

CMOS SRAM 1M-bit (128K x 8)

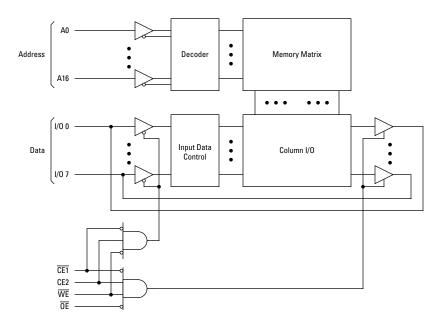
FEATURES

- ◆ CMOS SRAM organized as 131,072 x 8bits
- ◆ Single +5.0V(±10%) Power Supply
- ♦ High Speed Access time: 12 and 15 ns
- Low power operation
- Active: 185 mA (max.)
- Standby: 55 mA (max.)

GENERAL DESCRIPTION

The GLT710008 is a high performance CMOS static RAM organized as 131,072 x 8bits.

Writing to this device is accomplished when the write enable (\overline{WE}) and the chip select ($\overline{CE1}$) inputs are both Low and CE2 is high.


Package Options

- 32-Pin Plastic SOJ (300 mil)
- 32-Pin Plastic SOJ (400 mil)
- 32-Pin Plastic TSOP (Type I)
- Corner Power and Ground

Reading is accomplished when $\overline{\text{WE}}$ and CE2 is High and $\overline{\text{CE1}}$ and the output enable ($\overline{\text{OE}}$) are both Low.

The GLT710008 operates from a single +5.0V power supply and all inputs and outputs are fully TTL compatible.

FUNCTIONAL BLOCK DIAGRAM

Pin Description

Symbol	Pin Name
A[16:0]	Address input
I/0[7:0]	Data input/output
CE1	Chip Enable input
CE2	Chip Enable input
ŌĒ	Output Enable input
WE	Write Enable input
V _{CC}	Power Supply Pin (+5V)
GND	Ground Pin

Mode Selection Table ^[1]

ŌĒ	WE	CE1	CE2	I/O	MODE
Х	Х	High	Х	High Impedance	Standby
Х	Х	Х	Low	High Impedance	Standby
Low	High	Low	High	Data out	Read
Х	Low	Low	High	Data in	Write
High	High	Low	High	High Impedance	Output disable

1. X = don't care.

2

ELECTRICAL SPECIFICATIONS

.....

Absolute Maximum Ratings ^[1]

Symbol	Parameter	Rating
V _{TERM}	Terminal Voltage with Respect to GND	-0.5 to 7.0 V
T _A	Operating Temperature	0 to 70 °C
T _{STG}	Storage Temperature	-55 to 125 °C
P _T	Power Dissipation	1.0 W
I _{OUT}	DC Output Current	50 mA

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect reliability.

Recommended DC Operating Conditions ^[1] (0°C to 70°C, GND = 0V, V_{CC} = 5.0V ± 10%)

Symbol	Parameter	Min	Тур	Max	Unit
V _{CC}	Supply Voltage	4.5	5.0	5.5	V
GND	Supply Voltage	0	0	0	V
V _{IH}	Input High Voltage	2.2	-	V _{CC} + 0.5	V
V _{IL}	Input Low Voltage	-0.5	-	0.8	V

1. V_{IL}(min) = -3.0V for pulse width less than 20ns.

Capacitance (T_A = +25°C, f = 1.0 MHz)

Symbol	Parameter	Condition	Max.	Unit
C _{IN}	Input Capacitance	V _{IN} = 0V	6	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0V	8	pF

I_{DD} Operating Conditions and Maximum Limits

		м		
Symbol	Parameter	-12	-15	Unit
I _{CC}	Dynamic Operating Current $\overline{CE1} \le V_{IL}$ and $CE2 \ge V_{IH}$, V_{CC} = max,	160	155	mA
	$f = fmax$, $I_{OUT} = 0mA$, $V_{IN} \ge V_{IH}$ or $\le V_{IL}$			
I _{SB}	Standby Power Supply Current (TTL level) CE1 \geq V $_{IH}$ and/or CE2 \leq V $_{IL}$, V $_{CC}$ = max, f = fmax, V $_{IN} \geq$ V $_{IH}$ or \leq V $_{IL}$	35	35	mA
I _{SB1}	Full Standby Power Supply Current (CMOS level)	10	10	mA
	$\overline{CE1} \ge V_{HC}$ and/or $CE2 \le V_{LC}$, V_{CC} = max, f = 0, $V_{IN} \ge V_{HC}$ or $\le V_{LC}$			

