

HT604L/HT614/HT692 3¹⁸ Series of Decoders

Features

- Operating voltage: 2.4V~12V
- Low power and high noise immunity CMOS technology
- Low standby current
- Capable of decoding 18 bits of information Pairs with Holtek's 3^{18} series of encoders
- 9~10 address pins
- 2~8 data pins
- Trinary address setting

Applications

- Burglar alarm system
- Smoke and fire alarm system
- Garage door controllers
- Car door controllers

- Two times of receiving check
- Built-in oscillator needs only a 5% resistor
- Valid transmission indicator
- Easy interface with an RF or an infrared transmission medium
- Minimal external components
- HT604L/HT614: 20-pin DIP/SOP package HT692: 18-pin DIP package
- Car alarm system
- Security system
- Cordless telephones
- Other remote control systems

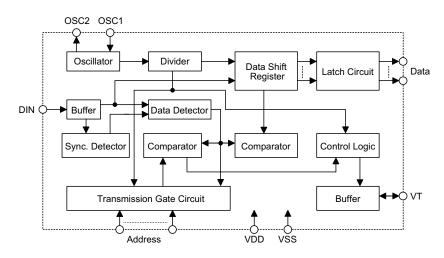
General Description

The 3^{18} decoders are a series of CMOS LSIs for remote control system applications. They are paired with the 3¹⁸ series of encoders. For proper operation, a pair of encoder/decoder pair with the same number of address and data format should be selected (refer to the encoder/decoder cross reference tables).

The 3¹⁸ series of decoders receive serial address and data from that series of encoders that are transmitted by a carrier using an RF or an IR transmission medium. It then compares the serial input data twice continuously with its local address. If no errors or unmatched codes are encountered, the input data codes are decoded and then transferred to the output pins. The VT pin also goes high to indicate a valid transmis-

The 3¹⁸ decoders are capable of decoding 18 bits of information that consists of N bits of address and 18-N bits of data. To meet various applications they are arranged to provide a number of data pins whose range is from 0 to 8 and an address pin whose range is from 8 to 18. In addition, the 3¹⁸ decoders provide various combinations of address/data number in different packages.

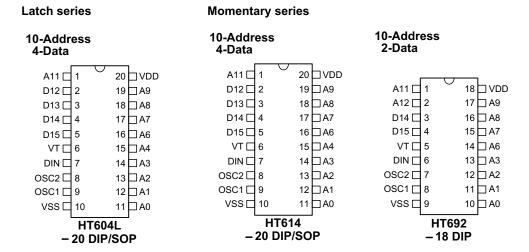
Selection Table


Function	Address	D	ata	VT	0	M -1-1-1-1	D1
Part No.	No.	No.			Oscillator	Trigger	Package
HT604L	10	4	L		RC oscillator	DIN active "Hi"	20 DIP/SOP
HT614	10	4	M	√	RC oscillator	DIN active "Hi"	20 DIP/SOP
HT692	10	2	M	√	RC oscillator	DIN active "Hi"	18 DIP

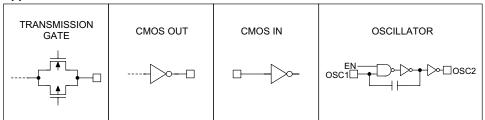
Note: Data type: M stands for momentary type data output.

L stands for latch type data output.

VT can be used as a momentary data output.


Block Diagram

 $Note: The \ address/data \ pins \ are \ available \ in \ various \ combinations \ (refer \ to \ the \ address/data \ table).$


Pin Assignment

Pin Description

Pin Name	I/O	Internal Connection	Description
A0~A12	I	TRANSMISSION GATE	Input pins for address A0~A12 setting They can be externally set to VDD, VSS or left open.
D10~D17	О	CMOS OUT	Output data pins
DIN	I	CMOS IN	Serial data input pin
VT	О	CMOS OUT	Valid transmission, active high
OSC1	I	OSCILLATOR	Oscillator input pin
OSC2	О	OSCILLATOR	Oscillator output pin
VSS	_	_	Negative power supply, ground
VDD		_	Positive power supply

