing Mode

SLOTREQ64

The SLOTREQ64 signal must be driven by the HPC3130 during reset of a hot-plug slot. The REQ64 signal must also be driven by the system PCI bus. This requirement can be implemented using the HPC3130 and the CBT3306 switch or the CBT3257 switch, as shown in Figures 12 and 13. The PCI REQ64 signal must not pass through the PCI bus CBT switch controlled by BUSON for this implementation. In a 32-bit PCI bus implementation, the SLOTREQ64, REQ64ON and RFQ64ON outputs are not connected to any device.

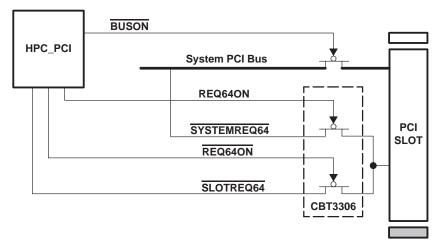


Figure 12. SLOTREQ64 Implementation Using CBT3306

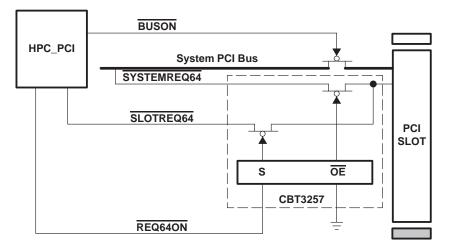


Figure 13. SLOTREQ64 Implementation Using CBT3257

SCPS029B - DECEMBER1998

66-MHz PCI support

The HPC3130 supports up to two slots in a 66-MHz system: slot 0 and slot 1. These hot-plug slot interfaces include the M66EN signal and the SYSM66EN signal communicates hot-plug slot capability to the system. Figure 14 illustrates the 66-MHz support function in the HPC3130.

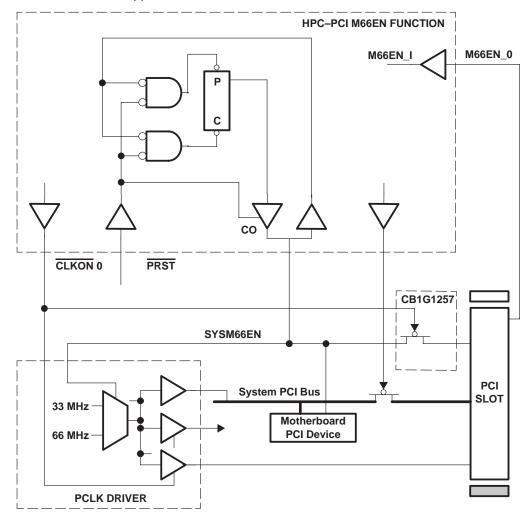


Figure 14. HPC3130 66-MHz System Support

Upon reset, the PCIRST signal is asserted and the bussed system M66EN signal is latched and selects the system frequency.

Before an adapter card can be inserted, the slot is prepared for insertion by deasserting BUSON, deasserting CLKON, and powering down the slot. When an adapter card is inserted into either hot-plug slot 0 or slot 1, the value M66EN from the card can be read through internal registers. If the bus is operating at 66-MHz and a 33-MHz adapter card is inserted, then the software ensures that the card is never connected to the bus. If the bus is operating at 33 MHz and a 66-MHz adapter card is inserted, then the latched SYSM66EN state can be driven to the slot by enabling the CBT switch using CLKON.

SYSM66EN and CLKON input to a clock driver circuit to control the PCI clock frequency. The 66-MHz support designed into the HPC3130 allows option cards to indicate PCI clock frequency capabilities upon PCI reset; however, does not allow an inserted hot-plug card to alter the clock frequency of an operating PCI bus.

configuration and control registers

The HPC3130 register set is accessible through either a generic parallel bus interface or a two-wire serial interface. Eight bytes of register space are provided per slot. Since the HPC3130 supports four slots, a total of 32 bytes of registers is implemented. Register and bit descriptions are provided in the following sections and indicate the bits that are common to all slots. The bit default values are given, which represent the state of the HPC3130 after a PCI reset event. After a PCI reset, the HPC3130 drives outputs to a state such that the slots appear as if they were not a hot-plug platform.

The register map that follows provides the register overview. Byte addressing is required when accessing the internal registers. Read transactions from reserved registers return zeros.

