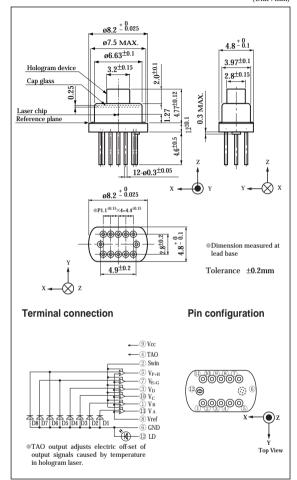
GH5R385C3C5

■ Features

- (1) High power output (pulse MAX. 108mW)
- (2) For ×8 speed CD-R, ×24 to ×32 speed CD-ROM (With built-in MIN. 30MHz OPIC*)
- (3) Sampling hold method (tracking method)
- (4) \$\phi 4.8mm\$ thickness
- (5) With built-in beam splitter and diffraction grating

*OPIC: (Optical IC) is a trademark of SHARP Corporation.

An OPIC consists of a light-detecting element and a signal-processing circuit integrated onto a single chip.


Applications

- (1) CD-R drives
- (2) CD-RW drives

Sampling Hold Method High Power Output Hologram Laser for X8 Speed CD-R Drive

Outline Dimensions

(Unit : mm)

■ Absolute Maximum Ratings

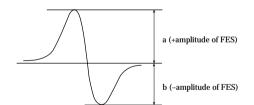
Parame	eter	Symbol	Rating	Unit
*1 Optical power outp	ut	Рнс	76	mW
*2 Optical power outp	ut (pulse)	Рнр	108	mW
Reverse voltage	Laser	VR	2	V
OPIC supply voltag	e	Vcc	8	V
*3 Operating temperat	ture	Topr	-5 to +70	°C
*3 Storage temperatur	e	Tstg	-40 to +85	°C
*4 Soldering temperat	ure	Tsold	260	°C

^{*1} Output power from hologram laser Equivalent to 85mW (CW) from cap glass

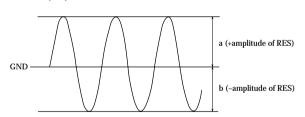
SHARP

^{®2} Output power from hologram laser Equivalent to 120mW (pulse) from cap glass (pulse width: 0.5μs, Duty: 50%)

^{*3} Case temperature *4 At the position of 1.6mm from the lead base (Within 5s)


Electro-optical Characteristics

(Tc=25°C)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
*1 Focal offset	DEF	Collimated lens output power 1.5mW, High gain	-0.7	-	+0.7	μm
*2 Focal error symmetry	Bres	Collimated lens output power 1.5mW, High gain	-25	-	+25	%
*3 Radial error balance	Bres	Collimated lens output power 1.5mW, High gain	-25	-	+25	%
*4 RF output amplitude	Vrfh	Collimated lens output power 1.5mW, High gain	1 1 061 090		1.06	V
*5 FES output amplitude	VFES	Collimated lens output power 0.34		0.57	0.90	V
*6 RES output amplitude	Vres	Collimated lens output power 1.5mW, High gain	1 1 0 09		0.29	V
*7 Main spot balance	MSB	Collimated lens output power 1.5mW, High gain	1 1 80		120	%
*8 Sub spot balance	SSB	Collimated lens output power 1.5mW, High gain	80	100	120	%
Jitter	ЛТ	Collimated lens output power 1.5mW, High gain	-	-	23	ns
Threshold current	Ith	-	-	30	40	mA
Operating current	Iop	Po=85mW	-	127	155	mA
Operating voltage	V_{op}	Po=85mW	-	2.1	2.65	V
Wavelength	λ_p	Po=85mW	773	785	797	nm
Differential efficiency	ηd	75mW I(85mW)-I(10mW)	0.55	0.9	1.2	mW/mA

Distance between FES=0 and jitter minimum point

^{*2 (}a-b) / (a+b)

$$a-b$$
 $2\times (a+b)$

- **4 Amplitude of VA+VB+VC+VD (focal servo ON, radial servo ON)
- *5 VB-VA (Focal vibration)
- **6 Amplitude of $(V_C-V_D)-k1(V_{E+G}-V_{F+H})$. $k1=(V_C+V_D)/(V_{E+G}+V_{F+H})=1$ When tracking servo is ON, $(V_C-V_D)-k1(V_{E+G}-V_{F+H})+\alpha$ should be 0.
- **7 $(V_A+V_B) / (V_C+V_D)$
- *8 Vc/VD

■ Electro-optical Characteristics of Laser Diode (Design Standard*)

(Tc=25°C)

Para	meter		Symbol	Conditions	MIN.	TYP. MAX.		Unit
Para		Parallel	θ//		8	9	12	٠
пан инензиу анд	Half intensity angle Perpend		$\theta \perp$	D- 07W	17.1	21	25.5	٠
Emission	Deviation	Parallel	ø//	Po=85mW	-2	-	+2	٠
characteristics	angle	Perpendicular	ø⊥		-3	-	+3	٠
Beam shift			$\Delta \emptyset //$	ø//(85mW)-ø//(3mW)	-1	-	+1	٠
Kink			K-LI1	Po=10 to 120mW	0.988	-	-	-
			K-LI2	P1=24mW, P2=72mW, P3=120mW	-	-	15	%

■ Electro-optical Characteristics of OPIC for Signal Detection (Design Standard*)

(Tc=25°C, Vcc=5V, Vref=2.1V)

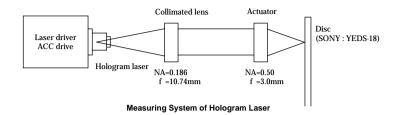
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	*9 Segment
Supply current	Icc1	High gain, Gain switching SW=H	-	20	25	mA	
	ICC2	Low gain, Gain switching SW=L	-	30	35	mA	
*10 Output offset voltage	V_{od}	Common to high/low gain, No light	-25	2	+25	mV	A, B
Offset voltage difference, Gain switching	ΔV_{od}	Common to high/low gain	-30	-	+30	mV	A, B
Output terminal voltage of temperature sensor	Tao	Common to high/low gain	1.8	2.2	2.6	V	

^{*9} Applicable divisions correspond to output terminals.

