4M High Speed SRAM (512-kword \times 8-bit)

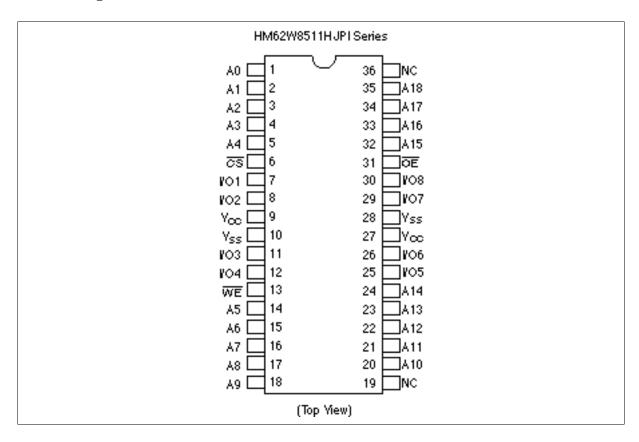
HITACHI

ADE-203-1036A(Z) Rev. 1.0 Apr. 15, 1999

Description

The HM62W8511HI is a 4-Mbit high speed static RAM organized 512-kword \times 8-bit. It has realized high speed access time by employing CMOS process (4-transistor + 2-poly resistor memory cell) and high speed circuit designing technology. It is most appropriate for the application which requires high speed, high density memory and wide bit width configuration, such as cache and buffer memory in system. It is packaged in 400-mil 36-pin SOJ.

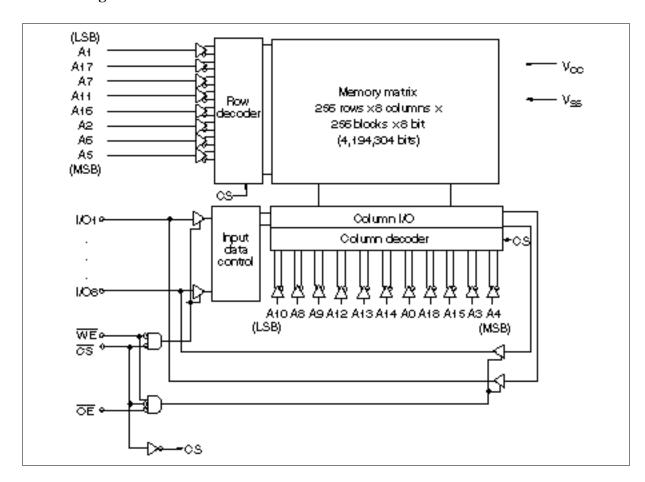
Features


- Single supply : $3.3 \text{ V} \pm 0.3 \text{ V}$
- Access time 15 ns (max)
- Completely static memory
 - No clock or timing strobe required
- Equal access and cycle times
- Directly TTL compatible
 - All inputs and outputs
- Operating current: 130 mA (max)
- TTL standby current: 50 mA (max)
- CMOS standby current: 5 mA (max)
- Center V_{CC} and V_{SS} type pinout
- Temperature range: -40 to 85°C

Ordering Information

Type No.	Access time	Package
HM62W8511HJPI-15	15 ns	400-mil 36-pin plastic SOJ (CP-36D)

Pin Arrangement



Pin Description

Pin name

A0 to A18	Address input
	Data input/output
CS	Chip select
	Output enable
	Write enable
СС	Power supply
V _{SS}	Ground
NC	No connection

Block Diagram

Operation Table

CS	OE	WE	Mode	V _{CC} current	I/O	Ref. cycle
Н	×	×	Standby	I _{SB} , I _{SB1}	High-Z	_
L	Н	Н	Output disable	I _{CC}	High-Z	_
L	L	Н	Read	I _{CC}	Dout	Read cycle (1) to (3)
L	Н	L	Write	Icc	Din	Write cycle (1)
L	L	L	Write	I _{CC}	Din	Write cycle (2)