SLOT	REGISTER NAME	ADDRESS	SLOT	REGISTER NAME	ADDRESS
Slot 0	General configuration register	0x00	Slot 2	General configuration register	0x10
Slot 0	Hot-plug slot status register	0x01	Slot 2	Hot-plug slot status register	0x11
Slot 0	Hot-plug slot control register	0x02	Slot 2	Hot-plug slot control register	0x12
Slot 0	Attention indicator control	0x03	Slot 2	Attention indicator control	0x13
Slot 0	Reserved	0x04	Slot 2	Reserved	0x14
Slot 0	Reserved	0x05	Slot 2	Reserved	0x15
Slot 0	Interrupt event status register	0x06	Slot 2	Interrupt event status register	0x16
Slot 0	Interrupt event enable register	0x07	Slot 2	Interrupt event enable register	0x17
Slot 1	General configuration register	0x08	Slot 3	General configuration register	0x18
Slot 1	Hot-plug slot status register	0x09	Slot 3	Hot-plug slot status register	0x19
Slot 1	Hot-plug slot control register	0x0A	Slot 3	Hot-plug slot control register	0x1A
Slot 1	Attention indicator control	0x0B	Slot 3	Attention indicator control	0x1B
Slot 1	Reserved	0x0C	Slot 3	Reserved	0x1C
Slot 1	Reserved	0x0D	Slot 3	Reserved	0x1D
Slot 1	Interrupt event status register	0x0E	Slot 3	Interrupt event status register	0x1E
Slot 1	Interrupt event enable register	0x0F	Slot 3	Interrupt event enable register	0x1F

Table 7. Register Map

SCPS029B-DECEMBER1998

general configuration register

Bit	7	6	5	4	3	2	1	0
Name	General configuration register							
Туре	R	R	R	R	R/W	R/W	R	R/W
Default	0	0	0	1	0	0	Х	0

Register:	General configuration
Туре:	Read-only, Read/Write
Offset:	00h (slot 0), 08h (slot 1), 10h (slot 2), 18h (slot 3)
Default:	0Xh
Description:	This register is for general configurations and indications. The automatic PCI bus connection sequencing is enabled through this register, and the register access mode is indicated. This register is shared among all four slots.

BIT	TYPE	NAME	FUNCTION
7–4	R	RSVD	Reserved for revision ID. These bits return 0001 for this device.
3–2	R/W	SEQUENCING	Automatic PCI bus connection sequencing. These bits control the sequencing used to connect the hot- plug slot to the PCI bus. 00 = Manual sequencing through register accesses 01 = Auto–Sequence 1: Enable CBT switches before deasserting RST 10 = Auto–Sequence 2: Enable CBT switches after deasserting RST 11 = Reserved
1	R	SYSM66STAT	Status of SYSM66EN. This bit represents the latched value of SYSM66EN during a PCI reset. A value of 1 indicates the PCI bus is operating at a frequency greater than 33 MHz. A value of 0 indicates the PCI bus is operating at 33 MHz or less.
0	R/W	PROTECTEN	Protection enable. This bit enables a protection mechanism provided by the HPC3130. When this bit is enabled and either of the DETECT[1:0] inputs are high, the HPC3130 drives the BUS_ON and CLKON outputs high. The HPC3130 also drives PWRON/OFF and REQ64ON outputs low.

Table 8. General Configuration Register

SCPS029B - DECEMBER1998

hot-plug slot status register

Bit	7	6	5	4	3	2	1	0
Name	Hot-plug slot status register							
Туре	R	R	R	R	R	R	R	R
Default	Х	Х	Х	Х	Х	Х	Х	Х

Register:Hot-plug slot statusType:Read-onlyOffset:01h (slot 0), 09h (slot 1), 11h (slot 2), 19h (slot 3)Default:XXhDescription:This register reports card detection, power status, and other chip input from the hot-plug
slot interface. All bits in this register are read only, and the data read from each bit
represents the logical value of the data input from the corresponding terminal.

Table 9. Hot-Plug Slot Status Register

BIT	TYPE	NAME	FUNCTION
7	R	BUSON	Bus On. This bit returns the logical value of the BUSON terminal output.
6	R	M66EN_I	M66EN input. This bit returns the logical value of the M66EN terminal input.
5	R	PWRGOOD_I	Power good input. This bit returns the logical value of the PWRGOOD terminal input.
4	R	PWRFAULT_I	Power fault input. This bit returns the logical value of the PWRFAULT terminal input.
3	R	DETECT1_I	Mech detect 1 input. This bit returns the logical value of the DETECT1 terminal input.
2	R	DETECT0_I	Mech detect 0 input. This bit returns the logical value of the DETECT0 terminal input.
1	R	PRSNT2_I	Card present 2 input. This bit returns the logical value of the PRSNT2 terminal input.
0	R	PRSNT1_I	Card present 1 input. This bit returns the logical value of the PRSNT1 terminal input.

