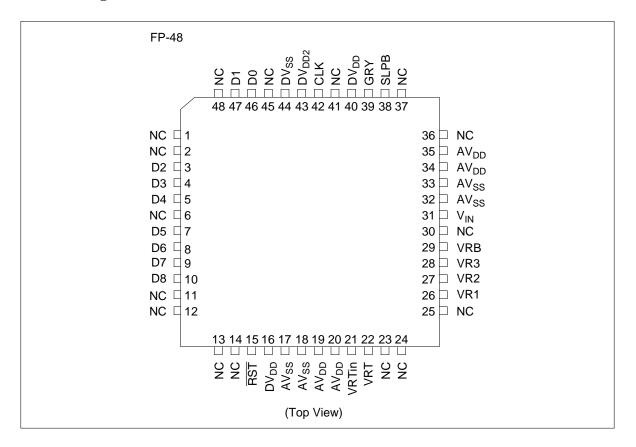
## CMOS 9-Bit A/D Converter

# **HITACHI**

ADE-207-122 (Z) Rev. 0 November 1993


#### **Description**

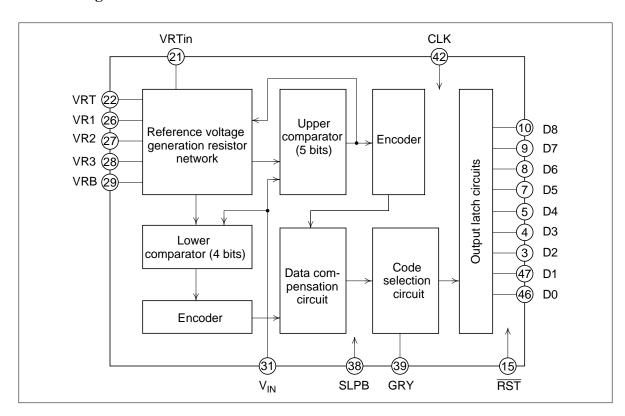
The HD49319F is a high-speed, low-power monolithic CMOS 9-bit A/D converter LSI.

#### **Features**

- Resolution: 9 bits
- Double +5.0 V/+3.3 V power supply (Digital output only: +3.3 V)
- Output codes: binary/gray, selectable
- Low voltage interface possible (+3.3 V)
- Sleep mode provided (low-power waiting mode)
- Reset function provided

#### **Pin Arrangement**




## **Pin Description**

| Pin No.  | Symbol           | Function                                                                                                                                                                                                                                          |
|----------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1, 2     | NC               | Unused                                                                                                                                                                                                                                            |
| 3 to 5   | D2 to D4         | Digital output                                                                                                                                                                                                                                    |
| 6        | NC               | Unused                                                                                                                                                                                                                                            |
| 7 to 9   | D5 to D7         | Digital output                                                                                                                                                                                                                                    |
| 10       | D8               | Digital output (MSB)                                                                                                                                                                                                                              |
| 11 to 14 | NC               | Unused                                                                                                                                                                                                                                            |
| 15       | RST              | Reset signal input                                                                                                                                                                                                                                |
| 16       | DV <sub>DD</sub> | Digital power supply (+5 V), Connect this pin in common with AV <sub>DD</sub> external to the IC.                                                                                                                                                 |
| 17, 18   | AV <sub>ss</sub> | Analog ground (0 V)                                                                                                                                                                                                                               |
| 19, 20   | $AV_{DD}$        | Analog power supply (5 V)                                                                                                                                                                                                                         |
| 21       | VRTin            | Reference voltage op-amp input (high side: $+3$ V or 0 V). When the internal op-amp is used, input $+3$ V to this pin. When unused, connect to $AV_{ss}$ .                                                                                        |
| 22       | VRT              | Reference voltage input (high side: +3 V). When the internal op-amp is used, insert both a 0.1 $\mu$ F ceramic capacitor and an over 10 $\mu$ F chemical capacitor between this pin and AV <sub>ss</sub> . When unused, apply +3.0 V to this pin. |
| 23 to 25 | NC               | Unused                                                                                                                                                                                                                                            |
| 26 to 28 | VR1 to<br>VR3    | Reference voltage intermediate taps. Insert 0.1 $\mu\text{F}$ capacitors between these pins and $\text{AV}_{\text{SS}}.$                                                                                                                          |
| 29       | VRB              | Reference voltage input (low side: 0 V). Apply a 0 V reference voltage, or connect to ${\sf AV}_{\sf SS}.$                                                                                                                                        |
| 30       | NC               | Unused                                                                                                                                                                                                                                            |
| 31       | V <sub>IN</sub>  | Analog signal input (0 to +3 V)                                                                                                                                                                                                                   |
| 32, 33   | AV <sub>ss</sub> | Analog ground (0 V)                                                                                                                                                                                                                               |
| 34, 35   | $AV_{DD}$        | Analog power supply (+5 V)                                                                                                                                                                                                                        |
| 36 to 37 | NC               | Unused                                                                                                                                                                                                                                            |
| 38       | SLPB             | Sleep mode control input H: Normal operating mode L: Sleep mode                                                                                                                                                                                   |
| 39       | GRY              | Output code selection input H: Gray code L: Binary code                                                                                                                                                                                           |

