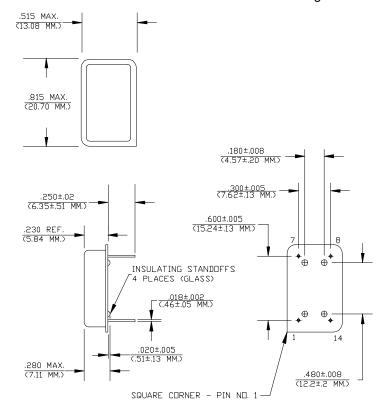


CMOS Compatible HS-1430 Series

Description

The HS-1430 Series of quartz crystal oscillators provide enable/disable 3-state CMOS compatible signals for bus connected systems. Supplying Pin 1 of the HS-1430 units with a logic "1" or open enables its Pin "8" output. In the disable mode, Pin "8" presents a high impedance to the load.

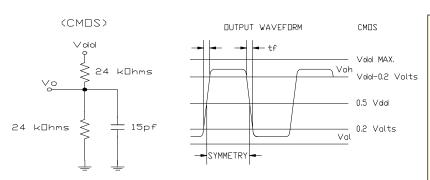
Pin	Connection		
1	Enable/Disable		
7	Ground		
8	Output		
14	V_{CC} , V_{DD}		


Suggested Applications

The HS-1430 Series oscillators are ideally suited for applications involving more than one clock or source on the same bus. The high impedance state allows ATE (Automatic Test Equipment) board testing without having to remove the oscillator. In multiplexing applications, multiplex clock signals can be made available to a system using the enable/disable 3-state feature.

Features

CRYSTAL CLOCK OSCILLATORS


- Wide frequency range—68.0MHz to 145.0MHz
- User specified tolerance from ±20ppm
- Case at electrical ground
- Will withstand vapor phase temperatures of 253°C for 4 minutes maximum
- All metal, resistance weld, hermetically sealed package
- High shock resistance, to 3000g

Continued CMOS Compatible HS-1430 Series

	PARAMETER	CONDITIONS	MINIMUM	MAXIMUM
General Characteristics	Supply voltage (V _{DD})	Supply	4.75V	5.25V
		Breakdown	-0.5V	7.0V ⁽¹⁾
	Supply current (I _{DD})		0.0 mA	80 mA
	Output current (I _O)	Low level output	0.0 mA	16.0 mA
		current		
	Tolerance	User specified	±20ppm	
	Operating temperature (T _A)		0°C	70°C
	Storage temperature (T _S)		-55°C	125°C
	Power dissipation (P _D)			420 mW
	Lead temperature (T _L)	Soldering, 10 sec.		300°C
Output Characteristics	Frequency		68.0MHz	145.0MHz
	Symmetry	CMOS, @0.5V _{DD}	40/60%	60/40%
	Logic 0 (V _{OL})	CMOS, driving		0.2V
		equivalent load		
	Logic 1 (V _{OH})	CMOS, driving	V _{DD} -0.2V	
		equivalent load		
	Logic 0 (I _{OL} sink)	CMOS, driving		600µA
		equivalent load		
	Logic 1 (I _{OH} source)	CMOS, driving		600µA
		equivalent load		
	Rise & fall time (t _r ,t _f)	CMOS		4 ns
		@ 10-90% V _{DD}		
	3-state enable/disable (T _{pz})			5 ms

This information has been carefully prepared and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. NEL reserves the right to make changes at any time in order to improve design and supply the best product possible.

Specialty Oscillators for Unique Requirements

If the characteristics listed above do not meet your specific requirements, specialty solutions are often available.

For example, if you need better stability, extended temperature range, or tighter symmetry, NEL can provide a HS-1439 series oscillator to serve your needs.

To let us know your special requirements, complete our Specialty Oscillator sheet. We will respond with the desired specialty oscillator, or discuss with you a solution that most closely meets your needs.