SCPS029B - DECEMBER1998

hot-plug slot control register

Bit	7	6	5	4	3	2	1	0
Name	Hot-plug slot control register							
Туре	R	R	R/W	R/W	R/W	R/W	R/W	R/W
Default	0	0	1	0	1	1	0	1

Register:	Hot-plug slot control
Type:	Read-only, Read/Write
Offset:	02 (slot 0), 0Ah (slot 1), 12h (slot 2), 1Ah (slot 3)
Default:	2Dh
Description:	This register applies power, resets, and provides general control of a hot-plug slot connection to the system PCI bus.

Table 10.	Hot-Plua	Slot	Control	Register
10010 101			••••••	i togiotoi

BIT	TYPE	NAME	FUNCTION
7	R	RSVD	Reserved. This bit returns 0 when read.
6	R	RSVD	Reserved. This bit returns 0 when read.
5	R/W	SLTPWR_CTL	Slot power On/Off control. The data written to this bit represents the logical value of the data to drive the PWRON/OFF output and is used to control the power state of a hot-plug slot. If the PROTECTEN bit in the general configuration register is set to 1, then a logic high can only be driven by the PWRON/OFF output if the DETECT[1:0] inputs are low.
4	R/W	BUS_CTL	PCI bus CBT-switch control. When manual sequencing is enabled, then the value written to this bit represents the logical value of the data driven to the BUSON output, and it is used to connect/disconnect a hot-plug slot to/from the PCI bus.
			 If an auto sequencing mode is enabled in the general configuration register, then this bit functions as follows: 1 = By setting this bit, the hot-plug slot gets disconnected from the PCI bus. This is accomplished by asserting IDLEREQ, then waiting for IDLEGNT assertion and deassertion of FRAME and IRDY before driving BUSON high, CLKON high, REQ64ON low, and PWRON/OFF low. 0 = By clearing this bit, the hot-plug slot gets connected to the PCI bus. This is accomplished by asserting IDLEREQ, then waiting for IDLEGNT assertion and deassertion of FRAME and IRDY before driving BUSON high, CLKON high, REQ64ON low, and PWRON/OFF low. 0 = By clearing this bit, the hot-plug slot gets connected to the PCI bus. This is accomplished by asserting IDLEREQ, then waiting for IDLEGNT assertion and deassertion of FRAME and IRDY before driving BUSON low. Also verifies assertion of DETECT[1:0] if the protection enable bit is enabled in the General Configuration Register.
3	R/W	SLOTREQ64	Slot request 64-bit control. The data written to this bit represents the logical value of the data driven to the SLOTREQ64 output and is used during reset of a slot after power is applied. This input indicates to an option card whether or not it is connected to a 64-bit slot.
2	R/W	REQ64_O	$\frac{\text{REQ64 CBT}}{\text{REQ64ON}}$ switch control. The data written to this bit represents the logical value of the data driven to the REQ64ON output and is used to control the CBT switch that implements the REQ64 PCI signal.
1	R/W	CLKON_O	CLKON CBT switch control. The data written to this bit represents the logical value of the data driven to the CLKON output and is used to control the clock driver to the hot-plug slot.
0	R/W	SLOTRST_O	Slot reset control. The data written to this bit represents the logical value of the data driven to the SLOTRST output and is used to reset a hot-plug slot after power is applied.

SCPS029B - DECEMBER1998

attention indicator control register

Bit	7	6	5	4	3	2	1	0
Name			Atte	ntion indicato	or control reg	ister		
Туре	R	R	R	R	R/W	R/W	R/W	R/W
Default	0	0	0	0	0	0	0	0

Register:Attention indicator controlType:Read-only, Read/WriteOffset:03 (slot 0), 0Bh (slot 1), 13h (slot 2), 1Bh (slot 3)Default:00hDescription:This register controls the attention indicators. The timing for the indicators is based upon
the PCI clock and the M66EN input.