DC Characteristics (V_{CC} = 5.0V \pm 10%)

Symbol	Parameter	Test Condition	Min.	Max.	Unit
ILI	Input Leakage Current	V_{CC} = max, V_{IN} = GND to V_{CC}	-5	5	μA
ILO	Output Leakage Current	V_{CC} = max, $\overline{CE1} \geq V_{IH}$ and/or CE2 $\leq V_{IL},$ V_{OUT} = GND to V_{CC}	-5	5	μΑ
V _{OL}	Output low voltage	I _{OL} = 8 mA, V _{CC} = min	-	0.4	V
		I _{OL} = 10 mA, V _{CC} = min	-	0.5	V
V _{OH}	Output high voltage	I _{OH} = -4 mA, V _{CC} = min	2.4	-	V

AC Characteristics (V_{CC} = 5.0V \pm 10%, TA = 0 to +70°C)

			-	12	-15		
Parameter	Symbol ^[1]	Description		Max	Min	Max	Units
Read Cycle	t _{RC}	Read Cycle time	12		15		ns
	t _{AA}	Address access time		12		15	ns
	t _{ACE}	Chip enable access time		12		15	ns
	t _{OH}	Output hold from address change	4		4		ns
	t _{LZCE}	Chip enable to output in low-Z	3		3		ns
	t _{HZCE}	Chip disable to output high-Z		6		7	ns
	t _{PU}	Chip enable to power up time	0		0		ns
t	t _{PD}	Chip enable to power down time		12		12	ns
	t _{AOE}	Output enable access time		6		6	ns
	t _{LZOE}	Output enable to output in low-Z	0		0		ns
	t _{HZOE}	Output disable to output in high-Z		6		6	ns
Write Cycle	t _{WC}	Write Cycle time	12		15		ns
	t _{CW}	Chip enable to end of write	10		11		ns
	t _{AW}	Address valid to end of write	10		11		ns
	t _{AS}	Address set-up time	0		0		ns
	t _{AH}	Address hold from end of write	0		0		ns
	t _{WP}	Write pulse width ($\overline{OE} \ge V_{IH}$)	9		11		ns
	t _{DS}	Data set-up time	6		7		ns
	t _{DH}	Data hold time	0		0		ns
	t _{LZWE}	Write disable to output in low-Z	0		0		ns
	t _{HZWE}	Write enable to output in high-Z		5		5	ns

1. $t_{LZCE}, t_{LZWE}, t_{HZCE}, t_{LZOE}, t_{HZOE}, t_{PU}$ and t_{PD} are simulated values.

AC Test Conditions

Parameter	Rating
Input pulse levels	GND to 3.0V
Input rise and fall times	3 ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figure 1

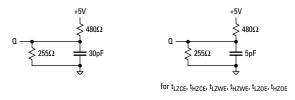
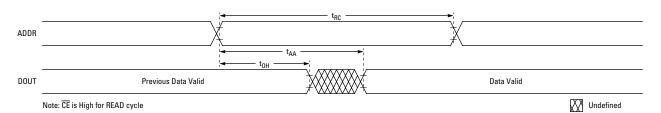
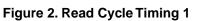
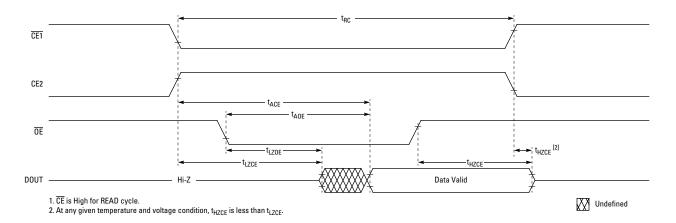
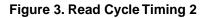






Figure 1. Output Load Equivalent

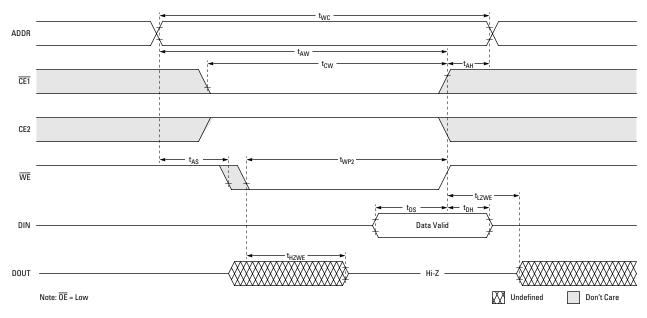
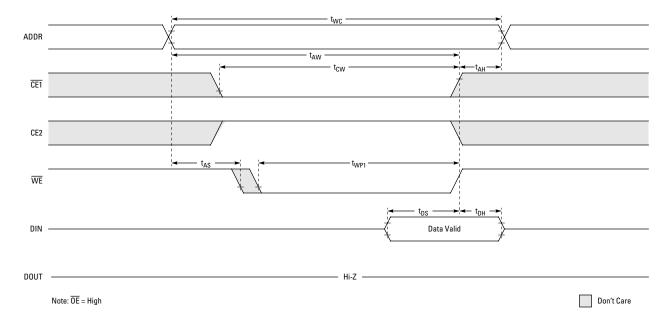
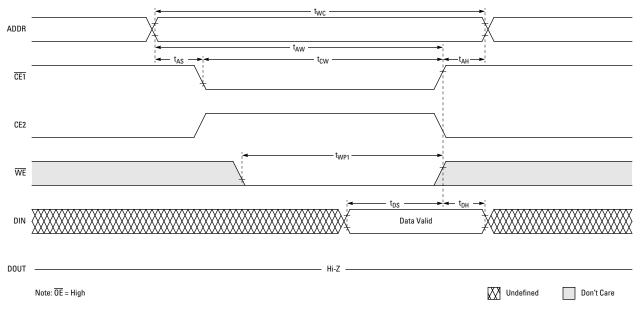
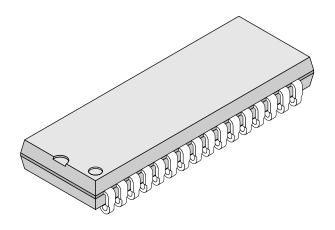



Figure 4. Write Cycle Timing (Write Enabled Controlled, OE = Low)

5




Figure 6. Write Cycle Timing (Chip Enabled Controlled)

PACKAGE INFORMATION

.....

						1	
NC	1	Ο			32	Þ	VCC
A16	2				31	Þ	A15
A14	3				30	Þ	CE2
A12	4				29	Þ	WE
A7	5				28	Þ	A13
A6	6				27	Þ	A8
A5	7				26	Þ	A9
A4	8		Ton View		25	Þ	A11
A3	9		Top Vlev	<i>'</i>	24	Þ	0E
A2	10)			23	Þ	A10
A1	11				22	Þ	CE1
A0	12	2			21	Þ	I/0 7
I/O 0	13	:			20	Þ	I/O 6
I/O 1	14	Ļ			19	Þ	I/O 5
I/O 2	15	i			18	Ь	I/0 4
GND	16	i			17	Þ	I/O 3

Figure 7. 32-Pin Plastic SOJ/TSOP Logical Pinout

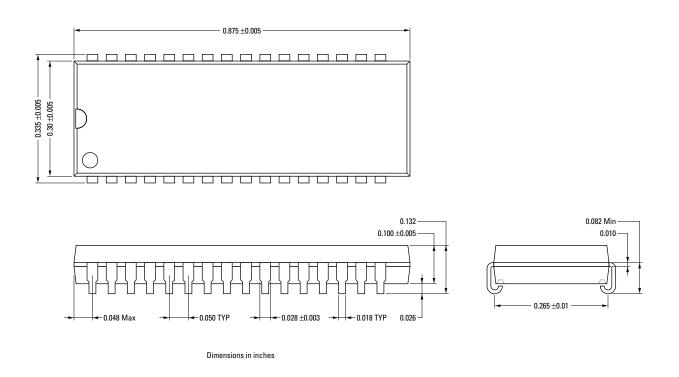
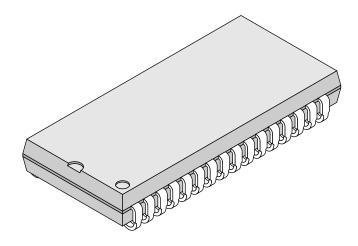



