
GAL 20XV10:
Data Block Transfer

Address Detector

®

an9010_01 1 July 1997

Introduction

The Exclusive-OR (XOR) gate can efficiently implement
arithmetic functions such as counters, adders and de-
coders, using fewer product terms than the standard
sum-of-products PLD architecture (AND, fixed OR ar-
ray). This is demonstrated in Example 1.

To take full advantage of product term usage in a high-
speed system design, a high-speed device with a built-in
XOR function is needed. The GAL20XV10 fills the need
for such a device. The GAL20XV10 achieves a 10ns Tpd
while consuming only 90mA Icc (max.). The closest
competitor’s device offers only a Tpd of 30ns at 180mA
Icc. In addition, the generic architecture of the GAL20XV10
gives system designers the ability to configure outputs to
any combination of registers, combinatorial, XOR and
AND/OR structures.

Design Example

An address counter that uses a comparator to keep track
of the block data transfer is a typical application which
illustrates the advantages of the GAL20XV10's XOR
architecture. If the starting and ending addresses are
given, the address counter will generate and increment
the transfer address. The comparator will then compare

the counter bits with the ending address. When the
counter value equals the ending address, the address
comparator will issue a transfer complete signal. The
following CUPL example source file (Example 2) shows
how this function can be implemented using CUPL com-
piler syntax. Notice that the syntax demonstrates the
usage of .OE and .OEMUX to control the AND/OR
product term configuration and XOR configuration, re-
spectively.

Conclusion

This design example illustrates the efficient usage of the
XOR function by implementing the address counter with
11 product terms instead of the 14 product terms required
with a standard programmable AND, fixed OR configura-
tion. The bit-wise comparator, implemented with the
XOR function, also makes the design clear and under-
standable, as illustrated by the logic equations. With this
efficient, easy to understand design, the system can run
at up to 100MHz with 10ns tpd.

Technical Support Assistance

Hotline: 1-800-LATTICE (Domestic)
1-408-826-6002 (International)

e-mail: techsupport@latticesemi.com

$ - XOR function syntax & - AND function syntax
- OR function syntax ! - INVERT function syntax

XOR Function Equivalent AND/OR Function
 A $ B /* 2 PT used (A & !B) # (!A & B) /* 2 PT used
(A & B) $ (C & D) /* 2 PT used (A & B & !C) # (A & B & !D) /* 4 PT used

(!A & C & D) # (!B & C & D)

Example 1. XOR Logic Equation

2

GAL20XV10: Data Block Transfer Address Detector

Example 2. CUPL Source File

Name APPXV10;
Partno 00;
Date 09/09/99;
Revision 00;
Designer Jane Doe;
Company Lattice;
Assembly None;
Location None;
Device g20xv10;

/**/
/* This CUPL example uses the GAL20XV10 to build the */
/* 4-bit up counter with load function and a 4-bit */
/* comparator. This counter implementation takes */
/* advantage of the built-in XOR function of the */
/* GAL20XV10. It also shows the XOR and AND/OR */
/* configuration in CUPL syntax */
/**/

/** Input definition **/

PIN 1 = SYSCLK;
PIN 2 = SA0; /* STARTING ADDRESS BITS */
PIN 3 = SA1;
PIN 4 = SA2;
PIN 5 = SA3;
PIN 6 = EA0; /* ENDING ADDRESS BITS */
PIN 7 = EA1;
PIN 8 = EA2;
PIN 9 = EA3;
PIN 10 = STARTLD; /* STARTING ADDRESS LOAD */
PIN 11 = OE_COMP;
PIN 13 = OUT_EN;

/** Output Definition **/

PIN 23 = !AC0; /* ADDRESS COUNTER BITS */
PIN 22 = !AC1;
PIN 21 = !AC2;
PIN 20 = !AC3;
PIN 19 = !CMP0; /* ADDRESS COMPARE BITS */
PIN 18 = !CMP1;
PIN 17 = !CMP2;
PIN 16 = !CMP3;
PIN 15 = EQUAL; /* EQUALITY COMPARE */

/** Equations **/

AC0.D = !STARTLD & AC0 /** AC0 TOGGLE WITH CLOCK **/
 $ STARTLD & SA0; /** LOAD SA0 **/

AC0.OEMUX = OUT_EN;

3

GAL20XV10: Data Block Transfer Address Detector

AC1.D = !STARTLD & AC0 /** AC1 CNT UP CONDITION **/
 $!STARTLD & AC1 /** TOGGLE AC1 **/
 # STARTLD & SA1; /** LOAD SA1 **/

AC1.OEMUX = OUT_EN;

AC2.D = !STARTLD & AC0 & AC1 /** AC2 CNT UP CONDITION **/
 $!STARTLD & AC2 /** TOGGLE AC2 **/
 # STARTLD & SA2; /** LOAD SA2 **/

AC2.OEMUX = OUT_EN;

AC3.D = !STARTLD & AC0 & AC1 & AC2 /** AC3 CNT UP CONDITION **/
 $!STARTLD & AC3 /** TOGGLE AC3 **/
 # STARTLD & SA3; /** LOAD SA3 **/

AC3.OEMUX = OUT_EN;

CMP0 = AC0 $ EA0; /** COMPARE ADDR BIT0 **/
CMP0.OEMUX = OUT_EN;

CMP1 = AC1 $ EA1; /** COMPARE ADDR BIT1 **/
CMP1.OEMUX = OUT_EN;

CMP2 = AC2 $ EA2; /** COMPARE ADDR BIT2 **/
CMP2.OEMUX = OUT_EN;

CMP3 = AC3 $ EA3; /** COMPARE ADDR BIT3 **/
CMP3.OEMUX = OUT_EN;

EQUAL = !CMP0 & !CMP1 & !CMP2 & !CMP3; /** MAGNITUDE COMPARE **/
EQUAL.OE = OE_COMP;

	Introduction
	Design Example
	Conclusion
	Technical Support Assistance

