INTEGRATED CIRCUITS # DATA SHEET For a complete data sheet, please also download: - The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC - The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC ## HEF4508B MSI Dual 4-bit latch Product specification File under Integrated Circuits, IC04 January 1995 ## **Dual 4-bit latch** HEF4508B MSI #### **DESCRIPTION** The HEF4508B is a dual 4-bit latch, which consists of two identical independent 4-bit latches with separate strobe (ST), master reset (MR), output-enable input (\overline{EO}) and 3-state outputs (O). With the ST input in the HIGH state, the data on the $\frac{D}{EO}$ inputs appear at the corresponding outputs provided $\frac{EO}{EO}$ is LOW. Changing the ST input to the LOW state locks the data into the latch. A HIGH on the reset line forces the outputs to a LOW level regardless of the state of the ST input. The 3-state outputs are controlled by the output-enable input. A HIGH on $\overline{\text{EO}}$ causes the outputs to assume a high impedance OFF-state regardless of other input conditions. This allows the outputs to interface directly with bus orientated systems. When $\overline{\text{EO}}$ is LOW the contents of the latches are available at the outputs. #### FAMILY DATA, I_{DD} LIMITS category MSI See Family Specifications ## Dual 4-bit latch HEF4508B MSI HEF4508BP(N): 24-lead DIL; plastic (SOT101-1) HEF4508BD(F): 24-lead DIL; ceramic (cerdip) (SOT94) HEF4508BT(D): 24-lead SO; plastic (SOT137-1) (): Package Designator North America #### **PINNING** $\begin{array}{lll} D_{0A} \text{ to } D_{3A}, \, D_{0B} \text{ to } D_{3B} & \text{data inputs} \\ ST_A \, , \, ST_B & \text{strobe inputs} \\ \hline MR_A, \, MR_B & \text{master reset inputs} \\ \hline \overline{EO}_A, \, \overline{EO}_B & \text{output enable inputs} \\ O_{0A} \text{ to } O_{3A}, \, O_{0B} \text{ to } O_{3B} & \text{3-state outputs} \end{array}$ #### **FUNCTION TABLE** | | OUTPUT | | | | |----|--------|----|----------------|---------| | MR | ST | ΕO | D _n | On | | L | Н | L | Н | Н | | L | Н | L | L | L | | L | L | L | Х | latched | | Н | X | L | Х | L | | X | X | Н | Х | Z | #### **Notes** 1. H = HIGH state (the more positive voltage) L = LOW state (the less positive voltage) X = state is immaterial Z = high impedance OFF state Dual 4-bit latch HEF4508B MSI ## Dual 4-bit latch HEF4508B MSI #### **AC CHARACTERISTICS** V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns; see also waveforms Fig.4. | | V _{DD} | SYMBOL | MIN. | TYP. | MAX. | | TYPICAL EXTRAPOLATION FORMULA | |---------------------------------|-----------------|------------------|------|------|------|----|-------------------------------------| | Propagation delays | | | | | | | | | $ST \rightarrow O_n$ | 5 | | | 115 | 230 | ns | 88 ns + (0,55 ns/pF) C _L | | HIGH to LOW | 10 | t _{PHL} | | 50 | 100 | ns | 39 ns + (0,23 ns/pF) C _L | | | 15 | | | 35 | 70 | ns | 27 ns + (0,16 ns/pF) C _L | | | 5 | | | 115 | 230 | ns | 88 ns + (0,55 ns/pF) C _L | | LOW to HIGH | 10 | t _{PLH} | | 50 | 100 | ns | 39 ns + (0,23 ns/pF) C _L | | | 15 | | | 35 | 70 | ns | 27 ns + (0,16 ns/pF) C _L | | $D_n \to O_n$ | 5 | | | 95 | 190 | ns | 68 ns + (0,55 ns/pF) C _L | | HIGH to LOW | 10 | t _{PHL} | | 40 | 80 | ns | 29 ns + (0,23 ns/pF) C _L | | | 15 | | | 30 | 60 | ns | 22 ns + (0,16 ns/pF) C _L | | | 5 | | | 95 | 190 | ns | 68 ns + (0,55 ns/pF) C _L | | LOW to HIGH | 10 | t _{PLH} | | 40 | 80 | ns | 29 ns + (0,23 ns/pF) C _L | | | 15 | | | 30 | 60 | ns | 22 ns + (0,16 ns/pF) C _L | | $MR \to O_n$ | 5 | | | 100 | 200 | ns | 73 ns + (0,55 ns/pF) C _L | | HIGH to LOW | 10 | t _{PHL} | | 40 | 80 | ns | 29 ns + (0,23 ns/pF) C _L | | | 15 | | | 30 | 60 | ns | 22 ns + (0,16 ns/pF) C _L | | Output transition times | 5 | | | 60 | 120 | ns | 10 ns + (1,0 ns/pF) C _L | | HIGH to LOW | 10 | t _{THL} | | 30 | 60 | ns | 9 ns + (0,42 ns/pF) C _L | | | 15 | | | 20 | 40 | ns | 6 ns + (0,28 ns/pF) C _L | | | 5 | | | 60 | 120 | ns | 10 ns + (1,0 ns/pF) C _L | | LOW to HIGH | 10 | t _{TLH} | | 30 | 60 | ns | 9 ns + (0,42 ns/pF) C _L | | | 15 | | | 20 | 40 | ns | 6 ns + (0,28 ns/pF) C _L | | 3-state propagation | | | | | | | | | delays | | | | | | | | | Output enable times | | | | | | | | | $\overline{EO} \rightarrow O_n$ | 5 | | | 45 | 90 | ns | | | HIGH | 10 | t _{PZH} | | 20 | 40 | ns | | | | 15 | | | 18 | 36 | ns | | | | 5 | | | 45 | 90 | ns | | | LOW | 10 | t _{PZL} | | 20 | 40 | ns | | | | 15 | | | 18 | 36 | ns | | | Output disable times | | | | | | | | | $\overline{EO} \rightarrow O_n$ | 5 | | | 35 | 70 | ns | | | HIGH | 10 | t _{PHZ} | | 20 | 40 | ns | | | | 15 | | | 18 | 36 | ns | | | | 5 | | | 45 | 90 | ns | | | LOW | 10 | t _{PLZ} | | 20 | 40 | ns | | | | 15 | | | 18 | 36 | ns | | ## Dual 4-bit latch HEF4508B MSI #### **AC CHARACTERISTICS** V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns | | V _{DD}
V | SYMBOL | MIN. | TYP. | MAX. | | |----------------------|----------------------|-------------------|------|------|------|--------------------------| | Minimum ST | 5 | | 50 | 25 | ns | | | pulse width; HIGH | 10 | t _{WSTH} | 30 | 15 | ns | | | | 15 | | 20 | 10 | ns | | | Minimum MR pulse | 5 | | 40 | 20 | ns | | | width; HIGH | 10 | t _{WMRH} | 24 | 12 | ns | | | | 15 | | 20 | 10 | ns | | | Recovery time | 5 | | 20 | 0 | ns | | | for MR | 10 | t _{RMR} | 20 | 0 | ns | see also waveforms Fig.4 | | | 15 | | 15 | 0 | ns | | | Set-up times | 5 | | 35 | 10 | ns | | | $D_n \rightarrow ST$ | 10 | t _{su} | 25 | 5 | ns | | | | 15 | | 20 | 0 | ns | | | Hold times | 5 | | 20 | 0 | ns | | | $D_n \rightarrow ST$ | 10 | t _{hold} | 20 | 0 | ns | | | | 15 | | 15 | 0 | ns | | | | V _{DD} | TYPICAL FORMULA FOR P (μW) | | |-----------------|-----------------|---|--| | Dynamic power | 5 | $2\ 000\ f_{i} + \sum (f_{o}C_{L}) \times V_{DD}^{2}$ | where | | dissipation per | 10 | 9 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$ | f _i = input freq. (MHz) | | package (P) | 15 | 25 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$ | f _o = output freq. (MHz) | | | | | C _L = load capacitance (pF) | | | | | $\sum (f_0C_L)$ = sum of outputs | | | | | V _{DD} = supply voltage (V) | delays from ST to O_n , to O_n to O_n and MR to O_n . HEF4508B MSI Product specification Philips Semiconductors Dual 4-bit latch ### Dual 4-bit latch HEF4508B MSI #### **APPLICATION INFORMATION** Some examples of application for the HEF4508B are: - Buffer storage - · Holding registers - · Data storage and multiplexing NSI Product specification Philips Semiconductors Dual 4-bit latch DOA D1A D2A D3A 3-STATE 4-BIT LATCH data bus OOA O1A O2A O3A A₀ 4-line B₀ data 00 Α₁ bus 01 02 A₂ 4 – line data – B₂ 03 A₃ bus В3 O_{0B} O_{1B} O_{2B} O_{3B} 3-STATE 4-BIT LATCH S_{B} DOB D1B D2B D3B HEF4019B function HEF4508B HEF4508B select 7Z84162 Fig.6 Example of a dual multiplexed bus register with function select using two HEF4508B and one HEF4019B. #### **FUNCTION SELECT** | S _A | S _B | FUNCTION | |----------------|----------------|---------------------------------| | L | L | inhibit (all L) | | Н | L | select A bus | | L | Н | select B bus | | Н | Н | A ₁ + B ₁ |