Approximate internal connections

Absolute Maximum Ratings

Supply Voltage0.3V to 13V	Storage Temperature $-50^{\circ}\mathrm{C}$ to $125^{\circ}\mathrm{C}$
Input Voltage V_{SS} -0.3V to V_{DD} +0.3V	Operating Temperature20°C to 75°C

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Electrical Characteristics

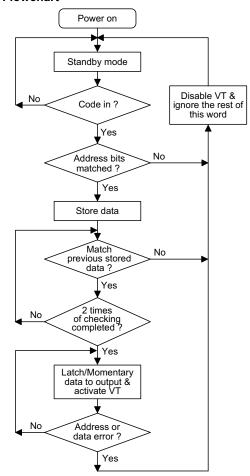
 $Ta=25^{\circ}C$

	I	1			<u> </u>	T	ı	
Sumb al	Parameter	r	est Conditions	Min.	т	Max.	Unit	
Symbol	rarameter	$\mathbf{V_{DD}}$	Conditions	WIIII.	Тур.	wax.		
V_{DD}	Operating Voltage	_	_	3	_	12	V	
т	Ct - Il - C	5V	011-4	_	0.1	1	μA	
I_{STB}	Standby Current	12V	Oscillator stops	_	2	4	μΑ	
I_{DD}	Operating Current		No load f _{OSC} =100kHz	_	0.2	1	mA	
I_{O}	Data Output Source Current (D10~D17)		V _{OH} =4.5V	-0.5	-1	_	mA	
	Data Output Sink Current (D10~D17)	5V	V _{OL} =0.5V	0.25	1		mA	
T	VT Output Source Current	5V	V _{OH} =4.5V	-2	-4	_	mA	
I_{VT}	VT Output Sink Current		$V_{\rm OL}$ =0.5 V	0.25	1	_	mA	
V_{IH}	"H" Input Voltage	5V	_	3.5	_	5	V	
V_{IL}	"L" Input Voltage	5V	_	0	_	1	V	
f_{OSC}	Oscillator Frequency	10V	R_{OSC} =330k Ω	_	100	_	kHz	

Functional Description

Operation

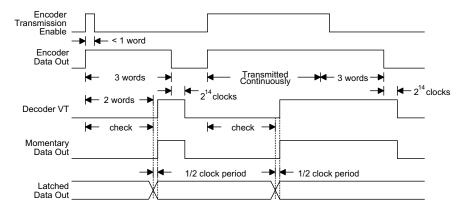
The 3^{18} series of decoders provide various combinations of address and data pins in different packages. It is paired with the 3¹⁸ series of encoders. The decoders receive data transmitted by the encoders and interpret the first N bits of the code period as address and the last 18-N bits as data (where N is the address code number). A signal on the DIN pin then activates the oscillator which in turns decodes the incoming address and data. The decoders will check the received address twice continuously. If all the received address codes match the contents of the decoder's local address, the 18-N bits of data are decoded to activate the output pins, and the VT pin is set high to indicate a valid transmission. That will last until the address code is incorrect or no signal has been received. The output of the VT pin is high only when the transmission is valid. Otherwise it is always low.


Output type

There are two types of output to select from:

- Momentary type
 The data outputs follow the encoder during a valid transmission and then reset.
- Latch type

The data outputs follow the encoder during a valid transmission, and are then latched in this state until the next valid transmission occurs.


Flowchart

Note: The oscillator is disabled in the standby state and activated as long as a logic "high" signal is applied to the DIN pin. i.e., the DIN should be kept "low" if there is no signal input.