Note: x: H or L

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit	
Supply voltage relative to V _{SS}	V _{CC}	-0.5 to +4.6	V	
Voltage on any pin relative to V _{SS}	V _T	-0.5^{*1} to $V_{CC}+0.5^{*2}$	V	
Power dissipation	P _T	1.0	W	
Operating temperature	Topr	-40 to +85	°C	
Storage temperature	Tstg	-55 to +125	°C	
Storage temperature under bias	Tbias	-40 to +85	°C	

Notes: 1. V_T (min) = -2.0 V for pulse width (under shoot) 8 ns

2. V_T (max) = V_{CC} +2.0 V for pulse width (over shoot) 8 ns

Recommended DC Operating Conditions ($Ta = -40 \text{ to } +85^{\circ}\text{C}$)

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	Vcc*3	3.0	3.3	3.6	V
	Vss*4	0	0	0	V
Input voltage	V _{IH}	2.2	_	V _{CC} + 0.5* ²	V
	V _{IL}	-0.5* ¹	_	0.8	V

Notes: 1. V_{IL} (min) = -2.0 V for pulse width (under shoot) 8 ns

- 2. V_{IH} (max) = V_{CC} +2.0 V for pulse width (over shoot) 8 ns
- 3. The supply voltage with all V_{CC} pins must be on the same level.
- 4. The supply voltage with all V_{SS} pins must be on the same level.

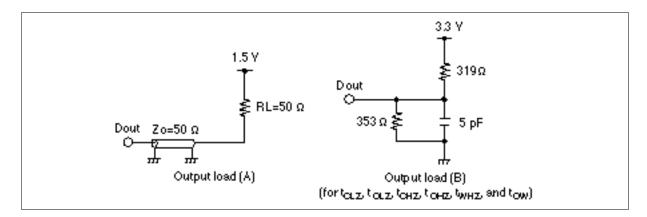
DC Characteristics (Ta = -40 to +85°C, $V_{CC} = 3.3$ V ± 0.3 V, $V_{SS} = 0$ V)

Parameter		Symbol	Min	Typ* ¹	Max	Unit	Test conditions
Input leakage current		IILII	_	_	2	μΑ	Vin = V _{SS} to V _{CC}
Output leakage current		II _{LO} I	_	_	2	μΑ	$Vin = V_{SS}$ to V_{CC}
Operation power supply current	15 ns cycle	I _{CC}	_	_	130	mA	Min cycle CS = V _{IL} , lout = 0 mA Other inputs = V _{IH} /V _{IL}
Standby power supply current	15 ns cycle	I _{SB}	_	_	50	mA	Min cycle CS = V _{IH} , Other inputs = V _{IH} /V _{IL}
		I _{SB1}	_	0.05	5	mA	
Output voltage		V _{OL}	_	_	0.4	V	I _{OL} = 8 mA
		V _{OH}	2.4	_	_	V	$I_{OH} = -4 \text{ mA}$

Notes: 1. Typical values are at V_{CC} = 3.3 V, Ta = +25°C and not guaranteed.

Capacitance (Ta = +25°C, f = 1.0 MHz)

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Input capacitance*1	Cin	_	_	6	pF	Vin = 0 V
Input/output capacitance*1	C _{I/O}	_	_	8	pF	V _{I/O} = 0 V


Note: 1. This parameter is sampled and not 100% tested.

AC Characteristics (Ta = -40 to +85 °C, V_{CC} = 3.3 V \pm 0.3 V, unless otherwise noted.)

Test Conditions

Input pulse levels: 3.0 V/0.0 VInput rise and fall time: 3 ns

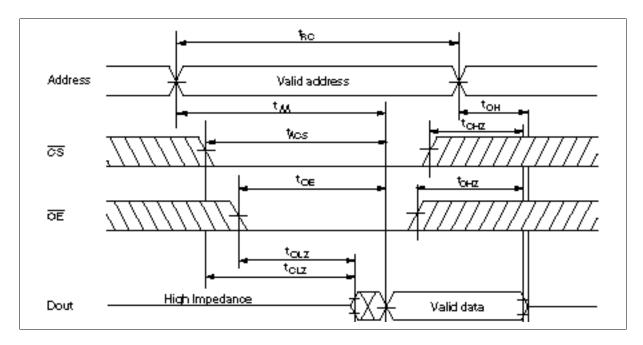
Input and output timing reference levels: 1.5 V
Output load: See figures (Including scope and jig)