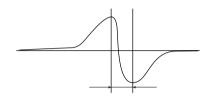
 $A: V_A, V_B, V_C, V_D$

 $B: V_{E+G}, V_{F+H}$

^{*10} Difference from Vref


^{*} These parameters are not guaranteed performance, but general specifications of each optical element which makes up a hologram laser.

■ Electro-optical Characteristics of Hologram Laser (Design Standard*)*1


 $(Tc=25^{\circ}C)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
*2 Focal error signal capture range	-	-	-	14	-	μm
Focal error signal sensitivity	-	_	-	13	-	%/µm

*1

***2**

Optical Characteristics of Hologram Device (Design Standard*)

(Tc=25°C)

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Hologram diffraction	0 th	-	λ=780nm	77	80	-	%
efficiency	±1st	-		7	8	10	%
Hologram diffraction	D1,D2	-	- λ=780nm —	-	21.1	-	۰
angle	Except D1,D2	-		-	26.4	-	۰
Grating diffraction efficiency		-	0:1	7.7	10	13.4	-
Grating diffraction angle		-	λ=780nm	-	2.8	-	۰

■ Electro-optical Characteristics of Laser Diode (Design Standard*)

(Tc=25°C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	Δx		-80	-	+80	μm
Misalignment position	Δy		-80	-	+80	μm
	Δz		-80	-	+80	μm

^{*} These parameters are not guaranteed performance, but general specifications of each optical element which makes up a hologram laser.

■ Electro-optical Characteristics of OPIC for Signal Detection (Design Standard*)

 $(Tc=25^{\circ}C, Vcc=5V, Vref=2.1V)$

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit	*4 Segment
Supply voltage	Vcc	-	-	4.5	5	5.5	V	
Reference voltage	V_{ref}	_	-	2.00	2.1	2.21	V	
Output terminal current	Io	Common to h	igh/low gain	-0.03	0.01	0.3	mA	A, B
Reference voltage terminal current	$\mathbf{I}_{\mathrm{ref}}$					mA		
	fcm	Common to high	n/low gain, -3dB	25	36	-	MHz	A
*4,5,6,7 Response frequency	fcsH	Sub amp, Hig	gn gain, -3dB	1	2	-	MHz	В
	$f_{cs}L$	Sub amp, Lo	w gain, -3dB	8	12	-	MHz	В
*4,6,7 Peaking level	$V_{\rm pk}2$		-	-	3	dB	A	
*7 Noise level	fnm	0 0		-	-74	-68	dBm	A
Sensitivity 1	R _m 1	Main amp, Hign gain		18	24	30	mV/μW	A
Sensitivity 2	R _m 2	Main amp	Main amp, Low gain		5.63	7.1	mV/μW	A
Sensitivity 3	R _m 3	Sub amp,	Hign gain	72	96	120	mV/μW	В
Sensitivity 4	R _m 4	Sub amp,	Low gain	16.8	22.5	28.2	mV/μW	В
	testm1	$600 mV \rightarrow 5 mV$	f=4.3MHz	-	60	-	ns	A
Settling time	tests 1	Low gain, fall time	f=2.9MHz	-	110	-	ns	В
	testm2	$600 \text{mV} \rightarrow 20 \text{mV}$	f=4.3MHz	-	35	-	ns	A
	tests2	Low gain, fall time	f=2.9MHz	-	70	-	ns	В
Maximum output voltage	V ₀ max	Main amp, Commo	n to high/low gain	1	-	-	V	A, B

^{*3} Appricable divisions correspond to output terminals.

A: VA, VB, VC, VD

B: VE+G+VF+H

Light source is a laser diode of λ=780nm.

^{*5 -3}dB level (0dB level is taken for output level when f=0.1MHz)

^{*6 10}μW of DC light is applied to the center of each photodiode, and 4μW of AC light is irradiated. BW=10kHz

 $^{^{*7}}$ 10kΩ of resistor and 10pF of capacitor should be connected in parallel between output terminal and Vref terminal.

^{*} These parameters are not guaranteed performance, but general specifications of each optical element which makes up a hologram laser.

[•] Please refer to the chapter "Handling Precautions"

NOTICE

The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices.

Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice.

Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions:

- (i) The devices in this publication are designed for use in general electronic equipment designs such as:
- --- Personal computers
- --- Office automation equipment
- --- Telecommunication equipment [terminal]
- --- Test and measurement equipment
- -- Industrial control
- -- Audio visual equipment
- -- Consumer electronics
- (ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as:
- -- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
- -- Traffic signals
- -- Gas leakage sensor breakers
- --- Alarm equipment
- --- Various safety devices, etc.

(iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:

- -- Space applications
- --- Telecommunication equipment [trunk lines]
- --- Nuclear power control equipment
- -- Medical and other life support equipment (e.g., scuba).

Contact a SHARP representative in advance when intending to use SHARP devices for any "specific" applications other than those recommended by SHARP or when it is unclear which category mentioned above controls the intended use.

If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Control Law of Japan, it is necessary to obtain approval to export such SHARP devices.

This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.

Contact and consult with a SHARP representative if there are any questions about the contents of this publication.