Figure 8. 32-Pin Plastic SOJ (300 mil) Package Dimensions

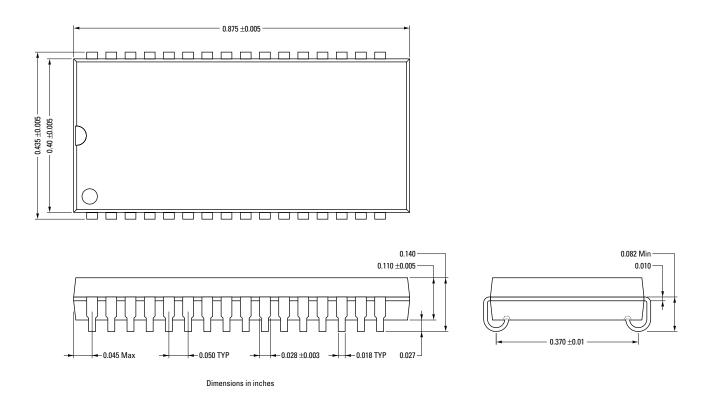
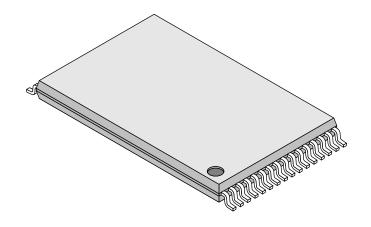



Figure 9. 32-Pin Plastic SOJ (400 mil) Package Dimensions

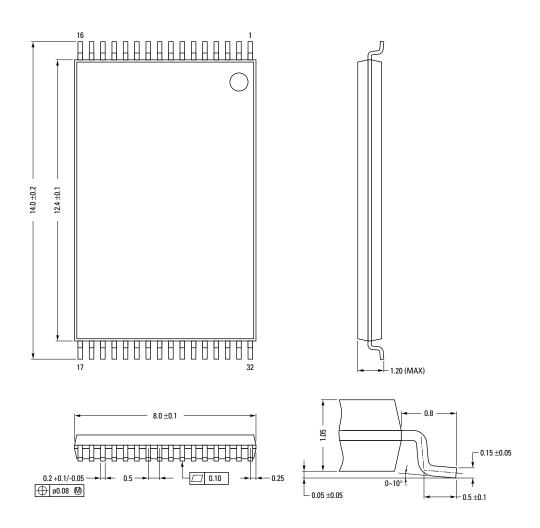


Figure 10. 32-Pin Plastic TSOP (Type I) Package Dimensions

Ordering Info

.....

Part Number	Organization	Power And Ground	Operating Current (mA)	Access Time	Package Type
GLT710008-12J3	128Kx8	Corner	160 mA	12ns	32 pin SOJ (300 mil)
GLT710008-15J3	128Kx8	Corner	155mA	15ns	32 pin SOJ (300 mil)
GLT710008-12J4	128Kx8	Corner	160mA	12ns	32 pin SOJ (400 mil)
GLT710008-15J4	128Kx8	Corner	155mA	15ns	32 pin SOJ (400 mil)
GLT710008-12TS	128Kx8	Corner	160mA	12ns	32 pin TSOP (Type I)
GLT710008-15TS	128Kx8	Corner	155mA	15ns	32 pin TSOP (Type I)

11

www.glinktech.com

G-LINK Technology

1753 South Main Street Milpitas, California, 95035, USA TEL: 408-240-1380 • FAX: 408-240-1385

G-LINK Technology Corporation, Taiwan

6F, No. 24-2, Industry E. Rd. IV Science-Based Industrial Park Hsin Chu, Taiwan, R.O.C. TEL: 03-578-2833 • FAX: 03-578-5820

© 2001 G-LINK Technology

G-LINK Technology reserves the right to change products or specifications without notice.

The information contained in this document does not convey any license under copyrights, patent rights or trademarks claimed and owned by G-LINK or its subsidiaries. G-LINK assumes no liability for G-LINK applications assistance, customer's product design, or infringement of patents arising from use of semiconductor devices in such systems' designs. Nor does G-LINK warrant or represent that any patent right, copyright, or other intellectual property right of G-LINK covering or relating to any combination, machine, or process in which such semiconductor devices might be or are used.

G-LINK Technology's products are not authorized for use in life support devices or systems. Life support devices or systems are device or systems which are: a) intended for surgical implant into the human body and b) designed to support or sustain life; and when properly used according to label instructions, can reasonably be expected to cause significant injury to the user in the event of failure.

The information contained in this document is believed to be entirely accurate. However, G-LINK Technology assumes no responsibility for inaccuracies.

All rights reserved. No part of this document may be copied or reproduced in any form or by any means or transferred to any third party without the prior written consent of G-LINK Technology.

Circuit diagrams utilizing G-LINK products are included as a means of illustrating typical semiconductor applications. Complete information sufficient for design purposes is not necessarily given.