Decoder timing

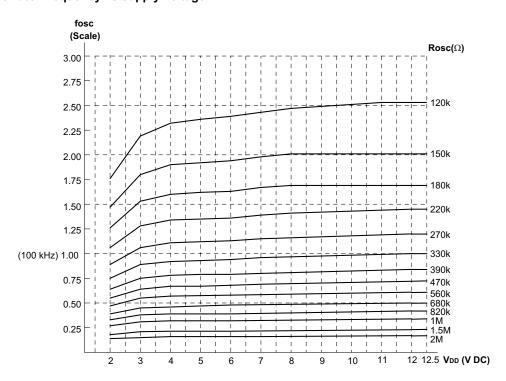
Encoder/Decoder selection tables

 \bullet Latch type of data output

							Package			
Part No.	Data Pins	Address Pins	VT	Pair Encoder	Encoder Decode			er		
					DIP	SOP	SKDIP	SKDIP DIP SOP	SKDIP	
TIMEOAT	4	10	./	HT600	20	20		90	90	
HT604L	4	10	V	HT6207	20	_	_	20	20	_

• Momentary type of data output

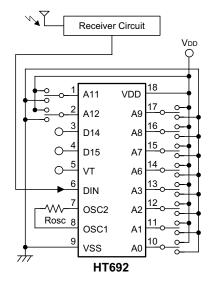
Part No.						Package				
	Data Pins	Address Pins	VT	Pair Encoder	r Encoder Decoder					er
	1 1110				DIP	SOP	OP SKDIP DIP S		SOP	SKDIP
HT692	2	10	√	HT680	18	_		18	_	_
TIMC14	4	10	.1	HT600	20	20		90	90	
HT614	4	10	V	HT6207	20	_	_	20	20	_

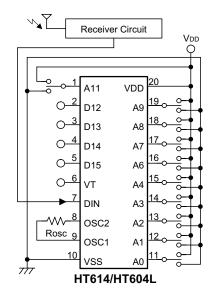

Address/Data sequence

The following provides a table of address/data sequence for various models of the 3^{18} series decoders. A correct device should be selected according to the sindividual address and data requirements.

Part No.		Address/Data Bits										
	0~3	4	5	6~9	10	11	12	13	14	15	16	17
HT604L	A0~A3	A4		A6~A9	_	A11	D12	D13	D14	D15	_	_
HT614	A0~A3	A4		A6~A9	_	A11	D12	D13	D14	D15	_	_
HT692	A0~A3	_		A6~A9	_	A11	A12	_	D14	D15	_	_

Note: "—" is a dummy code which is left "open" and not bonded out.


Oscillator frequency vs supply voltage



The recommended oscillator frequency is $f_{OSCD}\left(decoder\right)\cong f_{OSCE}\left(encoder\right)$

Application Circuits

Note: Typical infrared receiver: PIC-12043T/PIC-12043C (KODENSHI CORP.) or LTM9052 (LITEON CORP.)

Typical RF receiver: JR-200 (JUWA CORP.)

RE-99 (MING MICROSYSTEM, U.S.A.)

Holtek Semiconductor Inc. (Headquarters)

No.3, Creation Rd. II, Science-based Industrial Park, Hsinchu, Taiwan, R.O.C.

Tel: 886-3-563-1999 Fax: 886-3-563-1189

Holtek Semiconductor Inc. (Taipei Office)

11F, No.576, Sec.7 Chung Hsiao E. Rd., Taipei, Taiwan, R.O.C.

Tel: 886-2-2782-9635 Fax: 886-2-2782-9636

Fax: 886-2-2782-7128 (International sales hotline)

Holtek Semiconductor (Hong Kong) Ltd.

RM.711, Tower 2, Cheung Sha Wan Plaza, 833 Cheung Sha Wan Rd., Kowloon, Hong Kong

Tel: 852-2-745-8288 Fax: 852-2-742-8657

Holtek Semiconductor (Shanghai) Ltd.

7th Floor, Building 2, No.889, Yi Shan Rd., Shanghai, China

Tel: 021-6485-5560 Fax: 021-6485-0313

Holmate Technology Corp.

48531 Warm Springs Boulevard, Suite 413, Fremont, CA 94539

Tel: 510-252-9880 Fax: 510-252-9885

Copyright © 2000 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.