## Pin Description (cont)

| Pin No. | Symbol           | Function                                                                                   |
|---------|------------------|--------------------------------------------------------------------------------------------|
| 40      | $DV_{DD}$        | Digital power supply (+5 V). Connect this pin in common with AVDD external to the IC.      |
| 41      | NC               | Unused                                                                                     |
| 42      | CLK              | Conversion clock input (TTL or CMOS)                                                       |
| 43      | $DV_{DD2}$       | Digital power supply (+3.3 V)                                                              |
| 44      | DV <sub>ss</sub> | Digital ground (0 V). Connect this pin in common with AV <sub>ss</sub> external to the IC. |
| 45      | NC               | Unused                                                                                     |
| 46      | D0               | Digital output (LSB)                                                                       |
| 47      | D1               | Digital output                                                                             |
| 48      | NC               | Unused                                                                                     |

## **Block Diagram**



## **Absolute Maximum Ratings** (Ta = 25°C)

| Item                           | Symbol                               | Rated Value              | Units |  |
|--------------------------------|--------------------------------------|--------------------------|-------|--|
| Power supply voltage 1         | $V_{\text{DD(max)}}$                 | 6.0                      | V     |  |
| Power supply voltage 2         | $DV_{DD2(max)}$                      | 6.0                      | V     |  |
| Input signal                   | $V_{IN(max)}$                        | $-0.3$ to $V_{DD} + 0.3$ | V     |  |
| Reference pin voltage          | $V_{REF(max)}$                       | $-0.3$ to $V_{DD} + 0.3$ | V     |  |
| Digital input voltage          | $V_{I(max)}$                         | $-0.3$ to $V_{DD} + 0.3$ | V     |  |
| Reference pin voltage differen | ce V <sub>RT</sub> – V <sub>RB</sub> | 3.1                      | V     |  |
| Operating temperature          | Topr                                 | 0 to +70                 | °C    |  |
| Storage temperature            | Tstg                                 | -55 to +125              | °C    |  |

Notes: 1.  $V_{DD}$  refers to both  $AV_{DD}$  and  $DV_{DD}$ .

- 2. Connect  $AV_{DD}$  and  $DV_{DD}$  to a common point outside the IC. If  $AV_{DD}$  and  $DV_{DD}$  are separated by a noise filter, make sure that their voltages differ by less than 0.3 V or power up, and by less than 0.1 V during operation.
- 3. Connect  ${\rm AV}_{\rm SS}$  and  ${\rm DV}_{\rm SS}$  to a common point outside the IC.

**Electrical Characteristics** (Unless otherwise specified,  $V_{DD} = 5.0 \text{ V}$ ,  $DV_{DD2} = 3.3 \text{ V}$ ,  $V_{RT} = 3.0 \text{ V}$ ,  $V_{RB} = 0.0 \text{ V}$ ,  $Ta = 25^{\circ}\text{C}$ , and the internal op-amp is unused.)

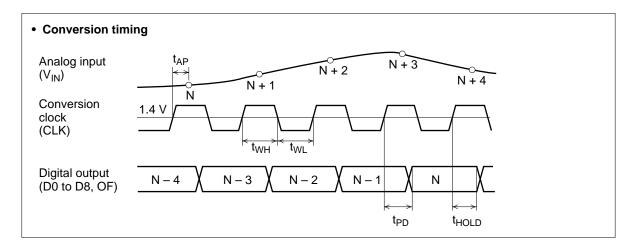
| Item                   | Symbol              | Min                   | Тур  | Max             | Units | Measurement Conditions Note                         |
|------------------------|---------------------|-----------------------|------|-----------------|-------|-----------------------------------------------------|
| Resolution             | RES                 | 9                     | 9    | 9               | bit   |                                                     |
| Power supply voltage   | $V_{DD}$            | 4.75                  | 5.00 | 5.25            | V     |                                                     |
| range                  | DV <sub>DD2</sub>   | 3.0                   | 3.3  | V <sub>DD</sub> | V     |                                                     |
| Power supply current   | I <sub>DD1</sub> *1 |                       | 18   | 23              | mA    | f <sub>CLK</sub> = 15 MHz , f <sub>IN</sub> = 1 kHz |
|                        | I <sub>DD2</sub> *2 |                       | 1    | 3               | mA    | sine wave                                           |
| Reference resistance   | R <sub>REF</sub>    | 300                   | 480  | _               | Ω     | Resistance between, $\rm V_{RT}$ and $\rm V_{RB}$   |
| Analog input current   | I <sub>IN</sub> *3  | -400                  | _    | 400             | μΑ    | $V_{IN}$ : 0 to 3 V, $f_{CLK}$ = 15 MHz             |
| Digital output voltage | V <sub>OH</sub>     | V <sub>x</sub> -0.5*4 | _    | $DV_{DD2}$      | V     | $I_{OH} = -2 \text{ mA}$                            |
|                        | V <sub>OL</sub>     |                       | _    | 0.5             | V     | I <sub>OL</sub> = 2 mA                              |
| Op-amp offset          | VRTin-VRT           | -30                   | _    | 30              | mV    | VRTin = 3.0 V, (When the op-amp is used)            |
| Digital input voltage  | $V_{IH(SLPB)}$      | 2                     | _    | V <sub>DD</sub> | V     |                                                     |
| (SLPB)                 | $V_{IL(SLP)}$       | 0                     | _    | 0.3             | V     |                                                     |
| Digital input voltage  | V <sub>IH</sub>     | 2                     | _    | V <sub>DD</sub> | V     |                                                     |
| (other than SLPB)      | V <sub>IL</sub>     | 0                     |      | 0.8             | V     |                                                     |