BIT	TYPE	NAME	FUNCTION
7	R	RSVD	Reserved. This bit returns 0 when read.
6	R	RSVD	Reserved. This bit returns 0 when read.
5	R	RSVD	Reserved. This bit returns 0 when read.
4	R	RSVD	Reserved. This bit returns 0 when read.
3–2	R/W	ATTN1_CTL	Attention indicator 1 control. These bits control the state of ATTN1 per slot and are programmed as follows: 00 = Drive low 01 = Slow blink - 1 cycle per second 10 = Fast blink - 2 cycles per second 11 = Drive high
1-0	R/W	ATTN0_CTL	Attention indicator 0 control. These bits control the state of ATTN0 per slot and are programmed as follows: 00 = Drive low 01 = Slow blink - 1 cycle per second 10 = Fast blink - 2 cycles per second 11 = Drive high

Table 11. Attention Indicator Control Register

SCPS029B - DECEMBER1998

interrupt event status register

Bit	7	6	5	4	3	2	1	0
Name	Interrupt event status register							
Туре	R	R/C						
Default	0	0	0	0	0	0	0	0

Register:Interrupt event statusType:Read-only, Read/ClearOffset:06h (slot 0), 0Eh (slot 1), 16h (slot 2), 1Eh (slot 3)Default:00hDescription:This register reads interrupt status, and clears the interrupt. All functional bits in this
register are readable and cleared by a write back of 1. The HPC3130 can be programmed
to generate an interrupt, signaled through the open-drain INTR, after detecting various
events. Each event is individually enabled through the interrupt event enable register.

BIT	TYPE	NAME	FUNCTION
7	R	RSVD	Reserved. This bit returns 0 when read.
6	R/C	BUS_S	PCI Bus CBT switch status. This bit is set when the BUSON output is asserted, and is cleared by a write back of 1. The BUS event is intended for use with the idling protocol.
5	R/C	PWRGOOD_S	Power good status. This bit is set when the PWRGOOD input changes state.
4	R/C	PWRFAULT_S	Power fault status. This bit is set when the PWRFAULT input is asserted.
3	R/C	DETECT1_S	Mechanical detect 1 status. This bit is set when the DETECT1 input changes state.
2	R/C	DETECT0_S	Mechanical detect 0 status. This bit is set when the DETECT0 input changes state.
1	R/C	PRSNT2_S	Card present 2 status. This bit is set when the PRSNT2 input changes state.
0	R/C	PRSNT1_S	Card present 1 status. This bit is set when the PRSNT1 input changes state.

SCPS029B-DECEMBER1998

interrupt event enable register

Bit	7	6	5	4	3	2	1	0
Name			Int	errupt event	enable regist	er		
Туре	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Default	0	0	0	0	0	0	0	0

Register:Interrupt event enableType:Read-only, Read/WriteOffset:07h (slot 0), 0Fh (slot 1), 17h (slot 2), 1Fh (slot 3)Default:00hDescription:This register is used to enable interrupts, signaled through the open-drain INTR, after
detecting various events. Event status is reported through the interrupt event status
register.

BIT	TYPE	NAME	FUNCTION
7	R	RSVD	Reserved. This bit returns 0 when read.
6	R/W	BUS_E	PCI bus CBT switch event enable. When this bit is set, an INTR is signaled when the BUSON output is driven low. The BUS event is intended for use with the idling protocol.
5	R/W	PWRGOOD_E	Power good event enable. When this bit is set, an INTR is signaled when the PWRGOOD input changes state.
4	R/W	PWRFAULT_E	Power fault event enable. When this bit is set, an INTR is signaled when PWRFAULT input is asserted.
3	R/W	DETECT1_E	Mechanical detect 1 event enable. Enables INTR events on DETECT1 input state changes.
2	R/W	DETECT0_E	Mechanical detect 0 event enable. Enables INTR events on DETECT0 input state changes.
1	R/W	PRSNT2_E	Card present 2 event enable. Enables INTR events on PRSNT2 input state changes.
0	R/W	PRSNT1_E	Card present 1 event enable. Enables INTR events on PRSNT1 input state changes.

SCPS029B-DECEMBER1998

absolute maximum ratings over operating free-air temperature range[†]

Supply voltage range, V _{CC} V _{CCP} and V _{CC5V}	
Input voltage range, V _I : PCI SLOT	-0.5 V to V _{CCP} + 0.5 V -0.5 V to V _{CC5V} + 0.5 V
BUSON Parallel	-0.5 V to V_{CC5V} + 0.5 V
Parallel/Serial	
Output voltage range, V _O : PCI	-0.5 V to V_{CC5V} + 0.5 V
BUSON Parallel	-0.5 V to $\text{V}_{\text{CC5V}} + 0.5 \text{ V}$
Parallel/Serial	$-0.5 \text{ V to V}_{\text{CC5V}} + 0.5 \text{ V}$
Input clamp current, I _{IK} (V _I < 0 or V _I > V _{CC}) (see Note 1)	
Output clamp current, I_{OK} (V _O < 0 or V _O > V _{CC}) (see Note 2) Storage temperature range	–65°C to 150°C
Junction temperature, T _J	150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. Applies to external input and bidirectional buffers. For 5-V tolerant use VI > VCC5V. For universal PCI, use VI > VCCP.