Read Cycle

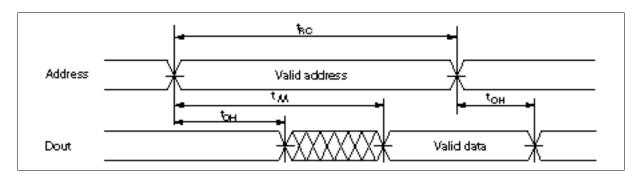
HM62W8511HI

		-15			
Parameter	Symbol	Min	Max	Unit	Notes
Read cycle time	t _{RC}	15	_	ns	
Address access time	t _{AA}	_	15	ns	
Chip select access time	t _{ACS}	_	15	ns	
Output enable to outpput valid	t _{OE}	_	7	ns	
Output hold from address change	t _{OH}	3	_	ns	
Chip select to output in low-Z	t _{CLZ}	3	_	ns	1
Output enable to output in low-Z	t_{OLZ}	0	_	ns	1
Chip deselect to output in high-Z	t _{CHZ}	_	7	ns	1
Output disable to output in high-Z	t _{OHZ}	_	7	ns	1

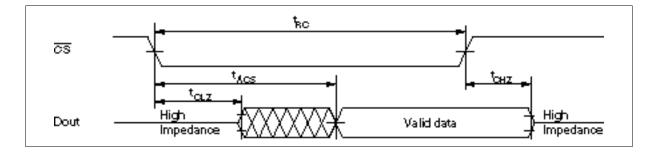
Write Cycle

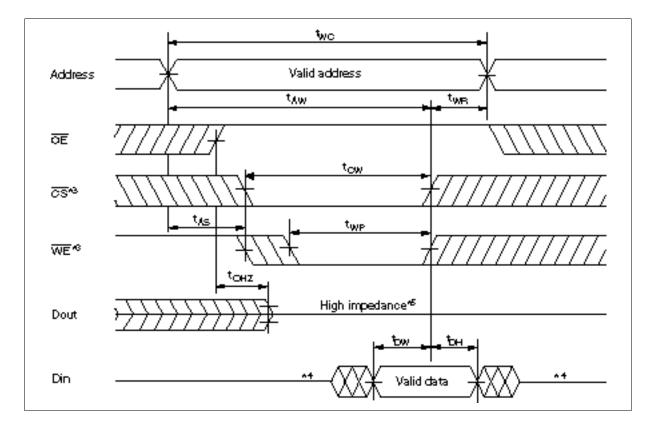

		HM62W	/8511HI		
		-15			
Parameter	Symbol	Min	Max	Unit	Notes
Write cycle time	twc	15	_	ns	
Address valid to end of write	t _{AW}	10	_	ns	
Chip select to end of write	t _{CW}	10	_	ns	9
Write pulse width	t _{WP}	10	_	ns	8
Address setup time	t _{AS}	0	_	ns	6
Write recovery time	t _{WR}	0	_	ns	7
Data to write time overlap	t _{DW}	7	_	ns	
Data hold from write time	t _{DH}	0	_	ns	
Write disable to output in low-Z	tow	3	_	ns	1
Output disable to output in high-Z	t _{OHZ}	_	7	ns	1
Write enable to output in high-Z	t _{WHZ}	_	7	ns	1

Note: 1. Transition is measured ±200 mV from steady voltage with Load (B). This parameter is sampled and not 100% tested.