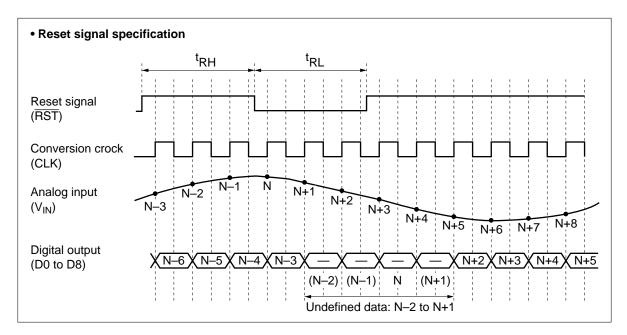
**Electrical Characteristics** (Unless otherwise specified,  $V_{DD} = 5.0 \text{ V}$ ,  $DV_{DD2} = 3.3 \text{ V}$ ,  $V_{RT} = 3.0 \text{ V}$ ,  $V_{RB} = 0.0 \text{ V}$ ,  $Ta = 25^{\circ}\text{C}$ , and the internal op-amp is unused.) (cont)

| Item                       | Symbol                | Min                  | Тур | Max  | Units | <b>Measurement Conditions</b> | Note |
|----------------------------|-----------------------|----------------------|-----|------|-------|-------------------------------|------|
| Digital input current      | I <sub>IH</sub>       | <b>-</b> 50          | _   | 50   | μΑ    | $V_{IH} = V_{DD}$             |      |
|                            | I <sub>IL</sub>       | -50                  | _   | 50   | μΑ    | V <sub>IL</sub> = 0 V         |      |
|                            | I <sub>IL(RST)</sub>  | -200                 | _   | 50   | μΑ    | V <sub>IL</sub> = 0 V         |      |
| Op-amp input current       | I <sub>OP</sub>       | -50                  |     | 50   | μΑ    | VRTin = 3 V                   |      |
| Maximum conversion speed   | f <sub>CLK(max)</sub> | 15                   | _   | _    | MHz   |                               | 1    |
| Minimum conversion speed   | f <sub>CLK(min)</sub> | _                    | _   | 0.5  | MHz   |                               |      |
| Minimum clock pulse        | t <sub>WH(min)</sub>  |                      | _   | 30   | ns    |                               |      |
| width                      | t <sub>WL(min)</sub>  | _                    | _   | 30   | ns    |                               |      |
| Maximum clock pulse        | t <sub>WH(max)</sub>  | 1                    |     | _    | μs    |                               |      |
| width                      | t <sub>WL(max)</sub>  | 1                    | _   | _    | μs    |                               |      |
| Digital output delay time  | t <sub>PD</sub>       |                      | _   | 38   | ns    | Load capacitance = 10 pF      |      |
| Digital output hold time   | t <sub>HOLD</sub>     | 8                    |     | _    | ns    |                               |      |
| Analog signal read-in time | t <sub>AP</sub>       | <b>-</b> 5           | 6   | 10   | ns    |                               |      |
| Integration linearity      | I <sub>NL</sub>       |                      | 2   | 5.5  | LSBpp | f <sub>CLK</sub> = 15 MHz     |      |
| Differentiation linearity  | DNL                   | -0.7                 | _   | +0.7 | LSB   |                               |      |
| Reset pulse width          | T <sub>RH</sub>       | 3×1/f <sub>CLK</sub> | _   | _    |       |                               |      |
|                            | T <sub>RL</sub>       | 3×1/f <sub>CLK</sub> | _   | _    |       |                               |      |

Notes: \*1. I<sub>DD1</sub> is Quiescent current of V<sub>DD</sub>.

$$\begin{split} &V_{DD}-1V>DV_{DD2} \rightarrow V_X=DV_{DD2} \\ &V_{DD}-1V$$


1. With the change in input voltage between conversions on each clock 2.2 V or less.


<sup>\*2.</sup>  $I_{\text{DD2}}$  is Quiescent current of DV  $_{\text{DD2}}$ .