2. Applies to external output and bidirectional buffers. For 5-V tolerant use VO > VCC5V. For universal PCI, use VO > VCCP.

SCPS029B - DECEMBER1998

recommended operating conditions

			MIN	NOM	MAX	UNIT
Vcc	Core voltage	Commercial	3	3.3	3.6	V
VCCP	PCI I/O voltage	Commercial	3	5	5.5	V
VCC5V	Slot I/O voltage	Commercial	3	5	5.5	V
VCC5V	Parallel I/O voltage	Commercial	3	5	5.5	V
V _{CC5V}	Serial I/O voltage	Commercial	3	5	5.5	V
VCC5V	Miscellaneous I/O voltage	Commercial	3	5	5.5	V
		PCI	0		VCCP	
		Slot	0			
VI	Input voltage	BUSON	0			V
		Parallel	0			
		Parallel/Serial	0		VCC5V	
		Miscellaneous	0		V _{CC5V}	
		PCI	0			
		Slot	0		5.5 5.5 5.5 5.5 V _{CCP} V _{CC5V} V _{CC5V}	
Vo	Output voltage [†]	BUSON	0			V
		Parallel	allel0 V_{CC5V} allel/Serial0 V_{CC5V} cellaneous0 V_{CC5V} I0 V_{CC} t0 V_{CC} son0 V_{CC} allel0 V_{CC} allel0 V_{CC} allel/Serial0 V_{CC} cellaneous0 V_{CC} t2 V_{CCP} t2 V_{CC5V} son2 V_{CC5V} allel2 V_{CC5V} allel2 V_{CC5V} allel/Serial2 V_{CC5V} allel/Serial2 V_{CC5V} allel00.8			
	but voltage [†] BUSON 0 Parallel 0 0 Parallel/Serial 0 0 Miscellaneous 0 0 PCI 2 V Slot 2 V BUSON 2 V Parallel 2 V					
		Miscellaneous	0		V _{CC} V _{CCP}	
		PCI	2		VCCP	
		Slot	2			
VIH	High-level input voltage	BUSON	2			V
		Parallel	2			
		Parallel/Serial	2		3.6 5.5 5.5 5.5 5.5 VCC5V 0.8 0	
		Miscellaneous	2			
		PCI	0		0.8	
		Slot	0		0.8	
VII	Low-level input voltage	BUSON	0		0.8	V
		Parallel	0		0.8	
		Parallel/Serial	0		0.8	
		Miscellaneous	0		0.8	
		PCI	0			
		Slot	0		6	
tt	Input transition time (t_r and t_f) (10% to 90%)	BUSON	0		6	ns
		Parallel/Serial	0		6	
/11 t		Miscellaneous	0		6	
Тд	Operating ambient temperature range		0	25	70	°C
ТJ	Virtual junction temperature [‡]		0	25	115	°C

[†] Applies to external output buffers.

[‡]These junction temperatures reflect simulation conditions. Customer is responsible for verifying junction temperature.

1. Reference tables on page 35 for pin definitions of the 120-pin PBM, the 128-pin PBK, and 144-pin PGE packages.

SCPS029B - DECEMBER1998

serial bus interface

		STAN	DARD MODE	FA	UNIT		
			MIN	MAX	MIN	MAX	UNIT
VIL	Low-level input voltage	Fixed: V _{CC5V} related:	-0.5 -0.5	1.5 0.3 V _{CC5V}	-0.5 -0.5	1.5 0.3 V _{CC5V}	V
VIH	High-level input voltage	Fixed: V _{CC5V} related:	0 0.7 V _{CC5V}	V _{CC5V max} + 0.5 V _{CC5V max} + 0.5	3 0.7 V _{CC5V}	V _{CC5V max} + 0.5 V _{CC5V max} + 0.5	V