- 2. Address should be valid prior to or coincident with CS transition low.
- 3. WE and/or CS must be high during address transition time.
- 4. if CS and OE are low during this period, I/O pins are in the output state. Then, the data input signals of opposite phase to the outputs must not be applied to them.
- 5. If the CS low transition occurs simultaneously with the WE low transition or after the WE transition, output remains a high impedance state.
- 6. t_{AS} is measured from the latest address transition to the later of CS or WE going low.
- 7. t_{WR} is measured from the earlier of CS or WE going high to the first address transition.
- 8. A write occurs during the overlap of a low CS and a low WE. A write begins at the latest transition among CS going low and WE going low. A write ends at the earliest transition among CS going high and WE going high. twp is measured from the beginning of write to the end of write.
- 9. t_{CW} is measured from the later of CS going low to the the end of write.

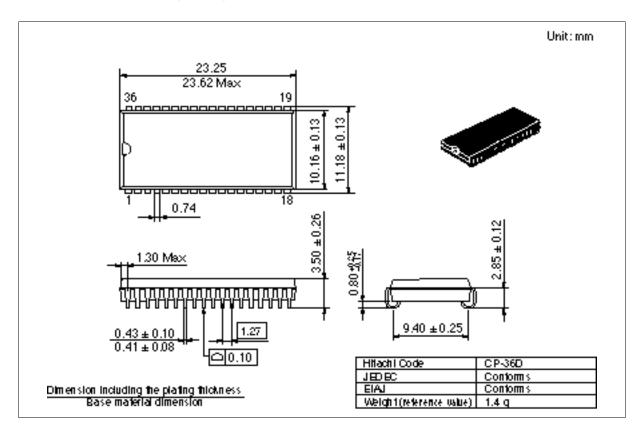
Timing Waveforms


Read Timing Waveform (1) (WE = V_{IH})


Read Timing Waveform (2) (WE = $V_{IH},\,CS=V_{IL},\,OE=V_{IL})$

Read Timing Waveform (3) (WE = V_{IH} , CS = V_{IL} , OE = V_{IL})*²

Write Timing Waveform (1) (WE Controlled)



Write Timing Waveform (2) (CS Controlled)

Package Dimensions

HM62W8511HJPI Series (CP-36D)

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

ITACH

Semiconductor & Integrated Circuits. NipponBldg, 2-6-2 Ohte-madhi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

North America http:semiconductor.hitachi.com/ Europe http://www.hitachi-eu.com/hel/ecg

Asia (Singapore) Asia (Taiwan) Asia (HongKong) http://www.has.hitachi.com.sg/grp3/sicdfindex.htm http://www.hitachi.com.tw/B/Product/SICD_Frame.htm

http://www.hitachi.com.hk/eng/bo/grp3/index.htm http://www.hitachi.co.jp/Sicdfindx.htm

For further information write to:

Hitachi Semiconductor (America) Inc. 179 Bast Teamen Drive Sen Josep CX 95154 Tel: c15 (408) 455-1920 Fex: c15 (408) 455-0225

Hitadai Europe GmbH Bestronic companente Group Domesher Streiße 5 D85622 Feldkirchen, Munich Tel: -466 (89) 9 9180-0 Fex: -466 (89) 9 2 9 50 00

Hinahi Europe Ltd. amponente Group. Bectronic 0 Lower Cooldness Road Maidanhaad Tel: c446 (1628) 58500 Fex c446 (1628) 585000

Historia A de Para Ltd. 15 Colyer Gasy \$20.00 His chi Tover Sngspcr+042018 Tel: \$352 100 Fex 535-1533

Taipei Branch Office 3F, Hung Kuo Beikling, No. 167, Tun-Hwa North Roed, Taipei (105) Tel: c3856 (2) 2718-3685 Fex: c3856 (2) 2718-3180

His chi Asis (Hong Kong) Ltd. Group III (Bectronic Components) 7/F., North Tower, World Finence C Herbour Oby, Oenion Road, Teim She Teui,

Kowloon, Hong Kong Tel: c8525 (2) 755 92 18 Fex: c8525 (2) 750 0381 Telec: 40815 HITECHX

Copyright @Hitachi, Ltd., 1998, All rights reserved. Printed in Japan.

Revision Record

Rev.	Date	Contents of Modification	Drawn by	Approved by
1.0	Apr. 15, 1999	Initial issue		_