<sup>\*3.</sup>  $I_{IN}$  is not transition current, but static current.

<sup>\*4.</sup> In case of

## **Timing Chart**

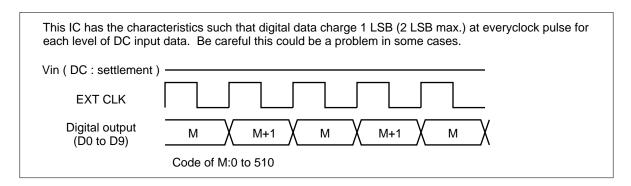




#### **Cautionary Items**

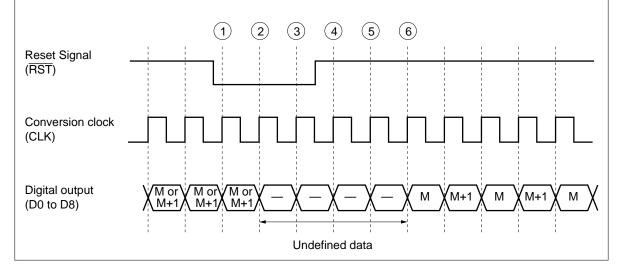
#### **Power Supply Current**

When the internal op-amp is used, the current which drives the reference resistors is added to the power supply current.

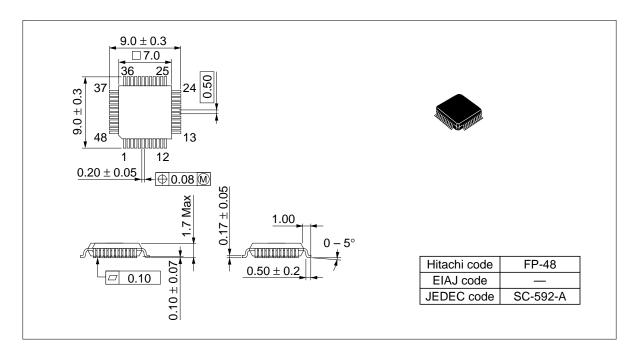

#### Sleep Mode

When the SLPB pin input signal is low, the chip enters sleep mode. This allows the IC's power supply current to be held to almost zero.

During sleep mode, the internal circuits are stopped and the digital outputs are undefined (either high or low).


During sleep mode using the internal op-amp, the internal op-amp is also stopped and the reference voltage is not applied to the reference resistors for saving the power supply current.

After clearing sleep mode by setting the SLPB input high, input at least 5 clock cycles to restore the chip to normal operation. When the internal op-amp is used, input at least 5 clock cycles after the reference voltage was restored.




#### • Using the Reset Function

This IC has the characteristics shown in the over figure. When the reset function is not used, whether operation starts from M or M+1 is determined when power is applied, but were operation starts is indeterminate prior to power application. When the reset function is used, operation starts from data M from the sixth clock cycle counted from the falling edge of the reset signal( $\overline{\text{RST}}$ ) as shown in the figure below. Note that  $V_{\text{IN}}$  is DC.



## Package Dimension (Unit: mm)



When using this document, keep the following in mind:

- 1. This document may, wholly or partially, be subject to change without notice.
- 2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi's permission.
- 3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's unit according to this document.
- 4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.
- 5. No license is granted by implication or otherwise under any patents or other rights of any third party or
- 6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning to use the products in MEDICAL APPLICATIONS.

# IITACHI

#### Hitachi, Ltd.

Semiconductor & IC Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

#### For further information write to:

Hitachi America, Ltd. Semiconductor & IC Div. 2000 Sierra Point Parkway Brisbane, CA. 94005-1835 USA

Tel: 415-589-8300 Fax: 415-583-4207 Hitachi Europe GmbH Electronic Components Group Continental Europe Dornacher Straße 3 D-85622 Feldkirchen München Tel: 089-9 91 80-0 Fax: 089-9 29 30 00

Hitachi Europe Ltd. Electronic Components Div. Northern Europe Headquarters Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA United Kingdom Tel: 0628-585000 Fax: 0628-778322

Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 0104 Tel: 535-2100 Fax: 535-1533

Hitachi Asia (Hong Kong) Ltd. Unit 706, North Tower, World Finance Centre. Harbour City, Canton Road Tsim Sha Tsui, Kowloon Hong Kong Tel: 27359218

Fax: 27306071