electrical characteristics over recommended operating conditions

	PARAMETER	PINS	TEST CONDITIONS	MIN	MAX	UNIT
		PCI	$I_{OH} = -2 \text{ mA}$	0.9 VCC		
		Slot	I _{OH} = -8mA	VCC(min)		
VOH	High-level output voltage	BUSON	$I_{OH} = -12mA$	VCC(min)		V
		Parallel	$I_{OH} = -4mA$	V _{CC(min)}		
		Parallel/Serial	$I_{OH} = -4mA$	VCC(min)		
		Miscellaneous	$I_{OH} = -2mA$	V _{CC} (min)		
		PCI	I _{OL} = 2 mA		0.1 V _{CC}	
		Slot	I _{OL} = 8mA		0.5	
V _{OL}	Low-level output voltage	BUSON	$I_{OL} = 12mA$		0.5	V
		Parallel	$I_{OL} = 4mA$		0.5	
		Parallel/Serial	I _{OL} = 4mA		0.5	
		Miscellaneous	I _{OL} = 2mA		0.5	
		PCI	V _{in} = GND		±20	
ΙL		Slot	V _{in} = GND		±20	
	Low-level input current [†]	BUSON	V _{in} = GND		±20	μA
		Parallel	V _{in} = GND		±20	
		Parallel/Serial	V _{in} = GND		±20	
		Miscellaneous	V _{in} = GND		±20	
		PCI	VI = VCC		±1	
		Slot	VI = VCC		±20	
IIН	High-level input current‡	BUSON	VI = VCC		±20	μA
		Parallel	$V_I = V_{CC}$		±20	
		Parallel/Serial	$V_I = V_{CC}$		±20	
		Miscellaneous	VI = VCC		±20	
		PCI	$V_{I} = V_{CC} \text{ or } GND$		±20	
		Slot	$V_I = V_{CC} \text{ or } GND$		±20	
IOZ	High-impedance state output current F§	BUSON	$V_{I} = V_{CC} \text{ or } GND$		±20	μA
		Parallel	$V_{I} = V_{CC} \text{ or } GND$		±20	
		Parallel/Serial	$V_{I} = V_{CC} \text{ or } GND$		±20	
		Miscellaneous	$V_I = V_{CC} \text{ or } GND$		±20	

[†] Specifications apply only when pull-up terminator is turned off.

[‡] Specifications apply only when pull-down terminator is turned off.

§ F 3-state or open drain output must be in the high impedance mode.

2. Reference tables on page 32 for pin definitions of both the 120-pin PBM and the 128-pin PBK packages.

SCPS029B-DECEMBER1998

PCI clock/reset timing requirements over recommended ranges of supply voltage and operating free-air temperature

	PARAMETER	ALTERNATE SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
t _C	PCLK cycle time	t _{cyc}		15		ns
t _{wH}	PCLK high time	^t high		6		ns
t _{wL}	PCLK low time	tlow		6		ns
dv/dt	PCLK slew rate	^t r, tf		1.5	4	V/ns
tw	RSTIN pulse width	t _{rst}		1		ms
t _{su}	PCLK active time at end of RSTIN	^t rst–clk		100		ms

Pin definitions for 120-pin PBM package

PARAMETER	PIN NUMBER				
PCI	14, 16, 18, 19, 20, 21, 25, 27				
Slot	1, 2, 3, 4, 5, 7, 8, 9, 10, 52, 53, 54, 55, 57, 58, 59, 60, 64, 65, 66, 67, 69, 70, 71, 72, 73, 75, 76, 77, 78, 80, 82, 83, 84, 86, 87, 88, 91, 92, 93, 94, 96, 97, 98, 99, 102, 103, 104, 105, 106, 108, 109, 110, 111, 113, 114, 115, 116, 118, 120				
BUSON	63, 81, 100, 119				
Parallel	34, 35, 37, 38, 39, 40, 42				
Parallel/Serial	23, 24, 29, 30, 43, 44, 45, 47, 48, 49, 50				
Miscellaneous	12, 13				

Pin definitions for 128-pin PBK package

PARAMETER	PIN NUMBER				
PCI	15, 17, 19, 20, 21, 22, 26, 28,				
Slot	2, 3, 4, 5, 6, 8, 9, 10, 11, 55, 56, 57, 58, 60, 61, 62, 63, 69, 70, 71, 72, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 87, 88, 89, 91, 92, 93, 98, 99, 100, 101, 103, 104, 105, 106, 109, 110, 111, 112, 113, 115, 116, 117, 118, 120, 121, 122, 123, 125, 127				
BUSON	68, 86, 107, 126				
Parallel	37, 38, 40, 41, 42, 43, 45,				
Parallel/Serial	24, 25, 30, 31, 46, 47, 48, 50, 51, 52, 53				
Miscellaneous	13, 14				

Pin definitions for 144-pin PGE package

PARAMETER	PIN NUMBER				
PCI	17, 19, 21, 22, 23, 24, 28, 30				
Slot	1, 3, 5, 7, 8, 10, 11, 12, 13, 61, 62, 63, 64, 66, 68, 70, 72, 79, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95, 97, 98, 99, 101, 102, 104, 109, 111, 113, 115, 117, 118, 119, 120, 123, 124, 125, 126, 127, 129, 130, 131, 132, 134, 135, 136, 137, 140, 144				
BUSON	77, 96, 121, 142				
Parallel	43, 44, 46, 47, 48, 49, 51				
Parallel/Serial	26, 27, 34, 36, 52, 53, 54, 56, 57, 58, 59				
Miscellaneous	15, 16				

SCPS029B - DECEMBER1998

PCI timing requirements over recommended ranges of supply voltage and operating free-air temperature[†] (see Note 3)

PARAMETER		ALTERNATE SYMBOL	TEST CONDITIONS	MIN	МАХ	UNITS	
^t pd	Propagation delay time	PCLK to shared signal valid delay time	^t val	C _L = 50 pF, See Note 4, 1,2,3	2	11	ns
ten Enable time, high-impedance-to-active delay time from PCLK		ton		2		ns	
^t dis	t _{dis} Disable time, active-to-high-impedance delay time from PCLK		toff			28	ns
t _{su}	t _{SU} Valid setup time, before PCLK		t _{su}	3,4	3		ns
th	th Hold time, after PCLK high		th	4	0		ns

[†] Applies to external output buffers.

NOTES: 3. This data sheet uses the following conventions to describe time (t) intervals. The format is: t_A , where *subscript A* indicates the type of dynamic parameter being represented. One of the following is used: t_{pd} = propagation delay time, t_d = delay time, t_{su} = setup time, and t_h = hold time.

4. PCI shared signals are AD31–AD0, C/BE3–C/BE0, PCIFRAME, PCITRDY, PCIRDY, PCISTOP, IDSEL, PCIDEVSEL, and PCIPAR.

serial bus interface[†]

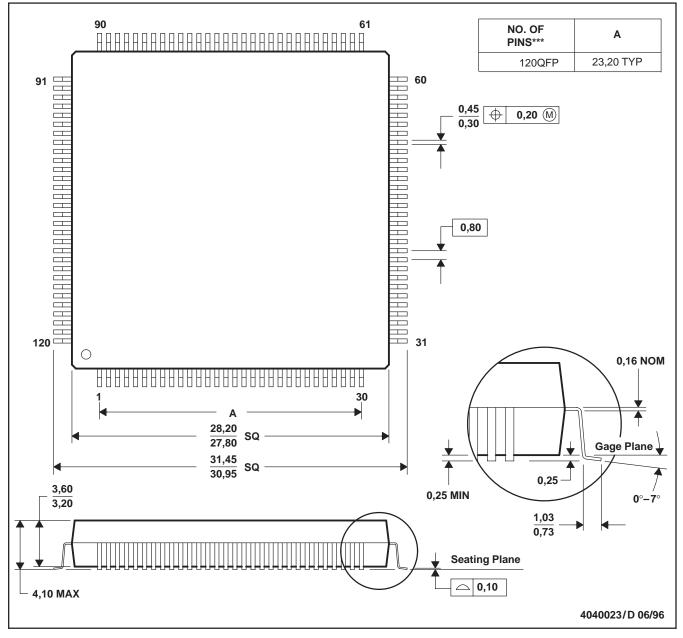
			STANDARD MODE		FAST MODE		UNIT
			MIN	MAX	MIN	MAX	
fSCL	SCL clock frequency (see Note 5)		0	100	0	400	kHz
^t BUF	Bus free time between a STOP and START condit	ion	4.7		1.3		μs
^t HD;STA	Hold time (repeated) START condition. After this period, the first clock pulse is generated		4		0.6		μs
^t LOW	LOW period of the SCL clock		4.7		1.3		μs
tHIGH	HIGH period of the SCL clock		4		0.6		μs
^t SU;STA	Setup time for a repeated START condition		4.7		0.6		μs
t	Data hald time (and Nata C)	For CBUS compatible masters:	5				
^t HD;DAT	Data hold time (see Note 6)	For Serial bus devices:	0 ₁		0 ₁	0.9 ₂	μs
^t SU;DAT	Data set–up time (see Note 7)		250		100 ₃		μs
^t R	Rise time of both SDA and SCL signals			1000	20	300	μs
t _F	Fall time of both SDA and SCL signals			300	20	300	μs
^t FSU;STO	Setup time for STOP condition		4		0.6		μs

[†] All values refer to serial bus interface V_{IH MIN} and V_{IL MAX} levels

NOTES: 5. A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the V_{IH MIN} of the SCL signal) in order to bridge the undefined region of the falling edge of SCL.

6. The maximum t_{HD:DAT} has only to be met if the device does not stretch the LOW period (t_{LOW}) of the SDL signal.

7. A fast mode serial bus device can be used in a standard mode serial bus system, but the requirement t_{SU;DAT} ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{R MAX} + t_{SU;DAT} = 1000 + 250 = 1250 ns (according to the *Standard Mode Serial Bus Specification*) before the SCL line is released.


SCPS029B - DECEMBER1998

MECHANICAL DATA

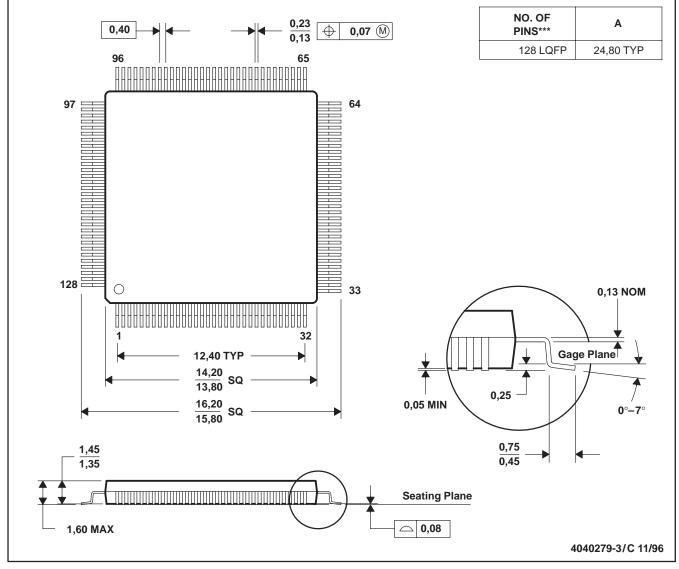
PBM (S-PQFP-G***)

PLASTIC QUAD FLATPACK

120-PIN SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-022


SCPS029B-DECEMBER1998

MECHANICAL DATA

PBK (S-PQFP-G128)

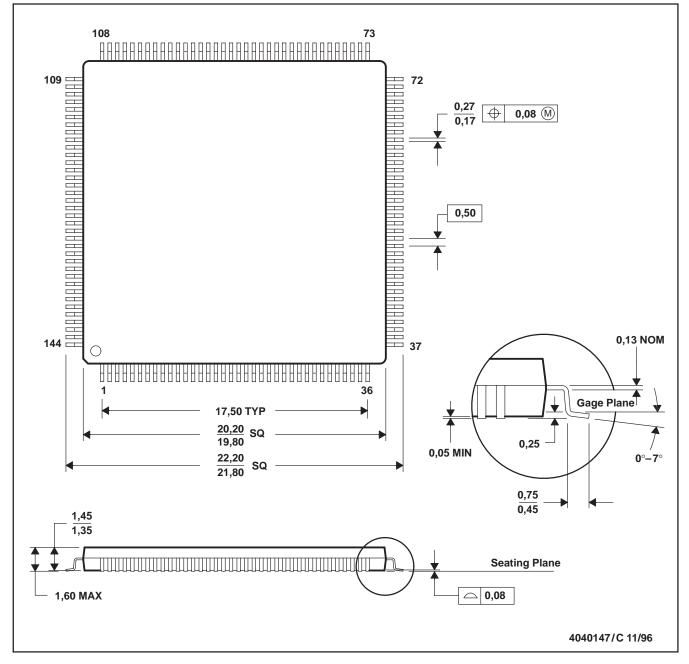
PLASTIC QUAD FLATPACK

128-PIN SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Falls within JEDEC MS-026


SCPS029B - DECEMBER1998

MECHANICAL DATA

PGE (S-PQFP-G144)

PLASTIC QUAD FLATPACK

144-PIN SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-026

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated