

muRata

Innovator in Electronics

Murata Manufacturing Co., Ltd.

CONTENTS

Numbering
ction Guide
for Flow/Reflow Soldering GRM15/18/21/31 Series ————————————————————————————————————
for Reflow Soldering GRM32/43/55 Series ————————————————————————————————————
Ultra-small GRM03 Series ————————————————————————————————————
Thin Type (Flow/Reflow) ————————————————————————————————————
1 Series Specifications and Test Methods ————————————————————————————————————
Thin Layer Large-capacitance Type ————————————————————————————————————
Low-dissipation Type ————————————————————————————————————
1 Series Data
Microchips — 3
Capacitor Arrays ————————————————————————————————————
for Ultrasonic Sensors ———————————————————————————————————
Low ESL ———————————————————————————————————
High Frequency for Flow/Reflow Soldering ————— 5
High-Q & High Power Type ————————————————————————————————————
High Frequency Type ————————————————————————————————————
/ERH/ERA/ERD Series Data 7
kage ————————————————————————————————————
aution ————————————————————————————————————
ce
rence Data ——————————————————————————————————
Medium-voltage Low Dissipation Factor — 10
Medium-voltage High-Capacitance for General-Use ————————————————————————————————————
Only for Information Devices/Tip & Ring — 11
AC250V(r.m.s.) Type — 11
Safety Standard Recognized Type GC (UL, IEC60384-14 Class X1/Y2) ————————————————————————————————————
Safety Standard Recognized Type GD (IEC60384-14 Class Y3) ———————————————————————————————————
Safety Standard Recognized Type GF (IEC60384-14 Class Y2) ———————————————————————————————————

21 Safety Standard Recognized Type GB (IEC60384-14 Class X2)	124
GA3 Series Specifications and Test Methods	125
GRM/GR4/GA2/GA3 Series Data	129
Package	132
⚠ Caution	135
Notice	141
ISO 9000 Certifications	145

• Please refer to "Specifications and Test Methods" at the end of each chapter of 5 - 17 .

/

ğ

_

. .

Part Numbering

Chip Monolithic Ceramic Capacitors

GR M 18 8 B1 1H 102 K A01 K (Part Number)

●Product ID

2Series

6 Series				
Product ID	Code	Series		
GR	М	Tin Plated Layer		
GK	4	Only for Information Devices / Tip & Ring		
	F	High Frequency and high Power Type		
ER	н	High Frequency and High Power Type (Ribbon Terminal)		
	Α	High Frequency Type		
	D	High Frequency Type (Ribbon Terminal)		
GQ	M	High Frequency for Flow/Reflow Soldering		
GM	Α	Monolithic Microchip		
GN	М	Capacitor Array		
LL	L	Low ESL Wide Width Type		
GJ	M	High Frequency Low Loss Type Tin Plated Type		
	6	High Frequency Low Loss Type		
GA	2	for AC250V (r.m.s.)		
GA	3	Safety Standard Recognized Type		
GC	Р	Automotive Soldering Electrode		
GC	М	Automotive Tin Plated Layer		

3Dimension (LXW)

Code	Dimension (L×W)	EIA		
03	0.6×0.3 mm	0201		
05	0.5×0.5 mm	0202		
08	0.8×0.8 mm	0303		
11	1.25×1.0 mm	0504		
15	1.0×0.5 mm	0402		
18	1.6×0.8 mm	0603		
1D	1.4×1.4 mm			
1X	Depends on individual standards.			
21	2.0×1.25 mm	0805		
22	2.8×2.8 mm	1111		
31	3.2×1.6 mm	1206		
32	3.2×2.5 mm	1210		
3X	Depends on individual	standards.		
42	4.5×2.0 mm	1808		
43	4.5×3.2 mm	1812		
52	5.7×2.8 mm	2211		
55	5.7×5.0 mm	2220		

4Dimension (T)

Code	Dimension (T)
2	2-elements (Array Type)
3	0.3 mm
4	4-elements (Array Type)
5	0.5 mm
6	0.6 mm
7	0.7 mm
8	0.8 mm
9	0.85 mm
Α	1.0 mm
В	1.25 mm
С	1.6 mm
D	2.0 mm
E	2.5 mm
F	3.2 mm
М	1.15 mm
N	1.35 mm
R	1.8 mm
s	2.8 mm
Q	1.5 mm
Х	Depends on individual standards.

With the array type GNM series, "Dimension(T)" indicates the number of elements

(\) Continued from the preceding page.

6Temperature Characteristics

Code	Temperature Characteristics	Temperature Range	Capacitance Change or Temperature Coefficient	Operating Temperature Range	
1X	SL	20 to 85°C	+350 to -1000ppm/°C	-55 to 125°C	
2C	СН	-55 to 125°C	0±60ppm/°C	-55 to 125°C	
2P	PH	-25 to 85°C	-150±60ppm/°C	-25 to 85°C	
2R	RH	-25 to 85°C	-220±60ppm/°C	-25 to 85°C	
2S	SH	-25 to 85°C	-330±60ppm/°C	-25 to 85°C	
2T	TH	-25 to 85°C	-470±60ppm/°C	-25 to 85°C	
3C	CJ	-55 to 125°C	0±120ppm/°C	-55 to 125°C	
3P	PJ	-25 to 85°C	-150±120ppm/°C	-25 to 85°C	
3R	RJ	-25 to 85°C	-220±120ppm/°C	-25 to 85°C	
3S	SJ	-25 to 85°C	-330±120ppm/°C	-25 to 85°C	
3T	TJ	-25 to 85°C	-470±120ppm/°C	-25 to 85°C	
3U	UJ	-25 to 85°C	-750±120ppm/°C	-25 to 85°C	
4C	СК	-55 to 125°C	0±250ppm/°C	-55 to 125°C	
5C	COG	-55 to 125°C	0±30ppm/°C	-55 to 125°C	
6C	C0H/CH *1	-55 to 125°C	0±60ppm/°C	-55 to 125°C	
6P	P2H	-55 to 85°C	-150±60ppm/°C	-55 to 125°C	
6R	R2H	-55 to 85°C	-220±60ppm/°C	-55 to 125°C	
6S	S2H	-55 to 85°C	-330±60ppm/°C	-55 to 125°C	
6T	T2H	-55 to 85°C	-470±60ppm/°C	-55 to 125°C	
7C	CJ *1	-55 to 125°C	0±120ppm/°C	-55 to 125°C	
7U	U2J	-55 to 85°C	-750±120ppm/°C	-55 to 125°C	
8C B1	CK *1 B *2	-55 to 125°C	0±250ppm/°C	-55 to 125°C	
		-25 to 85°C	±10%	-25 to 85°C	
В3	В	-25 to 85°C	±10%	-25 to 85°C	
E4	Z5U	10 to 85°C	+22, -56%	10 to 85°C	
F1	F *2	-25 to 85°C	+30, -80%	-25 to 85°C	
F5	Y5V	-30 to 85°C	+22, -82%	-30 to 85°C	
R1	R *2	-55 to 125°C	±15%	-55 to 125°C	
R3	R	-55 to 125°C	±15%	-55 to 125°C	
R6	X5R	-55 to 85°C	±15%	-55 to 85°C	
R7	X7R	-55 to 125°C	±15%	-55 to 125°C	
C8	X6S	-55 to 105°C	±22%	-55 to 105°C	
05	71.04	-25 to 20°C	-4700+100/-2500ppm/°C	2E to 9E90	
9E	ZLM	20 to 85°C	-4700+500/-1000ppm/°C	-25 to 85°C	

^{*1} ER series only.

^{*2} Add 50% of the rated voltage.

Continued from the preceding page.

6Rated Voltage

•	
Code	Rated Voltage
0G	DC4V
0J	DC6.3V
1A	DC10V
1C	DC16V
1E	DC25V
1H	DC50V
2A	DC100V
2D	DC200V
2E	DC250V
YD	DC300V
2H	DC500V
2J	DC630V
3A	DC1kV
3D	DC2kV
3F	DC3.15kV
E2	AC250V
GB	X2; AC250V (Safety Standard Recognized Type GB)
GC	X1, Y2; AC250V (Safety Standard Recognized Type GC)
GD	Y3; AC250V (Safety Standard Recognized Type GD)
GF	Y2; AC250V (Safety Standard Recognized Type GF)

Capacitance

Expressed by three figures. The unit is pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two numbers. If there is a decimal point, it is expressed by the capital letter "R". In this case, all figures are significant digits.

		<u> </u>
Ex.)	Code	Capacitance
	R50	0.5pF
	1R0	1.0pF
	100	10pF
	103	10000pF

8 Capacitance Tolerance

Code	Capacitance Tolerance	TC	Series	Capacitance Step		
В	±0.1pF	СΔ	GJM	≦5pF	E24 Series,1pF	
С	+0.2EpF	CΔ-SL	GRM/ERF/ERH/ERA/ERD/GQM	≦5pF	* 1pF	
C	±0.25pF	СΔ	GJM	<10pF	E24 Series,1pF	
	10 En F	CΔ-SL	GRM	6.0 to 9.0pF	* 1pF	
D	±0.5pF	СΔ	ERF/ERH/ERA/ERD/GQM/GJM	5.1 to 9.1pF	E24 Series	
G	±2%	СΔ	GJM	≧10pF	E12 Series	
G	±270	СΔ	GQM	≧10pF	E24 Series	
	±5%	CΔ-SL	GRM/GA3	≧10pF	E12 Series	
J	±3%	СΔ	ERF/ERH/ERA/ERD/GQM/GJM	≧10pF	E24 Series	
V	1100/	K ±10%	B,R,X7R,X5R,ZLM	GRM/GA3	E6	Series
K.	11070	B,R,A/R,ASR,ZLIVI	GR4	E12	2 Series	
		Z5U	GRM	E3	Series	
М	±20%	B,R,X7R	GMA/LLL	E6	Series	
		X7R	GA2	E3	Series	
Z	+80%, -20%	F,Y5V	GRM	E3 Series		
R	Depends on individual standards.					

^{*} E24 series is also available.

9Individual Specification Code

Code	Series	Individual Specification	Temperature Characteristics Type *4		Undercoat Metal of Outer Electrode
	GRM *1	Chandard Tuna	TC		
A01	GRM *1/LLL/GNM	Standard Type	HiK		Base Metal
A11	GRM *1	Special Dimension Type (Tolerances of LXWXT are ±0.15mm)	HiK	Base Metal	Base Metal
A12	GRM *1	Special Characteristics (Applied Voltage is X1.25 of Rated Voltage at High Temperature Load Test)	HiK	Base Metal	Base Metal
A35/A39	GRM *1	Special Dimension Type	HiK	Base Metal	Base Metal

_					
$ \mathcal{V} $	Continued	from	the	preceding	page

Code	Series	Individual Specification	Temperature Characteristics Type *4	Inner Electrode	Undercoat Metal of Outer Electrode
A61/A88/A92/A93	GRM *1	Special Characteristics (Under special control)	HiK	Base Metal	Base Metal
B01	GJM/GQM	Standard Type	TC	Base Metal (Cu)	Base Metal
C01	GRM *1	Standard Type	HiK	Base Metal	Precious Metal
C11	GRM *1	Special Dimension Type (Tolerances of LXW are ±0.2mm, others)	HiK	Base Metal	Precious Metal
C12	GRM *1	Special Dimension Type (Length is 3.2±0.2, Width is 1.6±0.2mm, Thickness is 1.2±0.1mm)	HiK	Base Metal	Precious Metal
	ERA/ERD/ERF/ERH	· · · -	TC		
D01	GRM *1/GNM	Standard Type (Non-coated type for ERH series)	TC	Precious Metal	Precious Metal
	GRM *1/GMA/LLL/GNM	(Non-coated type for ERT series)	HiK	1	
D02	ERH	Standard Type (Coated with Resin)	TC	Precious Metal	Precious Metal
DB4	GJM	Special Dimension Type (Thickness is 0.25±0.05mm)	TC	Precious Metal	Precious Metal
E01	GRM *1	Standard Type (Thin Layer Large Capacitance Type)	HiK	Base Metal	Base Metal
E19/E34	GRM *1	Special Characteristics (Under Special Control)	HiK	Base Metal	Base Metal
E20	GRM *1	Special Dimension Type	HiK	Base Metal	Base Metal
E39	GRM *1	Special Dimension Type	HiK	Base Metal	Base Metal
V01	GRM *2	Standard Type (New Ceramic Material)	TC	Precious Metal	Precious Meta
W01	GRM *3/GR4/GA2/GA3	Tolerance of Thickness is +0/-0.3mm	HiK	Base Metal	Base Metal
VVOI	GRM *3	Tolerance of Thickness is +0/-0.5min	TC	Dase Metal	
W02	GA3	Tolerance of Thickness is ±0.2mm	HiK	Base Metal	Base Metal
W03	GRM *3	Tolerance of Thickness is ±0.2mm	HiK	Base Metal	Base Metal
W07	GRM *3	Tolerance of Thickness is ±0.1mm	HiK	Base Metal	Base Metal
Y01	GRM *3	Tolerance of Thickness is +0/-0.3mm	TC	Dragious Matal	Precious Metal
101	GRM *3	Tolerance of Thickness is +0/-0.5min	HiK	Precious Metal	Precious ivietai
Y02	GA3	Tolerance of Thickness is ±0.3mm	HiK	Procious Motal	Procious Motol
102	GRM *3/GA3	Tolerance of Thickness is ±0.3fffff	TC	riecious ivietai	Precious Metal
Y06	GA3	Thickness is 2.7±0.3mm	HiK	Precious Metal	Precious Metal
Y21	GRM *2	Standard Type	TC	Precious Metal	Precious Metal
Z01	GRM *1	Standard Type (New Ceramic Material)	TC	Precious Metal	Precious Metal

Packaging

Packaging
ø178mm Plastic Taping
ø178mm Paper Taping
ø330mm Plastic Taping
ø330mm Paper Taping
ø178mm Special Packaging
ø330mm Special Packaging
Bulk
Bulk Case
Bulk Tray

^{*4 &}quot;TC" means Temperature Compensating Type and "HiK" means High Dielectric Type.

Selection Guide of Chip Monolithic Ceramic Capacitors

★For other automotive equipment such as comfort, security, information, entertainment, GRM series (for general electronics) are available.

for Flow/Reflow Soldering GRM15/18/21/31 Series

■ Features

- 1. Terminations are made of metal highly resistant to migration.
- The GRM series is a complete line of chip ceramic capacitors in 6.3V, 10V, 16V, 25V, 50V, 100V, 200V and 500V ratings. These capacitors have temperature characteristics ranging from C0G to Y5V.
- A wide selection of sizes is available, from the miniature LxWxT: 1.0x0.5x0.5mm to LxWxT: 3.2x1.6x1.15mm.
 GRM18, 21 and GRM31 types are suited to flow and reflow soldering.
 GRM15 type is applied to only reflow soldering.
- 4. Stringent dimensional tolerances allow highly reliable, high speed automatic chip placement on PCBs.
- The GRM series is available in paper or plastic embossed tape and reel packaging for automatic placement. Bulk case packaging is also available for GRM15, GRM18 and GRM21.

Part Number		Din	nensions (n	nm)		
Part Number	L	W	Т	е	g min.	
GRM155	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.3	0.4	
GRM188*	1.6 ±0.1	0.8 ±0.1	0.8 ±0.1	0.2 to 0.5	0.5	
GRM216			0.6 ±0.1			
GRM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7	
GRM21A	2.0 ±0.1	1.23 ±0.1	1.0 +0/-0.2	0.2 10 0.7	0.7	
GRM21B			1.25 ±0.1			
GRM316			0.6 ±0.1			
GRM319	3.2 ±0.15	1.6 ±0.15	0.85 ±0.1	0.3 to 0.8	1.5	
GRM31M			1.15 ±0.1	0.3 10 0.8	1.5	
GRM31C	3.2 ±0.2	1.6 ±0.2	1.6 ±0.2			

^{*} Bulk Case : 1.6 ±0.07(L) × 0.8 ±0.07(W) × 0.8 ±0.07(T)

■ Applications

General electronic equipment

Temperature Compensating Type GRM15 Series (1.0x0.5 mm) 50V/25V

Part Number				GR	M15			
L x W [EIA]				1.00x0.5	50 [0402]			
тс	C0G (5C)	P2H (6P)	R2H (6R)	S2H (6S)	(1	SL (X)	T2H (6T)	U2J (7U)
Rated Volt.	50 (1H)	50 (1H)	50 (1H)	50 (1H)	50 (1H)	25 (1E)	50 (1H)	50 (1H)
Capacitance (Cap	pacitance part r	numbering code)	and T (mm) Dim	ension (T Dimen	sion part numbe	ering code)		
0.50pF(R50)	0.50 (5)							
0.75pF(R75)	0.50(5)							
1.0pF(1R0)	0.50(5)							
2.0pF(2R0)	0.50(5)							
3.0pF(3R0)	0.50(5)	0.50(5)	0.50 (5)	0.50(5)			0.50(5)	0.50(5)
4.0pF(4R0)	0.50(5)	0.50(5)	0.50 (5)	0.50(5)			0.50(5)	0.50(5)
5.0pF(5R0)	0.50 (5)	0.50(5)	0.50 (5)	0.50(5)			0.50(5)	0.50(5)
6.0pF(6R0)	0.50 (5)	0.50(5)	0.50 (5)	0.50(5)			0.50(5)	0.50(5)
7.0pF(7R0)	0.50 (5)	0.50(5)	0.50 (5)	0.50(5)			0.50(5)	0.50(5)
8.0pF(8R0)	0.50 (5)	0.50(5)	0.50 (5)	0.50(5)			0.50(5)	0.50(5)
9.0pF(9R0)	0.50 (5)	0.50(5)	0.50 (5)	0.50(5)			0.50(5)	0.50(5)
10pF(100)	0.50 (5)	0.50(5)	0.50 (5)	0.50(5)			0.50(5)	0.50(5)
12pF(120)	0.50 (5)	0.50(5)	0.50 (5)	0.50(5)			0.50(5)	0.50(5)
15pF(150)	0.50(5)	0.50(5)	0.50 (5)	0.50(5)			0.50(5)	0.50(5)
18pF(180)	0.50(5)	0.50(5)	0.50 (5)	0.50(5)			0.50(5)	0.50(5)
22pF(220)	0.50(5)	0.50(5)	0.50 (5)	0.50(5)			0.50(5)	0.50(5)
27pF(270)	0.50(5)	0.50(5)	0.50(5)	0.50(5)			0.50(5)	0.50(5)
33pF(330)	0.50(5)		0.50(5)	0.50(5)			0.50(5)	0.50(5)

$- \lambda $	Continued	from	the	preceding	page

Part Number				GR	M15			
L x W [EIA]				1.00x0.	50 [0402]			
тс	C0G (5C)	P2H (6P)	R2H (6R)	S2H (6S)	(1	X)	T2H (6T)	U2J (7U)
Rated Volt.	50 (1H)	50 (1H)	50 (1H)	50 (1H)	50 (1H)	25 (1E)	50 (1H)	50 (1H)
Capacitance (Ca	pacitance part r	numbering code)	and T (mm) Din	nension (T Dimer	sion part numbe	ering code)		
39pF(390)	0.50 (5)			0.50 (5)			0.50(5)	0.50(5)
47pF(470)	0.50(5)				0.50(5)		0.50(5)	0.50(5)
56pF(560)	0.50(5)				0.50(5)		0.50 (5)	0.50(5)
68pF(680)	0.50(5)				0.50(5)		0.50 (5)	0.50(5)
82pF(820)	0.50(5)				0.50(5)		0.50 (5)	0.50(5)
100pF(101)	0.50(5)				0.50(5)		0.50 (5)	0.50(5)
120pF(121)	0.50(5)				0.50(5)			0.50(5)
150pF(151)	0.50(5)				0.50(5)			0.50(5)
180pF(181)	0.50(5)				0.50(5)			0.50(5)
220pF(221)	0.50(5)					0.50 (5)		
270pF(271)	0.50(5)					0.50(5)		
330pF(331)	0.50(5)					0.50(5)		
390pF(391)	0.50(5)					0.50(5)		
470pF(471)	0.50(5)							
560pF(561)	0.50(5)							
680pF(681)	0.50(5)							
820pF(821)	0.50(5)							
1000pF(102)	0.50(5)							

The part numbering code is shown in $\ (\).$

Temperature Compensating Type GRM18 Series (1.60x0.80 mm) 200V/100V/50V/25V

Part Number						GR	M18		1			
L x W [EIA]						1.60x0.8	30 [0603]					
тс		C0G (5C)		P2H (6P)	R2H (6R)	S2H (6S)			SL X)		T2H (6T)	U2J (7U)
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	50 (1H)	50 (1H)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	25 (1E)	50 (1H)	50 (1H)
Capacitance (Ca	pacitance	part numbe	ering code)	and T (mm) Dimensio	n (T Dimen	sion part n	umbering o	ode)	•	1	
0.50pF(R50)	0.80(8)	0.80(8)	0.80(8)									
0.75pF(R75)	0.80(8)	0.80(8)	0.80(8)									
1.0pF(1R0)	0.80(8)	0.80(8)	0.80(8)									
2.0pF(2R0)	0.80(8)	0.80(8)	0.80(8)									
3.0pF(3R0)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)					0.80(8)	0.80(8)
4.0pF(4R0)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)					0.80(8)	0.80(8)
5.0pF(5R0)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)					0.80(8)	0.80(8)
6.0pF(6R0)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)					0.80(8)	0.80(8)
7.0pF(7R0)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)					0.80(8)	0.80(8)
8.0pF(8R0)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)					0.80(8)	0.80(8)
9.0pF(9R0)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)					0.80(8)	0.80(8)
10pF(100)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)					0.80(8)	0.80(8)
12pF(120)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)
15pF(150)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)
18pF(180)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)
22pF(220)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)
27pF(270)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)
33pF(330)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)
39pF(390)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)
47pF(470)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)
56pF(560)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)				0.80(8)	0.80(8)

Dimensions are shown in mm and Rated Voltage in Vdc.

Continued from the preceding page.

Part Number						GR	M18					
L x W [EIA]						1.60x0.8	80 [0603]					
тс		C0G (5C)		P2H (6P)	R2H (6R)	S2H (6S)	SL (1X)				T2H (6T)	U2J (7U)
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	50 (1H)	50 (1H)	50 (1 H)	200 (2D)	100 (2A)	50 (1H)	25 (1E)	50 (1H)	50 (1H)
Capacitance (Ca	pacitance	part number	ering code)	and T (mm) Dimensio	n (T Dimen	sion part n	umbering o	ode)			
68pF(680)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)		0.80(8)		0.80(8)	0.80(8)
82pF(820)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)		0.80(8)		0.80(8)	0.80(8)
100pF(101)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)		0.80(8)		0.80(8)	0.80(8)
120pF(121)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)		0.80(8)	0.80(8)		0.80(8)	0.80(8)
150pF(151)		0.80(8)	0.80(8)	0.80(8)	0.80(8)	0.80(8)		0.80(8)	0.80(8)		0.80(8)	0.80(8)
180pF(181)		0.80(8)	0.80(8)		0.80(8)	0.80(8)		0.80(8)	0.80(8)		0.80(8)	0.80(8)
220pF(221)		0.80(8)	0.80(8)			0.80(8)		0.80(8)	0.80(8)		0.80(8)	0.80(8)
270pF(271)		0.80(8)	0.80(8)					0.80(8)	0.80(8)		0.80(8)	0.80(8)
330pF(331)		0.80(8)	0.80(8)					0.80(8)	0.80(8)		0.80(8)	0.80(8)
390pF(391)		0.80(8)	0.80(8)					0.80(8)	0.80(8)		0.80(8)	0.80(8)
470pF(471)		0.80(8)	0.80(8)						0.80(8)			0.80(8)
560pF(561)		0.80(8)	0.80(8)						0.80(8)			0.80(8)
680pF(681)			0.80(8)						0.80(8)			0.80(8)
820pF(821)			0.80(8)							0.80(8)		
1000pF(102)			0.80(8)							0.80(8)		
1200pF(122)			0.80(8)							0.80(8)		
1500pF(152)			0.80(8)							0.80(8)		
1800pF(182)			0.80(8)									
2200pF(222)			0.80(8)									
2700pF(272)			0.80(8)									

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Temperature Compensating Type GRM21 Series (2.00x1.25 mm) 200V/100V/50V/25V

Part Number							GRM21						
L x W [EIA]						2.0	0x1.25 [08	305]					
тс		C0G (5C)		C0H (6C)	P2H (6P)	R2H (6R)	S2H (6S)		SL (1X)			T2H (6T)	U2J (7U)
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	25 (1E)	50 (1H)	50 (1H)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	25 (1E)	50 (1H)	50 (1H)
Capacitance (Ca	pacitance	part numl	bering cod	de) and T (mm) Dime	nsion (T D	imension	part numb	ering code	e)		1	
12pF(120)	0.85(9)												
15pF(150)	0.85(9)												
18pF(180)	0.85(9)												
22pF(220)	0.85(9)												
27pF(270)	0.85(9)												
33pF(330)	0.85(9)												
39pF(390)	0.85(9)												
47pF(470)	0.85(9)												
56pF(560)	0.85(9)												
68pF(680)	1.25(B)	0.85(9)											
82pF(820)	1.25(B)	0.85(9)											
100pF(101)	1.25(B)	0.60(6)											
120pF(121)	1.25(B)	0.60(6)						0.85(9)					
150pF(151)	1.25(B)	0.60(6)						1.25(B)					
180pF(181)	1.25(B)	0.60(6)			0.85(9)			1.25(B)					
220pF(221)	1.25(B)	0.60(6)			0.85(9)	0.85(9)		1.25(B)					
270pF(271)		0.60(6)			0.85(9)	0.85(9)	0.85(9)	1.25(B)					
330pF(331)		0.60(6)			0.85(9)	0.85(9)	0.85(9)	1.25(B)					
390pF(391)		0.60(6)			1.25(B)	0.85(9)	0.85(9)	1.25(B)					

Continued from the preceding page.

Part Number							GRM21						
L x W [EIA]						2.0	0x1.25 [08	305]					
тс		C0G (5C)		C0H (6C)	P2H (6P)	R2H (6R)	S2H (6S)		S (1	X)		T2H (6T)	U2J (7U)
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	25 (1E)	50 (1H)	50 (1H)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	25 (1E)	50 (1H)	50 (1H)
Capacitance (Ca	pacitance	e part num	bering co	de) and T ((mm) Dime	nsion (T D	imension	part numb	ering code	e)			•
470pF(471)		0.60(6)			1.25(B)	0.85(9)	0.85(9)	1.25(B)	0.85(9)				
560pF(561)		0.60(6)			1.25(B)	1.25(B)	1.25(B)		0.85(9)			1.25(B)	
680pF(681)		0.85(9)				1.25(B)	1.25(B)		0.85(9)			1.25(B)	
820pF(821)		0.85(9)					1.25(B)		1.25(B)	0.60(6)		1.25(B)	0.60(6)
1000pF(102)		0.85(9)							1.25(B)	0.60(6)		1.25(B)	0.60(6)
1200pF(122)									1.25(B)	0.60(6)		1.25(B)	0.60(6)
1500pF(152)									1.25(B)	0.85(9)		1.25(B)	0.85(9)
1800pF(182)			0.60(6)						1.25(B)	0.85(9)		1.25(B)	0.85(9)
2200pF(222)			0.60(6)							0.85(9)			0.85(9)
2700pF(272)			0.60(6)	1.25(B)						1.25(B)			1.25(B)
3300pF(332)			0.60(6)	1.25(B)						1.25(B)			1.25(B)
3900pF(392)			0.60(6)	1.25(B)							0.85(9)		
4700pF(472)			0.60(6)								0.85(9)		
5600pF(562)			0.85(9)								1.25(B)		
6800pF(682)			0.85(9)								1.25(B)		
8200pF(822)			0.85(9)										
10000pF(103)			0.85(9)							0.60(6)			0.60(6)
12000pF(123)										0.60(6)			0.60(6)
15000pF(153)										0.60(6)			0.60(6)
18000pF(183)										0.60(6)			0.60(6)
22000pF(223)										0.85(9)			0.85(9)
27000pF(273)										0.85(9)			0.85(9)
33000pF(333)										1.00(A)			1.00(A)
39000pF(393)										1.25(B)			1.25(B)
47000pF(473)										1.25(B)			1.25(B)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Temperature Compensating Type GRM31 Series (3.20x1.60 mm) 500V/200V/100V/50V/25V

Part Number							GR	M31						
L x W [EIA]							3.20x1.6	50 [1206]						
тс		C(5	0G (C)		C0H (6C)	P2H (6P)	R2H (6R)	S2H (6S)	SL (1X)				T2H (6T)	U2J (7U)
Rated Volt.	500 (2H)									50 (1H)	50 (1H)			
Capacitance (Ca	apacitance	e part nur	mbering c	ode) and	T (mm) D	imension	(T Dimen	sion part	numberir	ng code)				
1.0pF(1R0)	1.15(M)													
2.0pF(2R0)	1.15(M)													
3.0pF(3R0)	1.15(M)													
4.0pF(4R0)	1.15(M)													
5.0pF(5R0)	1.15(M)													
6.0pF(6R0)	1.15(M)													
7.0pF(7R0)	1.15(M)													
8.0pF(8R0)	1.15(M)													
9.0pF(9R0)	1.15(M)													
10pF(100)	1.15(M)													
12pF(120)	1.15(M)													
15pF(150)	1.15(M)													
18pF(180)	1.15(M)													
22pF(220)	1.15(M)													

Ontinued from the preceding page.

Part Number							GR	M31						
L x W [EIA]							3.20x1.6	50 [1206]	-					
тс		C(5	DG C)		C0H (6C)	P2H (6P)	R2H (6R)	S2H (6S)		S (1	X)		T2H (6T)	U2J (7U)
Rated Volt.	500 (2H)	200 (2D)	50 (1H)	25 (1E)	25 (1E)	50 (1H)	50 (1H)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	25 (1E)	50 (1H)	50 (1H)
Capacitance (Ca	pacitanc	e part nur	mbering c	ode) and	T (mm) D	imension	(T Dimen	sion part	numberir	ng code)				
27pF(270)	1.15(M)													
33pF(330)	1.15(M)													
39pF(390)	1.15(M)													
47pF(470)	1.15(M)													
56pF(560)	1.15(M)													
68pF(680)	1.15(M)													
82pF(820)	1.15(M)													
270pF(271)		1.15(M)												
330pF(331)		1.15(M)												
390pF(391)		1.15(M)												
470pF(471)		1.15(M)												
560pF(561)									1.15(M)					
680pF(681)						0.85(9)			1.15(M)					
820pF(821)						0.85(9)	0.85(9)		1.15(M)					
1000pF(102)						1.15(M)	1.15(M)	0.85(9)	1.15(M)					
1200pF(122)						1.15(M)	1.15(M)	1.15(M)	1.15(M)					
1500pF(152)						1.15(M)	1.15(M)	1.15(M)						
1800pF(182)								1.15(M)						
2200pF(222)										1.15(M)			1.15(M)	
2700pF(272)										1.15(M)			1.15(M)	
3300pF(332)										1.15(M)			1.15(M)	
3900pF(392)										1.15(M)	0.85(9)		1.15(M)	0.85(9)
4700pF(472)										1.15(M)	0.85(9)			0.85(9)
5600pF(562)			0.85(9)								0.85(9)			0.85(9)
6800pF(682)			0.85(9)		0.85(9)						1.15(M)			1.15(M)
8200pF(822)			0.85(9)		1.15(M)						1.15(M)			1.15(M)
10000pF(103)			0.85(9)		' '							1.15(M)		. ,
12000pF(123)			, ,									1.15(M)		
15000pF(153)												1.15(M)		
27000pF(273)			0.85(9)									` <i>'</i>		
33000pF(333)			0.85(9)											
47000pF(473)			1.15(M)											
56000pF(563)			- ()								0.85(9)			0.85(9)
68000pF(683)											1.15(M)			1.15(M)
82000pF(823)											1.15(M)			1.15(M)
0.10μF(104)				1.60(C)							1.15(M)			1.15(M)

The part numbering code is shown in $\ (\).$

Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type X5R (R6) Characteristics

тс		X5R (R6)													
Part Number	GRI	M15	GR	M18	GR	M21	GRI	W31							
L x W [EIA]	1.00x0.5	0 [0402]	1.60x0.8	30 [0603]	2.00x1.2	25 [0805]	3.20x1.6	0 [1206]							
Rated Volt.	16 (1C)	10 (1A)	10 (1A)	6.3 (0J)	10 (1A)	6.3 (0J)	10 (1A)	6.3 (0J)							
Capacitance (Ca	pacitance part r	numbering code)	and T (mm) Dim	ension (T Dime	nsion part numbe	ering code)									
68000pF(683)		0.50(5)													
0.10μF(104)	0.50(5)	0.50(5)													
0.33μF(334)			0.80(8)												

тс					5R 86)				
Part Number	GRI	M15	GR	M18	GR	RM21	GRI	W31	
L x W [EIA]	1.00x0.5	0 [0402]	1.60x0.80 [0603]		2.00x1.	25 [0805]	3.20x1.60 [1206]		
Rated Volt.	16 (1C)	10 (1A)	10 (1A)	6.3 (0J)	10 (1A)	6.3 (0J)	10 (1A)	6.3 (0J)	
Capacitance (Ca	pacitance part n	numbering code)	and T (mm) Dim	nension (T Dimer	sion part number	ering code)			
0.47μF(474)			0.80(8)						
0.68μF(684)			0.80(8)						
1.0μF(105)			0.80(8)	0.80(8)	0.85(9)				
1.5μF(155)						0.85(9)			
2.2μF(225)					1.25(B)	1.25(B)	0.85(9)		
3.3μF(335)						1.25(B)	1.30(X)		
4.7μF(475)						1.25(B)	1.60(C)	1.15(M)	
10μF(106)							1.60(C)	1.60(C)	

The part numbering code is shown in each ().

High Dielectric Constant Type X7R (R7) Characteristics

тс	X7R (R7)																	
Part Number		GR	M15				GRM18	3			GR	M21				GRM31		
L x W [EIA]	1	.00x0.5	040 (040	2]		1.60	x0.80 [0	0603]		2	.00x1.2	25 [080	5]		3.20	x1.60 [1206]	
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)
Capacitance (Ca	pacitar	nce par	t numb	ering co	de) and	mm) T b) Dimer	nsion (T	Dimen	sion pa	rt numb	pering o	ode)					
220pF (221)	0.50 (5)					0.80 (8)												
330pF (331)	0.50 (5)					0.80 (8)												
470pF (471)	0.50 (5)					0.80 (8)												
680pF (681)	0.50 (5)					0.80 (8)												
1000pF (102)	0.50 (5)					0.80 (8)												
1500pF (152)	0.50 (5)					0.80 (8)												
2200pF (222)	0.50 (5)				0.80 (8)	0.80 (8)												
3300pF (332)	0.50 (5)				0.80 (8)	0.80 (8)												
4700pF (472)	0.50 (5)					0.80 (8)				0.85 (9)								
6800pF (682)		0.50 (5)				0.80 (8)				0.85 (9)								
10000pF (103)		0.50 (5)				0.80 (8)				1.25 (B)								
15000pF (153)			0.50 (5)			0.80 (8)												
22000pF (223)			0.50 (5)			0.80 (8)												
33000pF (333)				0.50 (5)		0.80 (8)	0.80 (8)				0.85 (9)			1.15 (M)				

 $^{3.3\}mu F$ and $4.7\mu F$, 6.3V rated are GRM21 series of L: 2 ± 0.15 , W: 1.25 ± 0.15 , T: 1.25 ± 0.15 .

T: 1.15 \pm 0.1mm is also available for GRM31 1.0 μ F for 16V.

 $L: 3.2 \pm 0.2, W: 1.6 \pm 0.2 \text{ for GRM31 16V } 1.0 \mu\text{F type. Also } L: 3.2 \pm 0.2, W: 1.6 \pm 0.2, T: 1.15 \pm 0.15 \text{ for GRM31 16V } 1.5 \mu\text{F and } 2.2 \mu\text{F type.} L: 0.15 \mu\text{F type.} L:$

Dimensions are shown in mm and Rated Voltage in Vdc.

Continued from the preceding page.

тс		()								7R 2 7)								
Part Number		GR	M15	-			GRM18	3			GR	M21				GRM31		
L x W [EIA]	1	.00x0.5	50 [040	2]		1.60	x0.80 [0	0603]		2	.00x1.2	25 [080	5]		3.20	x1.60 [1206]	
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)
Capacitance (Ca	apacitar	nce par	t numbe	ering co	de) and	mm) T b) Dimer	nsion (T	Dimen	sion pa	rt numb	ering o	ode)					
47000pF (473)				0.50 (5)		0.80 (8)	0.80 (8)				1.25 (B)			1.15 (M)				
68000pF (683)						0.80 (8)	0.80 (8)				1.25 (B)							
0.10μF (104)			0.50 (5)	0.50 (5)		0.80 (8)	0.80 (8)	0.80 (8)			1.25 (B)	1.25 (B)						
0.15μF (154)							0.80		0.80		1.25 (B)	1.25 (B)						
0.22μF (224)								0.80 (8)	0.80 (8)		1.25 (B)	0.85 (9)						
0.33µF (334)											0.85 (9)	1.25 (B)			0.85 (9)			
0.47μF (474)											1.25 (B)	1.25 (B)	0.85 (9)		1.15 (M)			
0.68µF (684)													0.85 (9)			0.85 (9)		
1.0μF (105)													1.25 (B)		1.15 (M)	1.15 (M)	0.85 (9)	0.85 (9)
1.5μF (155)															1.60 (C)		1.15 (M)	
2.2μF (225)															1.60 (C)		1.15 (M)	0.85 (9)
3.3μF (335)																1.60 (C)		
4.7μF (475)																1.60 (C)		

The part numbering code is shown in each ().

High Dielectric Constant Type Y5V (F5) Characteristics

тс		Y5V (F5)															
Part Number		GRM15	,		GRM18					GR	M21				GRM31		
L x W [EIA]	1.00	x0.50 [0	0402]		1.60x0.80 [0603]				2	2.00x1.2	25 [0805	5]		3.20x1.60 [1206]			
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)
Capacitance (Ca	pacitan	ce part	number	ing cod	e) and T	(mm) [Dimensio	on (T Di	mension	part nu	umberin	g code)	•				
2200pF (222)	0.50 (5)																
4700pF (472)	0.50 (5)			0.80 (8)													
10000pF (103)	0.50 (5)				0.80 (8)												
22000pF (223)		0.50 (5)			0.80 (8)												
47000pF (473)			0.50 (5)		0.80 (8)												
0.10μF (104)		0.50 (5)	0.50 (5)		0.80 (8)	0.80 (8)			0.85 (9)								

The tolerance will be changed to L: 3.2±0.2, W: 1.6±0.2 for GRM31 16V 1.0µF type. Also L: 3.2±0.2, W: 1.6±0.2, T: 1.15±0.15 for GRM31 16V 1.5µF and 2.2µF type. Dimensions are shown in mm and Rated Voltage in Vdc.

тс		Y5V (F5)															
Part Number		GRM15	,		GRM18					GR	W121				GRM31		
L x W [EIA]	1.00	x0.50 [0	0402]		1.60x0.80 [0603]				2	2.00x1.2	25 [0805	5]		3.20	x1.60 [1	206]	
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)
Capacitance (Ca	pacitan	ce part	number	ing cod	e) and 1	Γ (mm) [Dimensio	on (T Di	mensior	part nu	ımberin	g code)					
0.22μF (224)							0.80 (8)		1.25 (B)	0.85 (9)							
0.47μF (474)							0.80 (8)	0.80 (8)		1.25 (B)			1.15 (M)				
1.0µF (105)							0.80 (8)	0.80 (8)		0.85 (9)	0.85 (9)	0.85 (9)		1.15 (M)	0.85 (9)		
2.2µF (225)										1.25 (B)	1.25 (B)	1.25 (B)			1.15 (M)	0.85 (9)	
4.7μF (475)												1.25 (B)		1.15 (M)	1.15 (M)	1.15 (M)	
10μF (106)														1.60 (C)		1.15 (M)	1.15 (M)

The part numbering code is shown in each ().

Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type Z5U (E4) Characteristics

тс		Z5U (E4)	
Part Number	GRM18	GRM21	GRM31
L x W [EIA]	1.60x0.80 [0603]	2.00x1.25 [0805]	3.20x1.60 [1206]
Rated Volt.	50 (1H)	50 (1H)	50 (1H)
Capacitance (Ca	pacitance part numbering code) and T (mm	n) Dimension (T Dimension part numbering o	code)
10000pF(103)	0.80(8)		
22000pF(223)	0.80(8)		
47000pF(473)		0.60(6)	
0.10μF(104)		0.85(9)	
0.22μF(224)			0.85(9)

The part numbering code is shown in $\ (\).$

Dimensions are shown in mm and Rated Voltage in Vdc.

T: 1.25 \pm 0.1mm is also available for GRM21 25V or 16V 1.0 μ F type.

for Reflow Soldering GRM32/43/55 Series

■ Features

- Terminations are made of metal highly resistant to migration.
- The GRM series is a complete line of chip ceramic capacitors in 10V, 16V, 25V, 50V, 100V and 200V ratings.
 - These capacitors have temperature characteristics ranging from C0G to Y5V.
- This series consists of type LxWxT: 3.2x2.5x0.85mm to LxWxT: 5.7x5.0x2.5mm. These are suited to only reflow soldering.
- Stringent dimensional tolerances allow highly reliable, high speed automatic chip placement on PCBs.
- The GRM series is available in paper or plastic embossed tape and reel packaging for automatic placement.

Part Number		Dime	nsions (mn	1)		
rait Nullibei	L	W	T	e min.	g min.	
GRM329			0.85 ±0.1			-
GRM32M			1.15 ±0.1			S
GRM32N	3.2 ± 0.3	2.5 ±0.2	1.35 ±0.15	0.3	1.0	2 2 2 2
GRM32R			1.8 ±0.2			2020
GRM32E			2.5 ±0.2			
GRM43M			1.15 ±0.1			
GRM43N			1.35 ±0.15			
GRM43R	4.5 ± 0.4	3.2 ±0.3	1.8 ±0.2	0.3	2.0	
GRM43D			2.0 ±0.2			e g e
GRM43E			2.5 ±0.2			
GRM55M			1.15 ±0.1			
GRM55N			1.35 ±0.15			
GRM55C	5.7 ±0.4	5.0 +0.4	1.6 ±0.2	0.3	2.0	
GRM55R	5.7 IU.4	5.0 <u>±</u> 0.4	1.8 ±0.2	0.3	2.0	
GRM55D			2.0 ±0.2			- W
GRM55E			2.5 ±0.2			L VV

■ Applications

General electronic equipment

Temperature Compensating Type GRM32/43/55 Series

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM32N5C2D561JV01	COG (EIA)	200	560 ±5%	3.20	2.50	1.35
GRM32N5C2D681JY21	COG (EIA)	200	680 ±5%	3.20	2.50	1.35
GRM32N5C2D821JY21	COG (EIA)	200	820 ±5%	3.20	2.50	1.35
GRM32N5C2D102JY21	COG (EIA)	200	1000 ±5%	3.20	2.50	1.35
GRM43R5C2D122JV01	COG (EIA)	200	1200 ±5%	4.50	3.20	1.80
GRM43R5C2D152JV01	COG (EIA)	200	1500 ±5%	4.50	3.20	1.80
GRM43R5C2D182JY21	COG (EIA)	200	1800 ±5%	4.50	3.20	1.80
GRM43R5C2D222JY21	COG (EIA)	200	2200 ±5%	4.50	3.20	1.80
GRM43R5C2D272JY21	COG (EIA)	200	2700 ±5%	4.50	3.20	1.80
GRM55N5C2D332JY21	COG (EIA)	200	3300 ±5%	5.70	5.00	1.35
GRM55R5C2D392JY21	COG (EIA)	200	3900 ±5%	5.70	5.00	1.80
GRM55R5C2D472JY21	COG (EIA)	200	4700 ±5%	5.70	5.00	1.80
GRM55R5C2D562JY21	COG (EIA)	200	5600 ±5%	5.70	5.00	1.80
GRM32N1X2D152JV01	SL (JIS)	200	1500 ±5%	3.20	2.50	1.35
GRM43N1X2D182JV01	SL (JIS)	200	1800 ±5%	4.50	3.20	1.35
GRM43N1X2D222JV01	SL (JIS)	200	2200 ±5%	4.50	3.20	1.35
GRM43R1X2D272JV01	SL (JIS)	200	2700 ±5%	4.50	3.20	1.80
GRM43R1X2D332JV01	SL (JIS)	200	3300 ±5%	4.50	3.20	1.80
GRM43R1X2D392JV01	SL (JIS)	200	3900 ±5%	4.50	3.20	1.80
GRM55N1X2D472JV01	SL (JIS)	200	4700 ±5%	5.70	5.00	1.35
GRM55R1X2D562JV01	SL (JIS)	200	5600 ±5%	5.70	5.00	1.80
GRM55R1X2D682JV01	SL (JIS)	200	6800 ±5%	5.70	5.00	1.80
GRM55R1X2D822JV01	SL (JIS)	200	8200 ±5%	5.70	5.00	1.80
GRM32N1X2A562JZ01	SL (JIS)	100	5600 ±5%	3.20	2.50	1.35
GRM32N1X2A682JZ01	SL (JIS)	100	6800 ±5%	3.20	2.50	1.35
GRM43N1X2A822JZ01	SL (JIS)	100	8200 ±5%	4.50	3.20	1.35
GRM43R1X2A103JZ01	SL (JIS)	100	10000 ±5%	4.50	3.20	1.80

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM43R1X2A123JZ01	SL (JIS)	100	12000 ±5%	4.50	3.20	1.80
GRM43R1X2A153JZ01	SL (JIS)	100	15000 ±5%	4.50	3.20	1.80
GRM55M1X2A183JZ01	SL (JIS)	100	18000 ±5%	5.70	5.00	1.15
GRM55N1X2A223JZ01	SL (JIS)	100	22000 ±5%	5.70	5.00	1.35
GRM55R1X2A273JZ01	SL (JIS)	100	27000 ±5%	5.70	5.00	1.80
GRM55R1X2A333JZ01	SL (JIS)	100	33000 ±5%	5.70	5.00	1.80
GRM55R1X2A393JZ01	SL (JIS)	100	39000 ±5%	5.70	5.00	1.80
GRM32N1X1H103JZ01	SL (JIS)	50	10000 ±5%	3.20	2.50	1.35
GRM32N1X1H123JZ01	SL (JIS)	50	12000 ±5%	3.20	2.50	1.35
GRM43R1X1H153JZ01	SL (JIS)	50	15000 ±5%	4.50	3.20	1.80
GRM55M1X1H183JZ01	SL (JIS)	50	18000 ±5%	5.70	5.00	1.15
GRM55N1X1H223JZ01	SL (JIS)	50	22000 ±5%	5.70	5.00	1.35
GRM55R1X1H273JZ01	SL (JIS)	50	27000 ±5%	5.70	5.00	1.80
GRM55R1X1H333JZ01	SL (JIS)	50	33000 ±5%	5.70	5.00	1.80
GRM55R1X1H393JZ01	SL (JIS)	50	39000 ±5%	5.70	5.00	1.80

High Dielectric Constant Type Type GRM32 Series (3.20x2.50mm)

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM32ER61A106KC01	X5R (EIA)	10	10μF ±10%	3.20	2.50	2.50
GRM32NR72A683KA01	X7R (EIA)	100	68000pF ±10%	3.20	2.50	1.35
GRM32NR72A104KA01	X7R (EIA)	100	0.10μF ±10%	3.20	2.50	1.35
GRM32ER72A105KA01	X7R (EIA)	100	1.0μF ±10%	3.20	2.50	2.50
GRM32NR71H684KA01	X7R (EIA)	50	0.68μF ±10%	3.20	2.50	1.35
GRM32RR71H105KA01	X7R (EIA)	50	1.0μF ±10%	3.20	2.50	1.80
GRM32RR71E225KC01	X7R (EIA)	25	2.2μF ±10%	3.20	2.50	1.80
GRM32MR71C225KC01	X7R (EIA)	16	2.2μF ±10%	3.20	2.50	1.15
GRM32NR71C335KC01	X7R (EIA)	16	3.3μF ±10%	3.20	2.50	1.35
GRM32RR71C475KC01	X7R (EIA)	16	4.7μF ±10%	3.20	2.50	1.80
GRM32ER71H475KA88	X7R (EIA)	16	4.7μF ±10%	3.20	2.50	2.50
GRM32NF52A104ZA01	Y5V (EIA)	100	0.10μF +80/-20%	3.20	2.50	1.35
GRM32RF51H105ZA01	Y5V (EIA)	50	1.0μF +80/-20%	3.20	2.50	1.8
GRM32DF51H106ZA01	Y5V (EIA)	50	10μF +80/-20%	3.20	2.50	2.00
GRM329F51E475ZA01	Y5V (EIA)	25	4.7μF +80/-20%	3.20	2.50	0.85
GRM32NF51E106ZA01	Y5V (EIA)	25	10μF +80/-20%	3.20	2.50	1.35
GRM32NF51C106ZA01	Y5V (EIA)	16	10μF +80/-20%	3.20	2.50	1.35

High Dielectric Constant Type Type GRM43 Series (4.50x3.20mm)

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (μF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM43RR72A154KA01	X7R (EIA)	100	0.15 ±10%	4.50	3.20	1.80
GRM43RR72A224KA01	X7R (EIA)	100	0.22 ±10%	4.50	3.20	1.80
GRM43DR72A474KA01	X7R (EIA)	100	0.47 ±10%	4.50	3.20	2.00
GRM43ER72A225KA01	X7R (EIA)	100	2.2 ±10%	4.50	3.20	2.50
GRM43ER71H225KA01	X7R (EIA)	50	2.2 ±10%	4.50	3.20	2.50

High Dielectric Constant Type Type GRM55 Series (5.70x5.00mm)

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (μF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM55DR61H106KA01	X5R (EIA)	50	10.0 ±10%	5.70	5.00	2.00
GRM55DR72A105KA01	X7R (EIA)	100	1.0 ±10%	5.70	5.00	2.00
GRM55ER72A475KA01	X7R (EIA)	100	4.7 ±10%	5.70	5.00	2.50
GRM55RR71H105KA01	X7R (EIA)	50	1.0 ±10%	5.70	5.00	1.80
GRM55RR71H155KA01	X7R (EIA)	50	1.5 ±10%	5.70	5.00	1.80
GRM55ER71H475KA01	X7R (EIA)	50	4.7 ±10%	5.70	5.00	2.50
GRM55RF52A474ZA01	Y5V (EIA)	100	0.47 +80/-20%	5.70	5.00	1.80

Ultra-small GRM03 Series

■ Features

- 1. Small chip size (LxWxT: 0.6x0.3x0.3mm).
- 2. Terminations are made of metal highly resistant to migration.
- 3. GRM03 type is suited to only reflow soldering.
- 4. Stringent dimensional tolerances allow highly reliable, high speed automatic chip placement on PCBs.
- GRM03 series are suited to miniature micro wave module, portable equipment and high frequency circuits.

Part Number	Dimensions (mm)					
Part Number	L	W	Т	е	g min.	
GRM033	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2	

■ Applications

- 1. Miniature micro wave module
- 2. Portable equipment
- 3. High frequency circuit

Part Number			GRM03		
LxW			0.6x0.3		
тс	C0G (5C)	X5R (R6)	X ⁷ (R	7R • 7)	Y5V (F5)
Rated Volt.	25 (1E)	10 (1A)	16 (1C)	6.3 (0J)	10 (1A)
Capacitance (Capac	itance part numbering	code) and T (mm) Dimen	sion (T Dimension part num	nbering code)	
0.50pF(R50)	0.3 (3)				
1.0pF(1R0)	0.3 (3)				
2.0pF(2R0)	0.3(3)				
3.0pF(3R0)	0.3 (3)				
4.0pF(4R0)	0.3 (3)				
5.0pF(5R0)	0.3 (3)				
6.0pF(6R0)	0.3 (3)				
7.0pF(7R0)	0.3(3)				
8.0pF(8R0)	0.3 (3)				
9.0pF(9R0)	0.3 (3)				
10pF(100)	0.3 (3)				
12pF(120)	0.3 (3)				
15pF(150)	0.3 (3)				
18pF(180)	0.3 (3)				
22pF(220)	0.3(3)				
27pF(270)	0.3(3)				
33pF(330)	0.3(3)				
39pF(390)	0.3(3)				
47pF(470)	0.3(3)				
56pF(560)	0.3(3)				
68pF(680)	0.3(3)				
82pF(820)	0.3(3)				
100pF(101)	0.3(3)		0.3(3)		
150pF(151)			0.3(3)		
220pF(221)			0.3(3)		
330pF(331)			0.3(3)		
470pF(471)			0.3(3)		
680pF(681)			0.3 (3)		

	Continued	from	tho	proceding	nago
	Continued	пош	uie	preceding	page

Part Number	GRM03					
LxW	0.6x0.3					
тс	C0G (5C)	X5R (R6)		(7R R7)	Y5V (F5)	
Rated Volt.	25 (1E)	10 (1A)	16 (1C)	6.3 (0J)	10 (1A)	
Capacitance (Capa	citance part numbering	code) and T (mm) Dimens	sion (T Dimension part nu	mbering code)		
1000pF(102)			0.3(3)			
1500pF(152)		0.3(3)		0.3(3)		
2200pF(222)		0.3(3)		0.3(3)	0.3(3)	
3300pF(332)		0.3(3)		0.3(3)		
4700pF(472)		0.3(3)		0.3(3)	0.3(3)	
6800pF(682)		0.3(3)		0.3(3)		
10000pF(103)		0.3(3)		0.3(3)	0.3(3)	

The part numbering code is shown in $\ (\).$

Dimensions are shown in mm and Rated Voltage in Vdc.

Thin Type (Flow/Reflow)

■ Features

- 1. This series is suited to flow and reflow soldering. Capacitor terminations are made of metal highly resistant to migration.
- 2. Large capacitance values enable excellent bypass effects to be realized.
- 3. Its thin package makes this series ideally suited for the production of small electronic products and for mounting underneath ICs.

■ Applications

Thin equipment such as IC cards

Temperature Compensating Type

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM15X5C1H1R0CDB4	C0G (EIA)	50	1.0 ±0.25pF	1.00	0.50	0.25
GRM15X5C1H2R0CDB4	C0G (EIA)	50	2.0 ±0.25pF	1.00	0.50	0.25
GRM15X5C1H3R0CDB4	C0G (EIA)	50	3.0 ±0.25pF	1.00	0.50	0.25
GRM15X5C1H4R0CDB4	C0G (EIA)	50	4.0 ±0.25pF	1.00	0.50	0.25
GRM15X5C1H5R0CDB4	C0G (EIA)	50	5.0 ±0.25pF	1.00	0.50	0.25
GRM15X5C1H6R0DDB4	C0G (EIA)	50	6.0 ±0.5pF	1.00	0.50	0.25
GRM15X5C1H7R0DDB4	COG (EIA)	50	7.0 ±0.5pF	1.00	0.50	0.25
GRM15X5C1H8R0DDB4	COG (EIA)	50	8.0 ±0.5pF	1.00	0.50	0.25
GRM15X5C1H9R0DDB4	COG (EIA)	50	9.0 ±0.5pF	1.00	0.50	0.25
GRM15X5C1H100JDB4	COG (EIA)	50	10 ±5%	1.00	0.50	0.25
GRM15X5C1H120JDB4	COG (EIA)	50	12 ±5%	1.00	0.50	0.25
GRM15X5C1H150JDB4	COG (EIA)	50	15 ±5%	1.00	0.50	0.25
GRM15X5C1H180JDB4	COG (EIA)	50	18 ±5%	1.00	0.50	0.25
GRM15X5C1H220JDB4	COG (EIA)	50	22 ±5%	1.00	0.50	0.25
GRM15X5C1H270JDB4	COG (EIA)	50	27 ±5%	1.00	0.50	0.25
GRM15X5C1H330JDB4	C0G (EIA)	50	33 ±5%	1.00	0.50	0.25
GRM15X5C1H390JDB4	C0G (EIA)	50	39 ±5%	1.00	0.50	0.25
GRM15X5C1H470JDB4	C0G (EIA)	50	47 ±5%	1.00	0.50	0.25
GRM15X5C1H560JDB4	COG (EIA)	50	56 ±5%	1.00	0.50	0.25
GRM15X5C1H680JDB4	C0G (EIA)	50	68 ±5%	1.00	0.50	0.25
GRM15X5C1H820JDB4	C0G (EIA)	50	82 ±5%	1.00	0.50	0.25
GRM15X5C1H101JDB4	C0G (EIA)	50	100 ±5%	1.00	0.50	0.25
GRM15X5C1E121JDB4	COG (EIA)	25	120 ±5%	1.00	0.50	0.25
GRM15X5C1E151JDB4	C0G (EIA)	25	150 ±5%	1.00	0.50	0.25
GRM15X5C1E181JDB4	C0G (EIA)	25	180 ±5%	1.00	0.50	0.25
GRM15X5C1E221JDB4	C0G (EIA)	25	220 ±5%	1.00	0.50	0.25

High Dielectric Constant Type

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM15XR71H221KA86	X7R (EIA)	50	220 ±10%	1.00	0.50	0.25
GRM15XR71H331KA86	X7R (EIA)	50	330 ±10%	1.00	0.50	0.25
GRM15XR71H471KA86	X7R (EIA)	50	470 ±10%	1.00	0.50	0.25

Continued from the preceding page.

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM15XR71H681KA86	X7R (EIA)	50	680 ±10%	1.00	0.50	0.25
GRM15XR71H102KA86	X7R (EIA)	50	1000 ±10%	1.00	0.50	0.25
GRM15XR71H152KA86	X7R (EIA)	50	1500 ±10%	1.00	0.50	0.25
GRM15XR71E182KA86	X7R (EIA)	25	1800 ±10%	1.00	0.50	0.25
GRM15XR71E222KA86	X7R (EIA)	25	2200 ±10%	1.00	0.50	0.25
GRM15XR71C332KA86	X7R (EIA)	16	3300 ±10%	1.00	0.50	0.25
GRM15XR71C472KA86	X7R (EIA)	16	4700 ±10%	1.00	0.50	0.25
GRM15XR71C682KA86	X7R (EIA)	16	6800 ±10%	1.00	0.50	0.25

			Specif	ications				
No.	Ite	em	Temperature Compensating Type	High Dielectric Type	-	Test Method		
1	Operating Tempera	•	-55 to +125℃	R6: -55 to +85°C R7: -55 to +125°C E4: +10 to +85°C F5: -30 to +85°C				
2	2 Rated Voltage		See the previous page.		The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p,p} or V ^{O,p} , whichever is larger, should be maintained within the rated voltage range.			
3	Appearance		No defects or abnormalities		Visual inspection			
4	Dimensio	ns	Within the specified dimensions	3	Using calipers on mic	rometer		
5			No defects or abnormalities		No failure should be observed when *300% of the rated voltage (C0∆ to U2J and SL) or *250% of the rated voltage (X5R, X7R, Z5U and Y5V) is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA. *200% for 500V		d voltage (X5R, X7R, minations for 1 to 5	
6	Insulation Resistant		More than 10,000M Ω or 500 Ω	• F (Whichever is smaller)	The insulation resista voltage not exceeding max. and within 2 min	the rated voltage a		
7	Capacita	nce	Within the specified tolerance		The capacitance/Q/Darents frequency and voltage			
				[R6, R7] W.V.: 25Vmin.: 0.025max.	Item Char	Frequency	Voltage	
				W.V.: 25Vmin.: 0.025max. W.V.: 16/10V: 0.035max. W.V.: 6.3V 0.05max.(C<3.3μF)	ΔC to 7U, 1X (1000pF and below)	1±0.1MHz	0.5 to 5Vrms	
8		Dissipation Factor	30pFmin. : Q≧1000 30pFmax. : Q≧400+20C	0.1max.(C≧3.3μF) [E4] W.V. : 25Vmin. : 0.025max.	ΔC to 7U, 1X (more than 1000pF)	1±0.1kHz	1±0.2Vrms	
	(D.F.)		C : Nominal Capacitance (pF)	[F5] W.V. : 25Vmin.	R6, R7, F5 (10µF and below)	1±0.1kHz	1±0.2Vrms	
			: 0.05max.(: 0.09max.(W.V. : 16V/10V : 0		R6, R7, F5 (more than 10µF)	120±24Hz	0.5±0.1Vrms	
				W.V.: 6.3Vmax.: 0.15max.	E4	1±0.1kHz	0.5±0.05Vrms	
	Capacitance Change		Within the specified tolerance (Table A)	R6 : Within±15% (-55 to +85°C) R7 : Within±15% (-55 to +125°C) E4 : Within +22/-56% (+10 to +85°C) F5 : Within +22/-82% (-30 to +85°C)	5 (C0 Δ : +25°C to +12 +85°C) the capacitand for the temperature co	rature stage. pensating Type ficient is determined at in step 3 as a refe perature sequentiall 25°C: other temp. co be should be within t	I using the erence. by from step 1 through the specified tolerance	
	Capacitance	Temperature	Within the specified tolerance		Table A. The capacitance drift between the maximur 1, 3 and 5 by the capacitance.	n and minimum mea acitance value in ste	asured values in steps	
9	Temperature Characteristics	Coefficient	(Table A)		Step 1	Tempera 25±		
	0.0000				2	-55±3 (for ΔC to -30±3 (10±3 (for	7U/1X/R6/R7) for F5)	
					3	25±		
			Within +0.2% or +0.0555		4	125±3 (fo 85±3 (for c	,	
		Capacitance	Within ±0.2% or ±0.05pF (Whichever is larger.)		5	25±	-2	
		Drift	*Does not apply to 1X/25V		(2) High Dielectric Co The ranges of capacit 25°C value over the te should be within the s	ance change compa mperature ranges s		
							hown ir	

Continued on the following page. $\begin{tabular}{|c|c|c|c|} \hline \end{tabular}$

Continued from the preceding page.

			Specif	ications	
lo.	Ite	em	Temperature Compensating Type	High Dielectric Type	Test Method
				Solder the capacitor to the test jig (glass epoxy board) shown Fig. 1 using a eutectic solder. Then apply 10N* force in paralle with the test jig for 10±1sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free conducted such as heat shock. *2N (GR□03) 5N (GR□15, GRM18)	
10	Adhesive Strength of Termination		h No removal of the terminations or other defect should occur.		Solder resist Baked electrode or copper foil
					Type a b c
					GR□03 0.3 0.9 0.3 GR□15 0.4 1.5 0.5
					GRM18 1.0 3.0 1.2
					GRM21 1.2 4.0 1.65
					GRM31 2.2 5.0 2.0
					GRM32 2.2 5.0 2.9 GRM43 3.5 7.0 3.7
					GRM55 4.5 8.0 5.6
					(in mm)
		I			Fig. 1
		Appearance	No defects or abnormalities		
		Capacitance	Within the specified tolerance		
				[R6, R7] W.V.: 25Vmin.: 0.025max.	Solder the capacitor to the test jig (glass epoxy board) in the
11	Vibration Resistance	Q/D.F.	30pFmin. : Q≧1000 30pFmax. : Q≧400+20C C : Nominal Capacitance (pF)	1	same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours).
11		Q/D.F.	30pFmax. : Q≧400+20C	W.V.: 25Vmin.: 0.025max. W.V.: 16/10V: 0.035max. W.V.: 6.3V:	same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendic
111			30pFmax. : Q≥400+20C C : Nominal Capacitance (pF)	W.V.: 25Vmin.: 0.025max. W.V.: 16/10V: 0.035max. W.V.: 6.3V:	same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours). Solder the capacitor on the test jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free conducted with care so that the soldering is uniform and free conducted with care so that the soldering is uniform and free conducted with care so that the soldering is uniform and free conducted with care so that the soldering is uniform and free conducted with care so that the soldering is uniform and free conducted with care so that the soldering is uniform and free conducted with care so that the soldering is uniform and free conducted with care so that the soldering is uniform and free conducted with care so that the soldering is uniform and free conducted with care so that the soldering is uniform.

Continued from the preceding page.

			Specifi	ications				
No.	lt∈	em	Temperature Compensating Type	High Dielectric Type	Test Method			
13	Solderab Terminati		75% of the terminations are to be soldered evenly and continuously.		Immerse the capacitor in a solution of ethanol (JIS-K-8101) an rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5°C.			
			The measured and observed characteristics should satisfy the specifications in the following table.					
		Appearance	No marking defects					
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	R6, R7 : Within ±7.5% E4, F5 : Within ±20%	Preheat the capacitor at 120 to 150°C for 1 minute.			
14	Resistance to Soldering Heat	Q/D.F.	30pFmin. : Q≧1000 30pFmax. : Q≧400+20C C : Nominal Capacitance (pF)	[R6, R7] W.V.: 25Vmin.: 0.025max. W.V.: 16/10V: 0.035max. W.V.: 6.3V:	Immerse the capacitor in a eutectic solder solution at 270±5′ for 10±0.5 seconds. Let sit at room temperature for 24±2 ho (temperature compensating type) or 48±4 hours (high dielect constant type), then measure. •Initial measurement for high dielectric constant type Perform a heat treatment at 150 ± 18°C for one hour and ther let sit for 48±4 hours at room temperature. Perform the initial measurement. *Preheating for GRM32/43/55 Step Temperature Time 1 100°C to 120°C 1 min. 2 170°C to 200°C 1 min.			
		I.R.	More than 10,000MΩ or 500Ω or	W.V.: 6.3Vmax.: 0.15max.				
		Dielectric Strength	No failure	(Willianever is smaller)				
			The measured and observed ch specifications in the following ta					
		Appearance						
		Capacitance	specifications in the following to No marking defects Within ±2.5% or ±0.25pF	R6, R7 : Within ±7.5%	Fix the capacitor to the supporting jig in the same manner a			
			specifications in the following to No marking defects	R6, R7 : Within ±7.5% E4, F5 : Within ±20% [R6, R7] W.V. : 25Vmin. : 0.025max. W.V. : 16/10V : 0.035max. W.V. : 6.3V	Fix the capacitor to the supporting jig in the same manner at under the same conditions as (10). Perform the five cycles according to the four heat treatments listed in the following table. Let sit for 24±2 hours (temperature compensating typor 48±4 hour (high dielectric constant type) at room temperature, then measure.			
	Temperature	Capacitance	specifications in the following to No marking defects Within ±2.5% or ±0.25pF	R6, R7 : Within ±7.5% E4, F5 : Within ±20% [R6, R7] W.V. : 25Vmin. : 0.025max. W.V. : 16/10V : 0.035max. W.V. : 6.3V 0.05max. (C<3.3µF)	under the same conditions as (10). Perform the five cycles according to the four heat treatments listed in the following table. Let sit for 24±2 hours (temperature compensating typor 48±4 hour (high dielectric constant type) at room temperature, then measure. Step 1 2 3 4			
15	Temperature Cycle	Capacitance	specifications in the following ta No marking defects Within ±2.5% or ±0.25pF (Whichever is larger) 30pFmin.: Q≥1000 30pFmax.: Q≥400+20C	R6, R7 : Within ±7.5% E4, F5 : Within ±20% [R6, R7] W.V. : 25Vmin. : 0.025max. W.V. : 16/10V : 0.035max. W.V. : 6.3V	under the same conditions as (10). Perform the five cycles according to the four heat treatments listed in the following table. Let sit for 24±2 hours (temperature compensating typor 48±4 hour (high dielectric constant type) at room temperature, then measure.			
15		Capacitance Change	specifications in the following ta No marking defects Within ±2.5% or ±0.25pF (Whichever is larger)	R6, R7 : Within ±7.5% E4, F5 : Within ±20% [R6, R7] W.V. : 25Vmin. : 0.025max. W.V. : 16/10V : 0.035max. W.V. : 6.3V 0.05max. (C<3.3µF) 0.1max. (C≥3.3µF) [E4] W.V. : 25Vmin. : 0.025max. [F5]	under the same conditions as (10). Perform the five cycles according to the four heat treatments listed in the following table. Let sit for 24±2 hours (temperature compensating typor 48±4 hour (high dielectric constant type) at room temperature, then measure. Step 1 2 3 4 Min. Temp. (°C) Operating Room Tempor Departing Tempor Department of the following the following temperature of the fo			
15		Capacitance Change	specifications in the following ta No marking defects Within ±2.5% or ±0.25pF (Whichever is larger) 30pFmin.: Q≥1000 30pFmax.: Q≥400+20C	R6, R7 : Within ±7.5% E4, F5 : Within ±20% [R6, R7] W.V. : 25Vmin. : 0.025max. W.V. : 16/10V : 0.035max. W.V. : 6.3V 0.05max. (C<3.3µF) 0.1max. (C≥3.3µF) [E4] W.V. : 25Vmin. : 0.025max.	under the same conditions as (10). Perform the five cycles according to the four heat treatments listed in the following table. Let sit for 24±2 hours (temperature compensating typor 48±4 hour (high dielectric constant type) at room temperature, then measure. Step 1 2 3 4 Min. Temp. (°C) Min. Operating Temp.+0/-3 Room Temp.+3/-0 Room Temp.+3/-0			
15		Capacitance Change	specifications in the following ta No marking defects Within ±2.5% or ±0.25pF (Whichever is larger) 30pFmin.: Q≥1000 30pFmax.: Q≥400+20C	R6, R7 : Within ±7.5% E4, F5 : Within ±20% [R6, R7] W.V.: 25Vmin.: 0.025max. W.V.: 6.3V	under the same conditions as (10). Perform the five cycles according to the four heat treatments listed in the following table. Let sit for 24±2 hours (temperature compensating typor 48±4 hour (high dielectric constant type) at room temperature, then measure. Step			

Continued on the following page. $\begin{tabular}{|c|c|c|c|} \hline \end{tabular}$

Continued from the preceding page.

	Specifications				
No.	Ite	em	Temperature Compensating Type	High Dielectric Type	Test Method
			The measured and observed chapecifications in the following ta	•	
		Appearance	No marking defects		
		Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)	R6, R7 : Within ±12.5% E4, F5 : Within ±30%	
16	Humidity Steady State	Q/D.F.	30pF and over : Q≥350 10pF and over 30pF and below : Q≥275+5C/2 10pF and below : Q≥200+10C C : Nominal Capacitance (pF)	[R6, R7] W.V.: 25Vmin.: 0.05max. W.V.: 16/10V: 0.05max. W.V.: 6.3V 0.075max. (C<3.3μF) 0.125max. (C≥3.3μF) [E4] W.V.: 25Vmin.: 0.05max. [F5] W.V.: 25Vmin. : 0.075max. (C<0.10μF) : 0.125max. (C≥0.10μF) W.V.: 16V/10V: 0.15max. W.V.: 6.3Vmax.: 0.2max.	Let the capacitor sit at 40±2°C and 90 to 95% humidity for 500±12 hours. Remove and let sit for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant type) at room temperature, then measure.
		I.R.	More than 1,000MΩ or 50Ω • F (Whichever is smaller)		
		Dielectric Strength	No failure		
	The measured and observed characteristics should satisfy the specifications in the following table.				
		Appearance	No marking defects		
		Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	R6, R7 : Within ±12.5% E4 : Within ±30% F5 : Within ±30% [W.V. : 10Vmax.] F5 : Within +30/-40%	
17	Humidity Load	Q/D.F.	30pF and over : Q≥200 30pF and below : Q≥100+10C/3 C : Nominal Capacitance (pF)	[R6, R7] W.V.: 25Vmin.: 0.05max. W.V.: 16/10V: 0.05max. W.V.: 6.3V 0.075max. (C<3.3μF) 0.125max. (C≧3.3μF) [E4] W.V.: 25Vmin.: 0.05max. [F5] W.V.: 25Vmin. : 0.075max. (C<0.10μF) : 0.125max. (C≥0.10μF) W.V.: 16V/10V: 0.15max. W.V.: 6.3Vmax.: 0.2max.	Apply the rated voltage at 40±2°C and 90 to 95% humidity for 500±12 hours. Remove and let sit for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant type) at room temperature, then measure. The charge/discharge current is less than 50mA. •Initial measurement for F5/10V max. Apply the rated DC voltage for 1 hour at 40±2°C. Remove and let sit for 48±4 hours at room temperature. Perform initial measurement.
		I.R.	More than 500MΩ or 25Ω • F (\	Vhichever is smaller)	
		Dielectric Strength	No failure		

Continued from the preceding page.

			Specifi	cations	
No.	. Item		Temperature Compensating Type	High Dielectric Type	Test Method
			The measured and observed ch specifications in the following ta	,	
		Appearance	No marking defects		
		Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	R6, R7 : Within ±12.5% E4 : Within ±30% F5 : Within ±30% (Cap<1.0µF) F5 : Within +30/-40% (Cap≥1.0µF)	Apply 200% of the rated voltage for 1000±12 hours at the
18	High Temperature Load	Q/D.F.	30pF and over : Q≥350 10pF and over 30pF and below : Q≥275+5C/2 10pF and below : Q≥200+10C C : Nominal Capacitance (pF)	[R6, R7] W.V.: 25Vmin.: 0.05max. W.V.: 16/10V: 0.05max. W.V.: 6.3V 0.075max. (C<3.3μF) 0.125max. (C≥3.3μF) [E4] W.V.: 25Vmin.: 0.05max [F5] W.V.: 25Vmin. : 0.075max. (C<0.10μF) : 0.125max. (C≥0.10μF) W.V.: 16V/10V: 0.15max. W.V.: 6.3Vmax.: 0.2max.	maximum operating temperature ±3°C. Let sit for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant type) at room temperature, then measure. The charge/discharge current is less than 50mA. •Initial measurement for high dielectric constant type. Apply 200% of the rated DC voltage for one hour at the maximum operating temperature ±3°C. Remove and let sit for 48±4 hours at room temperature. Perform initial measurement. *150% for 500V and C≥10µF
		I.R.	More than 1,000MΩ or 50Ω•F (Whichever is smaller)	
		Dielectric Strength	No failure		

Table A

		Capacitance Change from 25℃ (%)							
Char. Code	Nominal Values (ppm/°C)*	- 55		-30		-10			
		Max.	Min.	Max.	Min.	Max.	Min.		
5C	0 ± 30	0.58	-0.24	0.40	-0.17	0.25	-0.11		
6C	0 ± 60	0.87	-0.48	0.59	-0.33	0.38	-0.21		
6P	-150 ± 60	2.33	0.72	1.61	0.50	1.02	0.32		
6R	-220 ± 60	3.02	1.28	2.08	0.88	1.32	0.56		
6S	-330 ± 60	4.09	2.16	2.81	1.49	1.79	0.95		
6T	-470 ± 60	5.46	3.28	3.75	2.26	2.39	1.44		
7U	-750 ±120	8.78	5.04	6.04	3.47	3.84	2.21		
1X	+350 to -1000	_	_	_	_	_	_		

^{*}Nominal values denote the temperature coefficient within a range of 25°C to 125°C (for Δ C)/85°C (for other TC).

Thin Layer Large-capacitance Type

■ Features

- 1. Smaller size and higher capacitance value.
- 2. High reliability and no polarity.
- Excellent pulse responsibility and noise reduction due to the low impedance at high frequency.

■ Applications

General electronic equipment

	Dimensions (mm)							
Part Number	L	W	T	e min.	g min.			
GRM033	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2			
GRM155	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.3	0.4			
GRM185	1.6 ±0.1	0.8 ±0.1	0.5 +0/-0.2	0.2 to 0.5	0.5			
GRM188	1.6 ±0.1	0.8 ±0.1	0.8 ±0.1	0.2 to 0.5	0.5			
GRM216			0.6 ±0.1					
GRM219	2.0 ± 0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7			
GRM21B			1.25 ±0.1					
GRM316	3.2 ±0.15	1 6 ±0 15	0.6 ±0.1	0.3 to 0.8	1.5			
GRM319	3.2 ±0.13	1.0 ±0.13	0.85 ±0.1	0.3 10 0.0	1.5			
GRM31M	3.2 ±0.2	1.6 +0.2	1.6 ±0.2	0.3 to 0.8	1.5			
GRM31C	3.2 ±0.2	1.0 ±0.2	1.15 ±0.1	0.3 10 0.6	1.5			
GRM32D	3.2 ±0.3	2.5 +0.2	2.0 ±0.2	0.3	1.0			
GRM32E	3.2 ±0.3	2.5 ±0.2	2.5 ±0.2	0.3	1.0			
GRM43D			2.0 ±0.2					
GRM43E	4.5 ± 0.4	3.2 ±0.3	2.5 ±0.2	0.3	2.0			
GRM43S			2.8 ±0.2					
GRM55F	5.7 ±0.4	5.0 ±0.4	3.2 ±0.2	0.3	2.0			

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM188R61C105KE93	X5R (EIA)	16	1.0μF ±10%	1.60	0.80	0.80
GRM219R61C225KA88	X5R (EIA)	16	2.2μF ±10%	2.00	1.25	0.85
GRM319R61C475KA88	X5R (EIA)	16	4.7μF ±10%	3.20	1.60	0.85
GRM32ER61C226KE20	X5R (EIA)	16	22μF ±10%	3.20	2.50	2.50
GRM185R61A105KE36	X5R (EIA)	10	1.0μF ±10%	1.60	0.80	0.50
GRM155R61A154KE19	X5R (EIA)	10	1.5μF ±10%	1.00	0.50	0.50
GRM155R61A224KE19	X5R (EIA)	10	2.2μF ±10%	1.00	0.50	0.50
GRM188R61A225KE34	X5R (EIA)	10	2.2μF ±10%	1.60	0.80	0.80
GRM188R61A225ME34	X5R (EIA)	10	2.2μF ±10%	1.60	0.80	0.80
GRM216R61A225KE24	X5R (EIA)	10	2.2μF ±10%	2.00	1.25	0.60
GRM219R61A225KA01	X5R (EIA)	10	2.2μF ±10%	2.00	1.25	0.85
GRM219R61A335KE19	X5R (EIA)	10	3.3μF ±10%	2.00	1.25	0.85
GRM316R61A335KE19	X5R (EIA)	10	3.3μF ±10%	3.20	1.60	0.60
GRM219R61A475KE19	X5R (EIA)	10	4.7μF ±10%	2.00	1.25	0.85
GRM219R61A475KE34	X5R (EIA)	10	4.7μF ±10%	2.00	1.25	0.85
GRM316R61A475KE19	X5R (EIA)	10	4.7μF ±10%	3.20	1.60	0.60
GRM319R61A475KA01	X5R (EIA)	10	4.7μF ±10%	3.20	1.60	0.85
GRM31MR61A106KE19	X5R (EIA)	10	10μF ±10%	3.20	1.60	1.15
GRM033R60J153KE01	X5R (EIA)	6.3	15000pF ±10%	0.6	0.3	0.3
GRM033R60J223KE01	X5R (EIA)	6.3	22000pF ±10%	0.6	0.3	0.3
GRM033R60J333KE01	X5R (EIA)	6.3	33000pF ±10%	0.6	0.3	0.3
GRM033R60J393KE19	X5R (EIA)	6.3	39000pF ±10%	0.6	0.3	0.3
GRM033R60J473KE19	X5R (EIA)	6.3	47000pF ±10%	0.6	0.3	0.3
GRM033R60J104KE19	X5R (EIA)	6.3	0.10μF ±10%	0.6	0.3	0.3
GRM155R60J154KE01	X5R (EIA)	6.3	0.15μF ±10%	1.00	0.50	0.50
GRM155R60J224KE01	X5R (EIA)	6.3	0.22μF ±10%	1.00	0.50	0.50
GRM155R60J334KE01	X5R (EIA)	6.3	0.33μF ±10%	1.00	0.50	0.50
GRM155R60J474KE19	X5R (EIA)	6.3	0.47μF ±10%	1.00	0.50	0.50
GRM155R60J105KE19	X5R (EIA)	6.3	1.0μF ±10%	1.00	0.50	0.50
GRM185R60J105KE21	X5R (EIA)	6.3	1.0μF ±10%	1.60	0.80	0.50
GRM185R60J105KE26	X5R (EIA)	6.3	1.0μF ±10%	1.60	0.80	0.50
GRM185R60J225KE26	X5R (EIA)	6.3	2.2μF ±10%	1.60	0.80	0.50
GRM188R60J225KE01	X5R (EIA)	6.3	2.2μF ±10%	1.60	0.80	0.80
GRM188R60J225KE19	X5R (EIA)	6.3	2.2μF ±10%	1.60	0.80	0.80
GRM188R60J475KE19	X5R (EIA)	6.3	4.7μF ±10%	1.60	0.80	0.80
GRM219R60J475KE01	X5R (EIA)	6.3	4.7μF ±10%	2.00	1.25	0.85
GRM219R60J106KE19	X5R (EIA)	6.3	10μF ±10%	2.00	1.25	0.85
GRM219R60J106ME19	X5R (EIA)	6.3	10μF ±20%	2.00	1.25	0.85

Continued from the preceding page.

	3. 3					
Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM21BR60J106KE01	X5R (EIA)	6.3	10μF ±10%	2.00	1.25	1.25
GRM21BR60J106KE19	X5R (EIA)	6.3	10μF ±10%	2.00	1.25	1.25
GRM21BR60J106ME01	X5R (EIA)	6.3	10μF ±20%	2.00	1.25	1.25
GRM21BR60J106ME19	X5R (EIA)	6.3	10μF +10/-20%	2.00	1.25	1.25
GRM21BR60J226ME39	X5R (EIA)	6.3	22μF ±20%	2.00	1.25	1.25
GRM31CR60J226ME19	X5R (EIA)	6.3	22μF ±20%	3.20	1.60	1.60
GRM32DR60J226KA01	X5R (EIA)	6.3	22μF ±10%	3.20	2.50	2.00
GRM32DR60J336ME19	X5R (EIA)	6.3	33μF ±10%	3.20	2.50	2.00
GRM32ER60J476ME20	X5R (EIA)	6.3	47μF ±20%	3.20	2.50	2.50
GRM32ER60J107ME20	X5R (EIA)	6.3	100μF ±20%	3.20	2.50	2.50
GRM43SR60J107ME20	X5R (EIA)	6.3	100μF ±20%	4.50	3.20	2.80
GRM32ER71A226KE20	X7R (EIA)	10	22μF ±10%	3.20	2.50	2.50
GRM32ER71A226ME20	X7R (EIA)	10	22μF ±20%	3.20	2.50	2.50
GRM188F51A225ZE01	Y5V (EIA)	10	2.2μF +80/-20%	1.60	0.80	0.80
GRM188F50J225ZE01	Y5V (EIA)	6.3	2.2μF +80/-20%	1.60	0.80	0.80
GRM21BF50J106ZE01	Y5V (EIA)	6.3	10μF +80/-20%	2.00	1.25	1.25

No.	Item	Specifications	Test Method			
1	Operating Temperature Range	R6: -55℃ to +85℃ R7: -55℃ to +125℃ F5: -30℃ to +85℃ C8: -55℃ to +105℃				
2	Rated Voltage	See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p-p} or V ^{o-p} , whichever is larger, should be maintained within the rated voltage range.			
3	Appearance	No defects or abnormalities	Visual inspection			
4	Dimensions	Within the specified dimension	Using calipers			
5	Dielectric Strength	No defects or abnormalities	No failure should be observed when 250% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.			
6	Insulation Resistance	50Ω • F min.	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 25°C and 75%RH max. and within 1 minute of charging.			
7	Capacitance	Within the specified tolerance	The capacitance/D.F. should be measured at 25℃ at the			
8	Dissipation Factor (D.F.)	R6 / R7 / C8 : 0.1 max. F5 : 0.2 max.	Capacitance			
9	Capacitance Temperature Characteristics	Char. Temp. Range Reference Temp. Cap. Change R6 −55 to +85°C 25°C Within±15% R7 −55 to +125°C 25°C Within±15% F5 −30 to +85°C 25°C Within±22-82% C8 −55 to +105°C 25°C Within±22%	The capacitance change should be measured after 5 min. at each specified temperature stage. The ranges of capacitance change compared with the 25°C value over the temperature ranges shown in the table should be within the specified ranges. Measuring Voltage: GRM43 R6 0J/1A 336/476: 1.0+/-0.2Vrms			
10	Adhesive Strength of Termination	No removal of the terminations or other defects should occur.	Solder the capacitor to the test jig (glass epoxy board) shown in Fig.1 using a eutectic solder. Then apply *210N force in parallel with the test jig for 10±1 sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. **25N (GR□15, GRM18) / 2N (GR□03) **25N (GR□15, GRM18) / 2N (GR□03) **35N (GR□15, GRM18) / 2N (GR□03)			

Continued from the preceding page.

No.	ltem	Specifications	Test Method				
	Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board) in the				
11 Vibratio	Capacitance D.F.	Within the specified tolerance R6 / R7 / C8 : 0.1 max. F5 : 0.2 max.	same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours).				
12 Deflection		No cracking or marking defects should occur. 20 50 Pressurizing sped: 1.0mm/sec. Pressurize R230 Capacitance meter 45 45 45	Fig.2 using a shown in Fig.3 iron or using t	eutectic solder. 3. The soldering he reflow methor soldering is	Then ap g should od and s uniform a	ass epoxy boar oply a force in the bedone either hould be conduind free of defe	ne direction with an acted with cts such a t:1.6mm
		1. 11. 11				(GR□03, GR□15 :	t : 0.8mm)
		Fig.3	Type CD 02	0.2		b	C
		1.9.0	<u>GR□03</u> GR□15	0.3		1.5	0.3
			GRM18	1.0		3.0	1.2
			GRM21	1.2		4.0	1.65
			GRM31	2.2		5.0	2.0
			GRM32	2.2		5.0	2.9
			GRM43 GRM55	3.5 4.5		7.0 8.0	3.7 5.6
			GKWI33	1.0	Fig.2	0.0	(in mm)
Soldera Termin	bility of ation	75% of the terminations is to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) an rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5°C.				
	Appearance	No marking defects	Probat the c	apacitor at 120	to 150°C	for 1 minuto	
	Capacitance	R6 / R7 / C8 : Within ±7.5% F5 : Within ±20%	Preheat the capacitor at 120 to 150℃ for 1 minute. Immerse the capacitor in a eutectic solder solution at 270				
Resistand to	e Change D.F.	R6 / R7 / C8 : 0.1 max. F5 : 0.2 max.	hours, then m		ii 100111 (6	emperature for	+0⊥4
Soldering Heat	I.R.	50Ω • F min.	Initial measurement Perform a heat treatment at 150 ⁺ ₁8℃ for one hour and then				
	Dielectric Strength	No failure	let sit for 48±4 hours at room temperature. Perform the initial measurement.				
	Appearance	No marking defects	Fix the capaci	tor to the supp	orting jig	in the same ma	anner and
	Capacitance Change	R6 / R7 / C8 : Within ±7.5% F5 : Within ±20%	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10). Perform the five cycles according to the four heat treatments listed in the following				
	D.F.	R6 / R7 / C8 : 0.1 max. F5 : 0.2 max.	table. Let sit for 48±4 hours at room temperature, then measure.				
Temperatur	I.R.	50Ω • F min.	Step	1	2	3	4
15 Sudden Change			Temp.(℃)	Min. Operating Temp.+0/-3	Room Temp.	Max. Operating Temp.+3/-0	Room Temp.
	Dist.		Time(min.)	30±3	2 to 3	30±3	2 to 3
	Dielectric Strength	No failure	let sit for 48±		m tempei	℃ for one hour rature.	and then

Continued on the following page. $\boxed{\ \ \ }$

Continued from the preceding page

No.	. Item		Specifications	Test Method	
		Appearance Capacitance	No marking defects R6 / R7 / C8 : Within ±12.5%	Apply the rated voltage at 40±2℃ and 90 to 95% humidity for 500±12 hours. The charge/discharge current is less than 50mA.	
	High	Change	F5 : Within ±30%	Initial measurement	
16	Temperature High Humidity (Steady)	D.F.	R6 / R7 / C8 : 0.2 max. F5 : 0.4 max.	Perform a heat treatment at 150 [±] ₁8°C for one hour and then let sit for 48±4 hours at room temperature.	
		I.R.	12.5Ω • F min.	Perform the initial measurement. •Measurement after test Perform a heat treatment at 150±₁8℃ for one hour and then let sit for 48±4 hours at room temperature, then measure	
		Appearance	No marking defects	Apply 150% of the rated voltage for 1000±12 hours at the	
		Capacitance Change	R6 / R7 / C8 : Within ±12.5% F5 : Within ±30%	maximum operating temperature ±3°C. The charge/discharge current is less than 50mA.	
17	Durability	D.F.	R6 / R7 / C8 : 0.2 max. F5 : 0.4 max.	Initial measurement Perform a heat treatment at 150 ⁺ ₁8°C for one hour and then	
17	Zarabinty			let sit for 48±4 hours at room temperature. Perform the initial measurement.	
		I.R.	25Ω • F min.	•Measurement after test Perform a heat treatment at 150 [±] ₁8°C for one hour and then let sit for 48±4 hours at room temperature, then measure.	

Low-dissipation Type

■ Features

- 1. Mobile telecommunication and RF module, mainly
- 2. Quality improvement of telephone calls, Low power consumption, yield ratio improvement

■ Applications

VCO, PA, Mobile Telecommunications

Part Number		Dir	nensions (ı	mm)	
Part Number	L	W	T	е	g min.
GJM15	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.3	0.4
GJM03	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GJM1555C1HR50CB01	COG (EIA)	50	0.50 ±0.25pF	1.00	0.50	0.50
GJM1555C1HR75CB01	COG (EIA)	50	0.75 ±0.25pF	1.00	0.50	0.50
GJM1555C1H1R0CB01	COG (EIA)	50	1.0 ±0.25pF	1.00	0.50	0.50
GJM1555C1H1R1CB01	COG (EIA)	50	1.1 ±0.25pF	1.00	0.50	0.50
GJM1555C1H1R2CB01	COG (EIA)	50	1.2 ±0.25pF	1.00	0.50	0.50
GJM1555C1H1R3CB01	COG (EIA)	50	1.3 ±0.25pF	1.00	0.50	0.50
GJM1555C1H1R5CB01	COG (EIA)	50	1.5 ±0.25pF	1.00	0.50	0.50
GJM1555C1H1R6CB01	COG (EIA)	50	1.6 ±0.25pF	1.00	0.50	0.50
GJM1555C1H1R8CB01	COG (EIA)	50	1.8 ±0.25pF	1.00	0.50	0.50
GJM1555C1H2R0CB01	COG (EIA)	50	2.0 ±0.25pF	1.00	0.50	0.50
GJM1555C1H2R2CB01	COG (EIA)	50	2.2 ±0.25pF	1.00	0.50	0.50
GJM1555C1H2R4CB01	COG (EIA)	50	2.4 ±0.25pF	1.00	0.50	0.50
GJM1555C1H2R7CB01	COG (EIA)	50	2.7 ±0.25pF	1.00	0.50	0.50
GJM1555C1H3R0CB01	COG (EIA)	50	3.0 ±0.25pF	1.00	0.50	0.50
GJM1555C1H3R3CB01	COG (EIA)	50	3.3 ±0.25pF	1.00	0.50	0.50
GJM1555C1H3R6CB01	COG (EIA)	50	3.6 ±0.25pF	1.00	0.50	0.50
GJM1555C1H3R9CB01	COG (EIA)	50	3.9 ±0.25pF	1.00	0.50	0.50
GJM1555C1H4R0CB01	COG (EIA)	50	4.0 ±0.25pF	1.00	0.50	0.50
GJM1555C1H4R3CB01	C0G (EIA)	50	4.3 ±0.25pF	1.00	0.50	0.50
GJM1555C1H4R7CB01	C0G (EIA)	50	4.7 ±0.25pF	1.00	0.50	0.50
GJM1555C1H5R0CB01	C0G (EIA)	50	5.0 ±0.25pF	1.00	0.50	0.50
GJM1555C1H5R1CB01	C0G (EIA)	50	5.1 ±0.25pF	1.00	0.50	0.50
GJM1555C1H5R6CB01	COG (EIA)	50	5.6 ±0.25pF	1.00	0.50	0.50
GJM1555C1H6R0CB01	COG (EIA)	50	6.0 ±0.25pF	1.00	0.50	0.50
GJM1555C1H6R0DB01	COG (EIA)	50	6.0 ±0.5pF	1.00	0.50	0.50
GJM1555C1H6R2CB01	COG (EIA)	50	6.2 ±0.25pF	1.00	0.50	0.50
GJM1555C1H6R8CB01	COG (EIA)	50	6.8 ±0.25pF	1.00	0.50	0.50
GJM1555C1H7R0CB01	COG (EIA)	50	7.0 ±0.25pF	1.00	0.50	0.50
GJM1555C1H7R0DB01	COG (EIA)	50	7.0 ±0.5pF	1.00	0.50	0.50
GJM1555C1H7R5CB01	COG (EIA)	50	7.5 ±0.25pF	1.00	0.50	0.50
GJM1555C1H8R0CB01	COG (EIA)	50	8.0 ±0.25pF	1.00	0.50	0.50
GJM1555C1H8R0DB01	C0G (EIA)	50	8.0 ±0.5pF	1.00	0.50	0.50
GJM1555C1H8R2CB01	COG (EIA)	50	8.2 ±0.25pF	1.00	0.50	0.50
GJM1555C1H9R0CB01	COG (EIA)	50	9.0 ±0.25pF	1.00	0.50	0.50
GJM1555C1H9R0DB01	COG (EIA)	50	9.0 ±0.5pF	1.00	0.50	0.50
GJM1555C1H9R1CB01	COG (EIA)	50	9.1 ±0.25pF	1.00	0.50	0.50
GJM1555C1H100JB01	COG (EIA)	50	10 ±5%	1.00	0.50	0.50
GJM1555C1H100RB01	C0G (EIA)	50	10 ±2.5%	1.00	0.50	0.50

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GJM1555C1H120JB01	C0G (EIA)	50	12 ±5%	1.00	0.50	0.50
GJM1555C1H150JB01	C0G (EIA)	50	15 ±5%	1.00	0.50	0.50
GJM1555C1H180JB01	COG (EIA)	50	18 ±5%	1.00	0.50	0.50

			Specifications						
No.	Ite	em	Temperature Compensating Type	Test Method					
1	Operating Temperatu	ng −55 to +125°c							
2	2 Rated Voltage		See the previous pages	may be applied contin When AC voltage is so	efined as the maximum voltage which nously to the capacitor. uperimposed on DC voltage, V ^{P-P} or V ^{O-P} , nould be maintained within the rated				
3	Appearar	nce	No defects or abnormalities	Visual inspection					
4	Dimensio	ons	Within the specified dimensions	Using calipers					
5	Dielectric	Strength	No defects or abnormalities	is applied between the	bserved when 300% of the rated voltage e terminations for 1 to 5 seconds, ischarge current is less than 50mA.				
6	Insulation (I.R.)	Resistance	10,000M Ω min. or 500 Ω • F min. (Whichever is smaller)		nce should be measured with a DC the rated voltage at 25°C and 75%RH utes of charging.				
7	Capacita	nce	Within the specified tolerance	•	ould be measured at 25℃ at the				
				frequency and voltage					
8	Q		30pF max. : Q≥400+20C C : Nominal Capacitance (pF)	Frequency	1±0.1MHz				
			, , , , , , , , , , , , , , , , , , ,	Voltage	0.5 to 5Vr.m.s.				
		Capacitance Change	Within the specified tolerance (Table A)	each specified temper	8				
		Temperature Coefficient	Within the specified tolerance (Table A)	Temperature Compensating Type The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5, (△C: +25℃ to+125℃: other temp. coeffs.: +25℃ to 85℃) the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A. The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in steps 1, 3 and 5 by the capacitance value in step 3. Step Temperature (℃) 1 25±2					
9	Capacitance Temperature Characteristics	Capacitance Drift	Within $\pm 0.2\%$ or ± 0.05 pF (Whichever is larger.)						
								3	
				4	125±3				
				5	25±2				
10	Adhesive Strength of Termination		No removal of the terminations or other defect should occur.	Fig. 1 using a eutectic with the test jig for 10± with an iron or using the	the test jig (glass epoxy board) shown in solder. Then apply a 5N* force in parallel clase. The soldering should be done either e reflow method and should be conducted oldering is uniform and free of defects such *2N (GJM03) C Solder resist Baked electrode or copper foil a b c 0.3 0.9 0.3 0.4 1.5 0.5 (in mm) Fig. 1				

J	Continued	from	the	preceding	page.
ЫI	00			procouning	page.

S Continued from the preceding page.							
			Specifications				
No.			Temperature Compensating Type	Test Method			
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board) in the			
11	Vibration Resistance Q 30pF max. : Q≥400+20C C : Nominal Capacitance (pF)		30pF max. : Q≥400+20C	same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours).			
	12 Deflection		No cracking or marking defects should occur	Solder the capacitor to the test jig (glass epoxy boards) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the			
12			Type a b c GJM03 0.3 0.9 0.3 GJM15 0.4 1.5 0.5 Fig. 2	reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 20 50 Pressurizing speed: 1.0mm/sec. Pressurize R230 Flexure: ≤1 Capacitance meter 45 45 (in mm)			
13	Solderability of Termination 75% of the terminations are to be soldered evenly and continuously.		continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5°C.			
			The measured and observed characteristics should satisfy the specifications in the following table.				
		Appearance	No marking defects				
	Resistance to Soldering	Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in a eutectic solder solution at 270±5°C			
	Heat	Q	30pF and below : Q≥400+20C C : Nominal Capacitance (pF)	for 10±0.5 seconds. Let sit at room temperature for 24±2 hours.			
		I.R.	More than 10,000MΩ or 500Ω • F (Whichever is smaller)				
		Dielectric Strength	No failure				
			The measured and observed characteristics should satisfy the specifications in the following table.				
		Appearance	No marking defects	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10). Perform the five cycles			
	Tomporatura	Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	according to the four heat treatments listed in the following table. Let sit for 24±2 hours at room temperature, then measure.			
15	Temperature Cycle	Q	30pF and below : Q≧400+20C C : Nominal Capacitance (pF)	Step 1 2 3 4 Temp. (°C) Min. Operating Room Max. Operating Room Temp. +3			
		I.R.	More than 10,000MΩ or 500Ω • F (Whichever is smaller)	Temp3 Temp. Temp. Temp.			
	_	Dielectric Strength	No failure	Time (min.) 30±3 2 to 3 30±3 2 to 3			
		, j	The measured and observed characteristics should satisfy the specifications in the following table.				
		Appearance	No marking defects	1			
16	Humidity, Steady	Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)	Let the capacitor sit at 40±2°C and 90 to 95% humidity for 500±12 hours.			
	State	Q	10pF and over, 30pF and below : Q≥275+ ½ C 10pF and below : Q≥200+10C C : Nominal Capacitance (pF)	Remove and let sit for 24±2 hours (temperature compensating type) at room temperature, then measure.			
		I.R.	More than 10,000MΩ or 500Ω • F (Whichever is smaller)	1			
_			1				

Continued on the following page.

Continued from the preceding page.

			Specifications		
No.	o. Item		Temperature Compensating Type	Test Method	
			The measured and observed characteristics should satisfy the specifications in the following table.		
		Appearance	No marking defects		
17	Humidity	Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	Apply the rated voltage at 40±2℃ and 90 to 95% humidity for 500±12 hours.	
17	Load	Q	30pF and below : Q≥100+ ½ C C : Nominal Capacitance (pF)	Remove and let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.	
		I.R.	More than $500 \mathrm{M}\Omega$ or 25Ω • F (Whichever is smaller)		
		Dielectric Strength	No failure		
		The measured and observed characteristics should satisfy the specifications in the following table.			
		Appearance	No marking defects		
	High	Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	Apply 200% of the rated voltage for 1000±12 hours at the maximum operating temperature ±3°C. Let sit for 24±2 hours	
18	Temperature Load	Q	10pF and over, 30pF and below : Q≧275+ ½ C 10pF and below : Q≧200+10C C : Nominal Capacitance (pF)	(temperature compensating type) at room temperature, then measure. The charge/discharge current is less than 50mA.	
		I.R.	More than 1,000M Ω or 50 Ω • F (Whichever is smaller)		
		Dielectric Strength	No failure		
19	ESR		0.5pF≦C≦1pF : 350mΩ • pF below 1pF <c≦5pf 300mω="" :="" below<br="">5pF<c≦10pf 250mω="" :="" below<="" td=""><td>The ESR should be measured at room Temperature. and frequency 1±0.2GHz with the equivalent of BOONTON Model 34A.</td></c≦10pf></c≦5pf>	The ESR should be measured at room Temperature. and frequency 1±0.2GHz with the equivalent of BOONTON Model 34A.	
			10pF <c≦20pf 400mω="" :="" below<="" td=""><td>The ESR should be measured at room Temperature. and frequency 500±50MHz with the equivalent of HP8753B.</td></c≦20pf>	The ESR should be measured at room Temperature. and frequency 500±50MHz with the equivalent of HP8753B.	

Table A

	T 0 "		Cap	oacitance Change	e from 25℃ Value	(%)			
Char. Code	Temp. Coeff. (ppm/℃) Note 1	-5	5℃	-3	0℃	-1			
	(ppin/c) Note i	Max.	Min.	Max.	Min.	Max.	ī		
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11		

Note 1 : Nominal values denote the temperature coefficient within a range of 25 to 125°C.(for ΔC)

GRM Series Data

■ Capacitance-Temperature Characteristics

■ Capacitance-DC Voltage Characteristics

■ Capacitance-AC Voltage Characteristics

■ Capacitance Change-Aging

■ Impedance-Frequency Characteristics

■ Allowable Voltage-Frequency

Continued on the following page.

GRM Series Data

Continued from the preceding page.

■ Allowable Current-Frequency

■ Allowable Apparent Power

Chip Monolithic Ceramic Capacitors

Microchips

■ Features

- 1. Better microwave characteristics
- 2. Suitable for by-passing
- 3. High density mounting

■ Applications

- 1. Optical device for telecommunication
- 2. IC, IC packaging built-in
- 3. Measuring equipment

Part Number		Dimensions (mm)			
Part Number	L	W	T		
GMA05X	0.5 ±0.05	0.5 ±0.05	0.35 ±0.05		
GMA085	0.8 ±0.05	0.8 ±0.05	0.5 ±0.1		

Part Number	TC Cod (Standard)	Rated Voltage (Vdc)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)
GMA05XR71H471MD01	X7R (EIA)	50	470pF ±20%	0.5	0.5	0.35
GMA05XR71C102MD01	X7R (EIA)	16	1000pF ±20%	0.5	0.5	0.35
GMA05XR71C152MD01	X7R (EIA)	16	1500pF ±20%	0.5	0.5	0.35
GMA05XR71C222MD01	X7R (EIA)	16	2200pF ±20%	0.5	0.5	0.35
GMA085R71C103MD01	X7R (EIA)	16	10000pF ±20%	0.8	0.8	0.5
GMA05XF51C472ZD01	Y5V (EIA)	16	4700pF +80/-20%	0.5	0.5	0.35
GMA05XF51C682ZD01	Y5V (EIA)	16	6800pF +80/-20%	0.5	0.5	0.35
GMA085F51C473ZD01	Y5V (EIA)	16	47000pF +80/-20%	0.8	0.8	0.5
GMA05XF51A153ZD01	Y5V (EIA)	10	15000pF +80/-20%	0.5	0.5	0.35
GMA085F51A104ZD01	Y5V (EIA)	10	0.10μF +80/-20%	0.8	0.8	0.5

No.	Ite	em	S	pecifications		Tes	st Method	d	
1	Operatino Temperati	•	R7 : −55°C to +125°C F5 : −30°C to +85°C						
2	Rated Vo		See the previous pages.		The rated volta may be applied When AC volta whichever is la age range.	l continuously ge is superim	to the ca posed on	ipacitor. i DC voltage, V	P-P or VO-P,
3	Appearar	nce	No defects or abnormalitie	s	Visual inspection	on			
4	Dimensio	ns	See the previous pages.		Visual inspection	on			
5	Dielectric	Strength	No defects or abnormalitie	s	No failure shoul voltage is applie provided the ch	ed between the	e both terr	minations for 1 to	o 5 seconds,
6	Insulation (I.R.)	Resistance	10,000MΩ min.		The insulation age not exceed humidity and w	ding the rated	voltage a	t normal tempe	
7	Capacita	nce	Within the specified tolera	nce	The capacitano frequency and				±0.1kHz in
8	Dissipatio (D.F.)	on Factor	R7 : 0.035 max. F5 : 0.09 max. (for 16V) : 0.125 max. (for 10V)		D.F. should be capacitance.	measured un	der the s	ame conditions	at the
9	Capacitar Temperat Character	ure			The range of capacitance change in reference to 25°C within the temperature range shown in the table should be within the specified ranges. The capacitance change should be measured after 5 min. at each specified temperature stage.		within the		
10	Bond Strength Pull force : 3.0g min.		MIL-STD-883 Method 2011 Condition D Mount the capacitor on a gold metallized alumina substrate with Au-Sn (80/20) and bond a 20µm (0.0008 inch) gold wire to the capacitor terminal using an ultrasonic wedge bond. Then, pull wire.						
	ŭ	Die Shear Strength	Die Shear force : 200g min.		MIL-STD-883 Method 2019 Mount the capacitor on a gold metallized alumina substrate with Au-Sn (80/20). Apply the force parallel to the substrate.				
		Appearance	No defects or abnormalitie	S					
	Vibration	Capacitance	Within the specified tolera	nce	Ramp frequence 1 minute. Ampl	•			
11	Resistance	D.F.	R7 : 0.035 max. F5 : 0.09 max. (for 16V) : 0.125 max. (for 10V)		Apply this motion perpendicular of	on for a perio	d of 2 hou	ırs in each of 3	
			The measured values sho table.	uld satisfy the values in the following	The capacitor sture after one h	our heat of tr	eatment a	at 150±° ₁₀ ℃, tl	nen mea-
			Item Appearance	Specifications No marked defect	sure for the init			•	•
				R7 ······ Within±7.5%	as (11) and cor		-	-	•
12	Temperat	ture Cycle	Capacitance Change	F5 ······ Within±20%	tures and time hours at room t		•		48±4
			I.R.	More than 10,000M Ω R7 ······ 0.035 max.	Step	1	2	3	4
			D.F.	F5 ······ 0.09 max.(for 16V)	•	Min. Operating		Max. Operating	Room
			Dielectric Strongth	0.125 max.(for 10V)		Temp. ±9	Temp.	Temp. ±3	Temp.
	Dielectric Strength No failure		Time(min.)	30±3	2 to 3	30±3	2 to 3		
			The measured values shotable.	uld satisfy the values in the following					
			Item	Specifications					
			Appearance	No marked defect R7 ······ Within±12.5%	Set the capacit	or for 500±12	hours at	40±20℃, in 90) to 95%
13	Humidity		Capacitance Change	F5 ····· Within±30%	humidity.	not it for 40 !	4 h = · · · ·	ut roors to	atura the -
	(Steady S	otate)	I.R.	More than 1,000MΩ	Take it out and measure.	set it for 48±	4 nours a	ıı room tempera	ature, tnen
			D.F.	R7 ······ 0.05 max. F5 ····· 0.125 max.(for 16V) 0.15 max.(for 10V)					
			Dielectric Strength	No failure					

Continued on the following page. $\begin{tabular}{|c|c|c|c|} \hline \end{tabular}$

Continued from the preceding page

No.	Item	S	pecifications	Test Method		
		The measured values should satisfy the values in the following table. Item Specifications		Apply the rated voltage for 500±12 hours at 40±20℃, in 90 to		
		Appearance	No marked defect	95% humidity and set it for 48±4 hours at room temperature,		
14	Humidity Load	Capacitance Change	R7 ······ Within±12.5% F5 ····· Within±38%	then measure. The charge/discharge current is less than 50mA.		
		I.R.	More than 500MΩ	• Initial measurement for Y5V		
		D.F. Dielectric Strength	R7 ······ 0.05 max. F5 ····· 0.125 max.(for 16V) 0.15 max.(for 10V)	Perform a heat treatment at 150 ⁺⁰ / ₁₀ °C for one hour and then let sit for 48±4 hours at room temperature. Perform the initial measurement.		
			140 Idilate			
		The measured values sho table.	ould satisfy the values in the following	A voltage treatment should be given to the capacitor, in which a		
		Item	Specifications	DC voltage of 200% the rated voltage is applied for one hour at		
		Appearance	No marked defect	the maximum operating temperature ±3°C then it should be set		
15	High Temperature	Capacitance Change	R7 ······ Within±12.5% F5 ····· Within±38%	for 48±4 hours at room temperature and the initial measurement should be conducted.		
	Load	I.R.	More than 1,000MΩ	Then apply the above mentioned voltage continuously for		
		D.F.	R7 ······ 0.05 max. F5 ····· 0.125 max.(for 16V) 0.15 max.(for 10V)	1000±12 hours at the same temperature, remove it from the bath, and set it for 48±4 hours at room temperature, then measure. The charge/discharge current is less than 50mA.		
		Dielectric Strength	No failure	Shargoral or large out on the loos wall out in the		

Mounting for testing: The capacitors should be mounted on the substrate as shown below using die bonding and wire bonding when tests No. 11 to 15 are performed.

Chip Monolithic Ceramic Capacitors

Capacitor Arrays

■ Features

- 1. High density mounting due to mounting space saving
- 2. Mounting cost saving

■ Applications

General electronic equipment

Temperature Compensating Type

Part Number		GNM31		
LxW	3	3.2x1.6		
тс		C0G (5C)		
Rated Volt.	100 50 (2A) (1H)			
Capacitance (Capacitance	part numbering code) and T (mm) Dimension (T Dim	nension part numbering code)		
10pF(100)	0.8(4)	0.8(4)		
11pF(110)	0.8(4)	0.8(4)		
12pF(120)	0.8(4)	0.8(4)		
13pF(130)	0.8 (4)	0.8(4)		
15pF(150)	0.8(4)	0.8(4)		
16pF(160)	0.8(4)	0.8(4)		
18pF(180)	0.8(4)	0.8(4)		
20pF(200)	0.8(4)	0.8(4)		
22pF(220)	0.8(4)	0.8(4)		
24pF(240)	0.8(4)	0.8(4)		
27pF(270)	0.8(4)	0.8(4)		
30pF(300)	0.8(4)	0.8(4)		
33pF(330)	0.8(4)	0.8(4)		
36pF(360)	0.8(4)	0.8(4)		
39pF(390)	0.8(4)	0.8(4)		
43pF(430)	0.8(4)	0.8(4)		
47pF(470)	0.8(4)	0.8(4)		
51pF(510)	0.8(4)	0.8(4)		
56pF(560)	0.8(4)	0.8(4)		
62pF(620)	0.8(4)	0.8(4)		
68pF(680)	0.8(4)	0.8(4)		
75pF(750)	0.8(4)	0.8(4)		
82pF(820)	0.8(4)	0.8(4)		
91pF(910)	0.8(4)	0.8(4)		
100pF(101)	0.8(4)	0.8(4)		
110pF(111)	0.8(4)	0.8(4)		
120pF(121)	0.8(4)	0.8(4)		
130pF(131)	0.8(4)	0.8(4)		
150pF(151)	0.8(4)	0.8(4)		
160pF(161)		0.8(4)		
180pF(181)		0.8(4)		

Continued from the preceding page.

Part Number	GNM31				
LxW	3.2x1.6				
тс	C0G (5C)				
Rated Volt.	100 (2A)	50 (1H)			
Capacitance (Ca	Capacitance (Capacitance part numbering code) and T (mm) Dimension (T Dimension part numbering code)				
200pF(201)		0.8(4)			
220pF(221)		0.8(4)			
240pF(241)		0.8(4)			
270pF(271)		0.8(4)			
300pF(301)		0.8(4)			
330pF(331)		0.8(4)			
360pF(361)		0.8(4)			

The part numbering code is shown in each (). The (4) code in T(mm) means number of elements (four). Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type GNM1 Series

Part Number	GNM1M				
LxW	1.37x1.00				
тс	X7R (R7)				
Rated Volt.	16 (1C)	10 (1A)			
Capacitance (Ca	Capacitance (Capacitance part numbering code) and T (mm) Dimension (T Dimension part numbering code)				
22000pF(223)	0.6(2)				
47000pF(473)	0.6(2)				
0.10μF(104)		0.6(2)			

The part numbering code is shown in each (). The (2) code in T(mm) means number of elements (two). Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type GNM2 Series

Part Number	GNM21			
LxW	2.0x1.25			
тс	X7R (R7)			
Rated Volt.	50 (1H)			
Capacitance (Capacitance part numbering code) and T (mm) Dimension (T Dimension part numbering code)				
1000pF(102)	0.6(4)			
10000pF(103)	0.6(4)			

The part numbering code is shown in each (). The (4) code in T(mm) means number of elements (four). Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type GNM3 Series

Part Number		GNM31					
LxW		3.2x1.6					
тс		X7R (R7) Y5V (F5)					
Rated Volt.	100 (2A)	50 (1H)	25 (1E)	16 (1C)	100 (2A)	50 (1H)	16 (1C)
Capacitance (Ca	e (Capacitance part numbering code) and T (mm) Dimension (T Dimension part numbering code)						
220pF(221)	0.8(4)						

Continued from the preceding page.

Part Number				GNM31				
LxW	3.2x1.6							
тс		X7 (R	'R 7)		Y5V (F5)			
Rated Volt.	100 (2A)	50 (1H)	25 (1E)	16 (1C)	100 (2A)	50 (1H)	16 (1C)	
Capacitance (Capa	acitance part nur	mbering code) and	T (mm) Dimension	(T Dimension part	numbering code)			
270pF(271)	0.8(4)							
330pF(331)	0.8(4)							
390pF(391)	0.8(4)	0.8(4)						
470pF(471)	0.8(4)	0.8(4)						
560pF(561)	0.8(4)	0.8(4)						
680pF(681)	0.8(4)	0.8(4)						
820pF(821)	0.8(4)	0.8(4)						
1000pF(102)	0.8(4)	0.8(4)						
1200pF(122)	0.8(4)	0.8(4)						
1500pF(152)	0.8(4)	0.8(4)						
1800pF(182)	0.8(4)	0.8(4)						
2200pF(222)	0.8(4)	0.8(4)			0.8(4)			
2700pF(272)	0.8(4)	0.8(4)						
3300pF(332)	0.8(4)	0.8(4)			0.8(4)			
3900pF(392)	0.8(4)	0.8(4)						
4700pF(472)	0.8(4)	0.8(4)			0.8(4)			
5600pF(562)		0.8(4)						
6800pF(682)		0.8(4)						
8200pF(822)		0.8(4)						
10000pF(103)		0.8(4)						
12000pF(123)		0.8(4)						
15000pF(153)		0.8(4)						
18000pF(183)			0.8 (4)					
22000pF(223)				0.8 (4)		0.8(4)		
27000pF(273)				0.8 (4)				
33000pF(333)				0.8 (4)		0.8(4)		
39000pF(393)				0.8 (4)				
47000pF(473)				1.0(4)		0.8(4)		
68000pF(683)				1.0(4)			0.8(4)	
0.10μF(104)				1.0(4)			0.8(4)	
0.15μF(154)							0.8(4)	

The part numbering code is shown in each (). The (4) code in T(mm) means number of elements (four).

Dimensions are shown in mm and Rated Voltage in Vdc.

				Specifications				
No.	lte	em	Temperature Compensating Type	High Dielectric Type		Test Method		
1	Operating Temperatu		5C : −55°C to +125°C	R7 : −55℃ to +125℃ F5 : −30℃ to +85℃				
2	Rated Vo	ltage	See the previous pages.		The rated voltage is do may be applied contin When AC voltage is su whichever is larger, shage range.	uously to the capac uperimposed on DC	itor. voltage,	V ^{P-P} or V ^{O-P} ,
3	Appearar	nce	No defects or abnormaliti	es	Visual inspection			
4	Dimensio	n	Within the specified dime	nsions	Using calipers			
5	Dielectric	: Strength	No defects or abnormaliti	es	No failure should be observed when 300% of the rated voltage (5C) or 250% of the rated voltage (R7, F5) is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.			ed between
6	Insulation I	Resistance	More than 10,000M Ω or (Whichever is smaller)	500Ω • F	The insulation resistar age not exceeding the and within 2 minutes of	rated voltage at 25		
7	Capacita	nce	Within the specified tolera	ance	The capacitance/Q/D.		red at 25	℃ at the fre-
			30pF min. : Q≧1000		quency and voltage sh			
8		tion Factor	30pF max. : Q≥400+20C	Char. 25V min. 16V 10V R7 0.025 max. 0.035 max. 0.035 max.	Item Char.			7, F5
Ü	(D.F.)	C : Nominal Capacitance		F5 0.05 max. 0.07 max. —	Frequency Voltage	1±0.1MHz		0.1kHz
9	Capacitance Temperature Characteristics	Capacitance Change Temperature Coefficient Capacitance Drift	(pF) Within the specified tolerance (Table A) Within the specified tolerance (Table A) Within ±0.2% or ±0.05 pF (Whichever is larger)	Char. Temp. Reference Temp. Change R7 -55 to +125°C F5 -30 to +85°C 25°C Within±15% Within±22%	The capacitance chan each specified temper (1) Temperature Composition The temperature concapacitance measu. When cycling the temperature for the temperature of the capacitance for the temperature of the capacitance for the temperature of the capacitance of th	ature stage. Densating Type Defficient is determinated in step 3 as a remperature sequent acitance should be with maximum and and 5 by the capace Temperature State Temperature State Type Description of the maximum and and 5 by the capace Temperature State Type Description of the maximum and and 5 by the capace Temperature State Type Description of the maximum and and 5 by the capace Temperature State Type Description of the maximum and and 5 by the capace Temperature State Type Description of the maximum and and 5 by the capace Temperature State Type Description of the maximum and and 5 by the capace Temperature State Type Description of the maximum and and 5 by the capace Temperature State Type Description of the maximum and and 5 by the capace Temperature State Type Description of the maximum and and 5 by the capace Temperature State Type Description of the maximum and and 5 by the capace Temperature State Type Description of the maximum and and 5 by the capace Temperature State Type Description of the maximum and and 5 by the capace Temperature State Type Description of the maximum and and 5 by the capace Temperature State Type Description of the maximum and and 5 by the capace Temperature State Type Description of the maximum and and 5 by the capace Temperature State Type Description of the maximum and 5 by the capace Temperature State Type Description of the maximum and 5 by the capace Temperature State Type Description of the maximum and 5 by the capace Temperature State Type Description of the maximum and 5 by the capace Temperature State Type Description of the maximum and 5 by the capace Temperature State Type Description of the maximum and 5 by the capace Temperature State Type Description of the maximum and 5 by the capace Temperature State Type Description of the maximum and 5 by the capace Temperature State Type Description of the maximum and 5 by the capace Temperature State Type Description of the maximum and 5 by the capace Temperature State Type Description of the maxi	ured after a using eference. It is a using eference. It is a using eference. It is a using the minimum estance variation of the control of th	step1 specified pacitance e n measured due in step 3. (for F5) (F5)
10	Adhesive Strength of Termination		No removal of the termina	ations or other defect should occur.	Solder the capacitor to Fig. 1 using a eutectic with the test jig for 10- The soldering should I reflow method and sho soldering is uniform an Type GNM1M GNM21 GNM31	solder. Then apply £1 sec. be done either with a buld be conducted v	5N force an iron or vith care	in parallel using the so that the

Continued on the following page.

Continued from the preceding page.

	Continued II	- In the pree		Specifications			
No.	Ite	m		specifications	Test Method		
	, ite		Temperature Compensating Type	High Dielectric Type	rest weard		
		Appearance	No defects or abnormaliti	es	Solder the capacitor to the test jig (glass epoxy board) in the		
11	Vibration Resistance	Capacitance Q/D.F.	Within the specified tolera 30pF min. : Q≥1000 30pF max. : Q≥400+20C C : Nominal Capacitance (pF)	Char. 25V min. 16V 10V R7 0.025 max. 0.035 max. 0.035 max. F5 0.05 max. 0.07 max. —	same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours).		
			No cracking or marking d	efects should occur.	Solder the capacitor on the test jig (glass epoxy board) shown		
			•GNM□4	•GNM□2 9 100 100	in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3 for 5±1 sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 20 50 Pressurizing speed: 1.0mm/sec. Pressurize		
12	Deflection	ו	Type a GNM1M 2.0±0 GNM21 2.0±0 GNM31 2.5±0	0.05 0.7±0.05 0.3±0.05 0.2±0.05	R230 Flexure : ≤1 Capacitance meter 45 45 (in mm) Fig. 3		
				Fig. 2	t=0.8mm (GNM21), 1.6mm (GNM31)		
13	3 Solderability of Termination		75% of the terminations are to be soldered evenly and continuously.		Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120℃ for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5℃.		
			The measured and obser specifications in the follow	ved characteristics should satisfy the ving table.			
		Appearance	No marking defects		Preheat the capacitor at 120 to 150℃ for 1 minute. Immerse the		
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	R7 : Within ±7.5% F5 : Within ±20%	capacitor in a eutectic solder solution at 270±5°C for 10±0.5 seconds. Let sit at room temperature for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant		
14	Resistance to Soldering Heat	Q/D.F.	30pF min. : Q≥1000 30pF max. : Q≥400+20C C : Nominal Capacitance (pF)	Char. 25V min. 16V 10V R7 0.025 max. 0.035 max. 0.035 max. F5 0.05 max. 0.07 max. —	type), then measure. • Initial measurement for high dielectric constant type Perform a heat treatment at 150 ± ♀₀ ℃ for one hour and then		
		I.R.		500Ω • F (Whichever is smaller)	let sit for 48±4 hours at room temperature. Perform the initial measurement.		
		Dielectric Strength	No failure	,			
		3.	The measured and obser specifications in the follow	ved characteristics should satisfy the ving table.	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10). Perform the five cycles		
		Appearance	No marking defects	-	according to the four heat treatments listed in the following		
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	R7 : Within ±7.5% F5 : Within ±20%	table. Let sit for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant type) at room temperature, then measure		
15	Temperature Cycle	Q/D.F.	30pF min. : Q≥1000 30pF max. : Q≥400+20C C : Nominal Capacitance (pF)	Char. 25V min. 16V 10V R7 0.025 max. 0.035 max. 0.035 max. F5 0.05 max. 0.07 max. —	Step 1 2 3 4 Temp. (°C) Min. Operating Temp. ±3 Room Temp. ±3 Room Temp. ±3 Room Temp. ±3 Temp. ±3 Temp. ±3 Temp. ±3 2 to 3 Time (min.) 30±3 2 to 3 30±3 2 to 3 2 to 3 30±3 2 to 3 30±3 30±3 2 to 3 30±3 2 to 3 30±3 2 to 3 30±3 2 to 3 30±3 30±3 30±3 2 to 3 30±3		
		I.R.		500Ω • F (Whichever is smaller)	• Initial measurement for high dielectric constant type		
		Dielectric Strength	No failure	70022 1 (WINGHEVELIS SHIGHEL)	Perform a heat treatment at 150±90 °C for one hour and then let sit for 48±4 hours at room temperature. Perform the initial measurement.		
		7g					

Continued on the following page.

Continued from the preceding page.

7	Continued from the preceding page.							
				Specifications				
No.	Ite	em	Temperature Compensating Type	High Dielectric Type	Test Method			
			The measured and obserspecifications in the follow	rved characteristics should satisfy the wing table.				
		Appearance	No marking defects					
		Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)	R7 : Within ±12.5% F5 : Within ±30%	Let the capacitor sit at 40±2°C and 90 to 95% humidity for			
16	Humidity Steady State	Q/D.F.	30pF and over : Q≥350 10pF and over, 30pF and below : Q≥275+5C/2 10pF and below : Q≥200+10C C : Nominal Capacitance (pF)	Char. 25V min. 16V 10V R7 0.025 max. 0.035 max. 0.035 max. F5 0.05 max. 0.07 max. -	500±12 hours. Remove and let sit for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant type) at room temperature, then measure.			
		I.R.	More than 1,000MΩ or 5	0Ω • F (Whichever is smaller)				
		Dielectric Strength	No failure					
		The measured and observed characteristics should satisfy the specifications in the following table.		•				
		Appearance	No marking defects					
		Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	R7 : Within ±12.5% F5 : Within ±30%	Apply the rated voltage at 40±2℃ and 90 to 95% humidity for			
17	Humidity Load	Q/D.F.	30pF and over : Q≥200 30pF and below : Q≥100+10C/3 C : Nominal Capacitance (pF)	Char. 25V min. 16V 10V R7 0.025 max. 0.035 max. 0.035 max. F5 0.05 max. 0.07 max. -	500±12 hours. Remove and let sit for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant type) at room temperature, then measure. The charge/discharge current is less than 50mA.			
		I.R.	More than 500MΩ or 250	2 • F (Whichever is smaller)				
		Dielectric Strength	No failure					
			The measured and obserspecifications in the follow	rved characteristics should satisfy the wing table.				
		Appearance	No marking defects					
		Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	R7 : Within ±12.5% F5 : Within ±30%	Apply 200% of the rated voltage for 1000±12 hours at the			
18	High Temperature Load	Q/D.F.	30pF and over : Q≥350 10pF and over, 30pF and below : Q≥275+5C/2 10pF and below : Q≥200+10C C : Nominal Capacitance	Char. 25V min. 16V 10V R7 0.025 max. 0.035 max. 0.035 max. F5 0.05 max. 0.07 max. —	maximum operating temperature ±3°C. Let sit for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant type) at room temperature, then measure. The charge/discharge current is less than 50mA. •Initial measurement for high dielectric constant type. Apply 200% of the rated DC voltage for one hour at the maximum operating temperature ±3°C. Remove and let sit for 48±4 hours at room temperature. Perform initial measurement.			
			(pF)					
		I.R.	More than 1,000M Ω or 5	0Ω • F (Whichever is smaller)				
		Dielectric Strength	No failure					

Table A

			(Capacitance Cha	nge from 25℃ (%))	
Char.	Nominal Values (ppm/℃) Note 1	- 55		-30		-10	
	(ppin/c) Note i	Max.	Min.	Max.	Min.	Max.	Min.
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11

Note 1 : Nominal values denote the temperature coefficient within a range of 25°C to 125°C.

Chip Monolithic Ceramic Capacitors

for Ultrasonic Sensors

■ Features

- 1. Proper compensation for ultrasonic sensors
- 2. Small chip size and high capacitance value

■ Application

Ultrasonic sensor (back sonar, corner sonar, etc.)

Part Number		Dir	mensions (ı	mm)	
Part Number	L	W	T	е	g min.
GRM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7

Part Number	TC Code	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM2199E2A102KD42	ZLM (Murata)	100	1000 ±10%	2.0	1.25	0.85
GRM2199E2A152KD42	ZLM (Murata)	100	1500 ±10%	2.0	1.25	0.85

No.	Ite	em	Specifications		Test Method	
1	Operating Temperat		-25°C to +85°C			
2	Rated Vo		See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p.p} or V ^{op} , whichever is larger, should be maintained within the rated voltage range.		
3	Appearan	pearance No defects or abnormalities Vis		Visual inspection.		
4	Dimensio	ns	Within the specified dimensions	Using calipers.		
5	5 Dielectric Strength		No defects or abnormalities	No failure should be observed when 300% of the rated volta is applied between the terminations for 1 to 5 seconds, proved the charge/discharge current is less than 50mA.		
Insulation Resistance		tance should be measured with a DC volt- the rated voltage at 20℃ and 75%RH max. s of charging.				
7	Capacitar	nce	Within the specified tolerance	The estation in	E should be messured at 0000 with	
8	Dissipatio (D.F.)	n Factor	0.01 max.	•	F. should be measured at 20℃ with ncy and 1±0.2Vr.m.s. in voltage.	
9	Capacitance 9 Temperature Characteristics		Within −4,700 ^{±1} :200 ppm/°C (at −25 to +20°C) Within −4,700 ^{±5} :200 ppm/°C (at +20 to +85°C)	The temperature coefficient is determined using the capacitance measured in step 1 as a reference. When cycling the temperature sequentially from step 1 through the capacitance should be within the specified tolerance the temperature coefficient. The capacitance change should be measured after 5 min. seach specified temperature stage. Step Temperature(°C) 1 20±2 2 -25±3 3 20±2 4 85±3 5 20±2		
10	Adhesive Strength of Termination		No removal of the terminations or other defect should occur.	Solder the capacitor to the test jig (glass epoxy board Fig.1 using a eutectic solder. Then apply 10N force in direction of the arrow. The soldering should be done either with an iron or us reflow method and should be conducted with care so soldering is uniform and free of defects such as heat soldering is uniform and free of defects such as heat soldering is uniform and free of defects such as heat soldering is uniform and free of defects such as heat soldering is uniform. Type a b GRM21 1.2 4.0 1		
		Appearance	No defects or abnormalities		r to the test jig (glass epoxy board) in the	
		Capacitance	Within the specified tolerance		under the same conditions as (10). Id be subjected to a simple harmonic motion	
11	Vibration Resistance	ibration		The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours).		

Continued on the following page. $\begin{tabular}{|c|c|c|c|} \hline \end{tabular}$

Continued from the preceding page.

Vo.	Ite	em	Specifications	Test Method				
			No cracking or marking defects should occur.	Solder the capacitor to the test jig (glass epoxy boards) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.				
12	Deflection	Type a b c GRM21 1.2 4.0 1.65 (in mm)		20 50 Pressurizing speed : 1.0mm/sec. Pressurize R230 Flexure : ≤1 Capacitance meter 45 (in mm)				
			Fig. 2	Fig.3				
13	Solderab Terminati	,	75% of the terminations are to be soldered evenly and continuously	Immerse the capacitor in a solution of ethanol (JIS-K-8101) ar rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat a 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5°C.				
		Appearance	No defects or abnormalities					
	Resistance	Capacitance Change	Within ±7.5%	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the				
14	to Soldering	D.F.	0.01 max.	capacitor in a eutectic solder solution at 270±5℃ for 10±0.5 seconds. Let sit at room temperature for 24±2 hours, then				
	Heat	I.R.	More than 10,000MΩ or 500Ω • F (Whichever is smaller)	measure.				
		Dielectric Strength	No failure					
		Appearance	No defects or abnormalities	Fix the capacitor to the supporting jig in the same manner and				
	T	Capacitance Change	Within ±7.5%	under the same conditions as (11). Perform the five cycles according to the four heat treatments listed in the following table. Let sit for 24±2 hours at room tem-				
15	Temperature Cycle	D.F.	0.01 max.	perature, then measure.				
		I.R.	More than 10,000MΩ or 500Ω • F (Whichever is smaller)	Step 1 2 3 4 Temp. (°C) $-25 \stackrel{+}{-}3$ RoomTemp. $85 \stackrel{+}{-}3$ RoomTemp.				
		Dielectric Strength	No failure	Temp. (°C) $-25 \stackrel{+}{=} ^{\circ}$ RoomTemp. $85 \stackrel{+}{=} ^{\circ}$ RoomTemp. Time (min.) 30 ± 3 2 to 3 30 ± 3 2 to 3				
		Appearance	No defects or abnormalities					
	Humidity,	Capacitance Change	Within ±12.5%	Sit the capacitor at 40±2°C and 90 to 95% humidity for 500±12				
16	Steady	D.F.	0.02 max.	hours. Remove and let sit for 24±2 hours at room temperature, then				
	State	I.R.	More than 1,000MΩ or 50Ω • F (Whichever is smaller)	measure.				
		Dielectric Strength	No failure					
		Appearance	No defects or abnormalities					
17	Humidity	Capacitance Change	Within ±12.5%	Apply the rated voltage at 40±2°C and 90 to 95% humidity for 500±12 hours. Remove and let sit for 24±2 hours at room tem				
	Load	D.F.	0.02 max.	perature, then measure. The charge/discharge current is less than 50mA.				
		I.R.	More than 500MΩ or 25Ω • F (Whichever is smaller)					
_		Appearance	No defects or abnormalities					
18	High Temperature	Capacitance Change	Within ±12.5%	Apply 200% of the rated voltage for 1,000±12 hours at 85±3℃ Let sit for 24±2 hours at room temperature, then measure.				
	Load	D.F.	0.02 max.	The charge/discharge current is less than 50mA.				
		I.R.	More than 1,000M Ω or 50 Ω • F (Whichever is smaller)					

Chip Monolithic Ceramic Capacitors

Low ESL

■ Features

- Low ESL, good for noise reduction for high frequency
- 2. Small, high capacitance

■ Applications

- 1. High speed micro processors
- 2. High frequency digital equipment

Part Number	Dimensions (mm)					
Fait Number	L	W	Т			
LLL185	1.6 ±0.1	0.8 ±0.1	0.6 max.			
LLL216	2.0 +0.1	1.25 ±0.1	0.6 ±0.1			
LLL219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1			
LLL317	3.2 ±0.15	1.6 ±0.15	0.7 ±0.1			
LLL31M	3.2 ±0.15	1.0 ±0.15	1.15 ±0.1			

LLL18 Series

Part Number			LLL18		
LxW			1.6x0.8		
TC		X7R (R7)			Y5V (F5)
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	10 (1A)	25 (1E)
Capacitance (Ca	pacitance part numbering	code) and T (mm) Dimen	sion (T Dimension part nu	mbering code)	
2200pF(222)	0.5 (5)				
3300pF(332)	0.5 (5)				
4700pF(472)	0.5 (5)				
6800pF(682)		0.5 (5)			
10000pF(103)		0.5 (5)			
15000pF(153)		0.5(5)			
22000pF(223)		0.5(5)			0.5(5)
33000pF(333)			0.5 (5)		
47000pF(473)			0.5 (5)		
68000pF(683)			0.5 (5)		
0.10μF(104)				0.5 (5)	

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

LLL21 Series

Part Number	LLL21					
LxW		2.0x	1.25			
тс	X7R (R7)					
Rated Volt. 50 (1H)		25 (1E)	16 (1C)	10 (1A)		
Capacitance (Ca	pacitance part numbering code)	and T (mm) Dimension (T Dimen	sion part numbering code)			
4700pF(472)	0.6(6)					
6800pF(682)	0.6(6)					
10000pF(103)	0.6(6)					
15000pF(153)	0.6(6)					
22000pF(223)	0.6(6)					
33000pF(333)	0.85(9)	0.6(6)	0.6(6)			
47000pF(473)		0.6(6)	0.6(6)			

Continued from the preceding page.

Part Number	LLL21				
LxW		2.0x	1.25		
тс	X7R (R7)				
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	10 (1A)	
Capacitance (Capac	itance part numbering code) and	d T (mm) Dimension (T Dimen	sion part numbering code)		
68000pF(683)		0.6(6)	0.6(6)		
0.10μF(104)		0.6(6)	0.6(6)		
0.15μF(154)		0.85 (9)	0.6(6)		
0.22μF(224)			0.85(9)	0.6(6)	
0.33μF(334)				0.6(6)	
0.47μF(474)				0.85(9)	

The part numbering code is shown in $\ (\).$

Dimensions are shown in mm and Rated Voltage in Vdc.

LLL31 Series

Part Number	LLL31				
LxW	3.2x1.6				
тс	X7R (R7)				
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	10 (1A)	
Capacitance (Cap	pacitance part numbering code) a	and T (mm) Dimension (T Dime	nsion part numbering code)		
10000pF(103)	0.7(7)				
15000pF(153)	0.7(7)				
22000pF(223)	0.7(7)				
33000pF(333)	0.7(7)				
47000pF(473)	0.7(7)				
68000pF(683)	0.7(7)				
0.10μF(104)	1.15(M)	0.7(7)	0.7(7)		
0.15μF(154)		0.7(7)	0.7(7)		
0.22μF(224)		1.15(M)	0.7(7)		
0.33μF(334)		1.15(M)	0.7(7)		
0.47μF(474)		1.15(M)	0.7(7)		
0.68μF(684)			1.15(M)	0.7(7)	
1.0μF(105)			1.15(M)	0.7(7)	
1.5μF(155)				1.15(M)	
2.2μF(225)				1.15(M)	

The part numbering code is shown in $\ (\).$

Dimensions are shown in mm and Rated Voltage in Vdc.

No.	Item	Specifications	Test Method		
1	Operating Temperature Range	R7: -55°C to +125°C F5: -30°C to +85°C	restinetion		
2	Rated Voltage	See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p,p} or V ^{o,p} , whichever is larger, should be maintained within the rated voltage range.		
3	Appearance	No defects or abnormalities	Visual inspection		
4	Dimensions	Within the specified dimension	Using calipers		
5	Dielectric Strength	No defects or abnormalities	No failure should be observed when 250% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.		
6	Insulation Resistance (I.R.)	More than 10,000MΩ or 500Ω • F (Whichever is smaller)	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 25℃ and 75%RH max. and within 2 minutes of charging.		
7	Capacitance	Within the specified tolerance	The capacitance/D.F. should be measured at 25℃ at the		
8	Dissipation Factor (D.F.)	Char. 25V min. 16V R7 0.025 max. 0.035 max. F5 0.05 max. —	frequency and voltage shown in the table. Item		
9	Capacitance Temperature Characteristics	Char. Temp. Range (℃) Reference Temp. Cap. Change. R7 −55 to +125 25℃ Within±15% F5 −30 to +85 25℃ Within+22/−82%	The ranges of capacitance change compared with the 25°C value over the temperature ranges shown in the table should be within the specified ranges. The capacitance change should be measured after 5 min. at each specified temperature stage.		
10	Adhesive Strength of Termination	No removal of the terminations or other defect should occur.	Solder the capacitor to the test jig (glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply 10N* force in the direction of the arrow. *5N: LLL18 The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. Solder resist Baked electrode or copper foil Type a b c LLL18 0.3 1.2 2.0 LLL21 0.6 1.6 2.4 LLL31 1.0 3.0 3.7 (in mm)		
	Appearance No defects or abnormalities		Solder the capacitor to the test jig (glass epoxy board) in the		
	Appearance		same manner and under the same conditions as (10).		
11	Vibration Resistance D.F.	Char. 25V min. 16V R7 0.025 max. F5 0.05 max. -	The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours).		

Continued on the following page.

\overline{A}	Continued from the preceding page.							
No.	Ite	em	Specifications	Test Method				
			No crack or marked defect should occur.	Solder the capacitor to the test jig (glass epoxy boards) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.				
12	Deflection	n	100 t: 1.6mm	20 50 Pressurizing speed : 1.0mm/sec. Pressurize R230 Flexure : ≤1				
			Type a b c LLL18 0.3 1.2 2.0	Capacitance meter				
			LLL21 0.6 1.6 2.4	45 45 (in mm)				
			LLL31 1.0 3.0 3.7 (in mm)					
			Fig. 2	Fig. 3				
13	Solderab Terminati	•	75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120℃ for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5℃.				
		Appearance	No defects or abnormalities					
		Capacitance Change	R7 : Within±7.5% F5 : Within±20%	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse th capacitor in a eutectic solder solution at 270±5°C for 10±0.5 seconds. Let sit at room temperature for 48±4 hours, then				
14	Resistance to Soldering Heat	D.F.	Char. 25V min. 16V R7 0.025 max. 0.035 max. F5 0.05 max. —	measure. •Initial measurement.				
		I.R.	More than $10,000M\Omega$ or $500\Omega \bullet F$ (Whichever is smaller)	Perform a heat treatment at 150 ⁺⁰ ₋₁₀ °C for one hour and then let sit for 48±4 hours at room temperature. Perform the initial				
		Dielectric Strength	No failure	measurement.				
		Appearance	No defects or abnormalities	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10). Perform the five cycles according to the four heat treatments listed in the following table. Let sit for 48±4 hours at room tem-				
		Capacitance Change	R7 : Within±7.5% F5 : Within±20%					
		D.F.	Char. 25V min. 16V	perature, then measure.				
4-	Temperature		R7 0.025 max. 0.035 max. F5 0.05 max. —	Step 1 2 3 4 Tamp (%) Min. Operating Room Max. Operating Room				
15	Cycle	I.R.	More than 10,000MΩ or 500Ω • F (Whichever is smaller)	Temp. (°C) Temp. $\stackrel{+\circ}{-3}$ Temp. $\stackrel{-\circ}{-3}$ Temp.				
		1.14.	more than 10,000mile of 00012 1 (Willowson to difficulty)	Time (min.) 30±3 2 to 3 30±3 2 to 3				
		Dielectric Strength	No failure	 Initial measurement. Perform a heat treatment at 150^{±o}₁₀ ℃ for one hour and then let sit for 48±4 hours at room temperature. Perform the initial measurement. 				
		Appearance	No defects or abnormalities					
		Capacitance	R7: Within±12.5%					
	Humidity,	Change	F5: Within±30%	Let the capacitor sit at 40±2℃ and 90 to 95% humidity for 500±12 hours.				
16	Steady State	D.F.	Char. 25V min. 16V R7 0.05 max. 0.05 max.	Remove and let sit for 48±4 hours at room temperature, then				
		D.I .	F5 0.075 max. —	measure.				
		I.R.	More than $1,000M\Omega$ or $50\Omega \bullet F$ (Whichever is smaller)					
		Appearance	No defects or abnormalities					
		Capacitance Change	R7: Within±12.5% F5: Within±30%					
17	Humidity Load	D.F.	Char. 25V min. 16V R7 0.05 max. 0.05 max. F5 0.075 max. —	Apply the rated voltage at 40±2°C and 90 to 95% humidity for 500±12 hours. Remove and let sit for 48±4 hours at room temperature, then measure. The charge/discharge current is less				
		I.R.	More than 500MΩ or 25Ω • F (Whichever is smaller)	than 50mA.				
		Dielectric		-				
		Strength	No failure					

Continued on the following page.

Continued from the preceding page.

<u> </u>						
No.	Ite	em	Specifications		eifications	Test Method
		Appearance	No defects or	abnormalities		Apply 200% of the rated voltage for 1,000±12 hours at maxi-
18		Capacitance Change	R7 : Within±1 F5 : Within±3			mum operating temperature ±3°C. Let sit for 48±4 hours at room temperature, then measure.
	High Temperature Load	D.F.	Char. R7 F5	25V min. 0.05 max. 0.075 max.	16V 0.05 max. —	The charge/discharge current is less than 50mA. •Initial measurement. Apply 200% of the rated DC voltage for one hour at the maxi-
		I.R.	More than 1,0	00 Μ Ω or 50 Ω •	F (Whichever is smaller)	mum operating temperature ±3°C.
		Dielectric Strength	No failure			Remove and let sit for 48±4 hours at room temperature. Perform initial measurement.

Chip Monolithic Ceramic Capacitors

High Frequency for Flow/Reflow Soldering

■ Features

- 1. HiQ and low ESR at VHF, UHF, Microwave
- 2. Feature improvement, low power consumption for mobile telecommunication. (Base station, terminal, etc.)

■ Applications

High frequency circuit (Mobile telecommunication, etc.)

Part Number	Dimensions (mm)					
Part Number	L	W	T	е	g min.	
GQM188	1.6 ±0.1	0.8 ±0.1	0.8 ±0.1	0.2 to 0.5	0.5	
GQM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7	

Part Number	GQM18		GQM21		
LxW	1.60x0.	80	2.00x1.25		
тс	COG (5C)		C0G (5C)		
Rated Volt.	100 (2A)	50 (1H)	100 (2A)	50 (1H)	
Capacitance (Capacit	ance part numbering code) an	d T (mm) Dimension (T Dime	ension part numbering code)		
0.50pF(R50)	0.80(8)		0.85(9)		
0.75pF(R75)	0.80(8)		0.85(9)		
1.0pF(1R0)	0.80(8)		0.85(9)		
1.1pF(1R1)	0.80(8)		0.85(9)		
1.2pF(1R2)	0.80(8)		0.85(9)		
1.3pF(1R3)	0.80(8)		0.85(9)		
1.5pF(1R5)	0.80(8)		0.85(9)		
1.6pF(1R6)	0.80(8)		0.85(9)		
1.8pF(1R8)	0.80(8)		0.85(9)		
2.0pF(2R0)	0.80(8)		0.85(9)		
2.2pF(2R2)	0.80(8)		0.85(9)		
2.4pF(2R4)	0.80(8)		0.85(9)		
2.7pF(2R7)	0.80(8)		0.85(9)		
3.0pF(3R0)	0.80(8)		0.85(9)		
3.3pF(3R3)	0.80(8)		0.85(9)		
3.6pF(3R6)	0.80(8)		0.85(9)		
3.9pF(3R9)	0.80(8)		0.85(9)		
4.0pF(4R0)	0.80(8)		0.85(9)		
4.3pF(4R3)	0.80(8)		0.85(9)		
4.7pF(4R7)	0.80(8)		0.85(9)		
5.0pF(5R0)	0.80(8)		0.85(9)		
5.1pF(5R1)	0.80(8)		0.85(9)		
5.6pF(5R6)	0.80(8)		0.85(9)		
6.0pF(6R0)	0.80(8)		0.85(9)		
6.2pF(6R2)	0.80(8)		0.85(9)		
6.8pF(6R8)	0.80(8)		0.85(9)		
7.0pF(7R0)		0.80(8)	0.85(9)		
7.5pF(7R5)		0.80(8)	0.85(9)		
8.0pF(8R0)		0.80(8)	0.85(9)		
8.2pF(8R2)		0.80(8)	0.85(9)		
9.0pF(9R0)		0.80(8)	0.85(9)		
9.1pF(9R1)		0.80(8)	0.85(9)		
10pF(100)		0.80(8)	0.85(9)		

	Continued	from th	ne prec	eding	page

Part Number	GQM18	3	GQ	M21
LxW	1.60x0.80		2.00	x1.25
тс	C0G (5C)		C) (5	OG (C)
Rated Volt.	100 (2A)	50 (1H)	100 (2A)	50 (1H)
Capacitance (Capac	itance part numbering code) an	d T (mm) Dimension (T Dimer	nsion part numbering code)	,
11pF(110)		0.80(8)	0.85(9)	
12pF(120)		0.80(8)	0.85(9)	
13pF(130)		0.80(8)	0.85(9)	
15pF(150)		0.80(8)	0.85(9)	
16pF(160)		0.80(8)	0.85(9)	
18pF(180)		0.80(8)	0.85(9)	
20pF(200)		0.80(8)		0.85 (9)
22pF(220)		0.80(8)		0.85 (9)
24pF(240)		0.80(8)		0.85 (9)
27pF(270)				0.85(9)
30pF(300)				0.85(9)
33pF(330)				0.85(9)
36pF(360)				0.85(9)
39pF(390)				0.85(9)
43pF(430)				0.85(9)
47pF(470)				0.85(9)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

■ Q-Frequency Characteristics

■ Resonant Frequency-Capacitance

No.	Ite	em	Specifications		Test Me	ethod	
1	Operating Temperatu	5 50 -55 0 10 125 0					
2	Rated Vo		See the previous page.	The rated voltage is defined as the maximum vo may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltag whichever is larger, should be maintained within voltage range.		ge, V ^{P-P} or V ^{O-P} ,	
3	Appearar	nce	No defects or abnormalities	Visual inspection			
4	Dimensio	n	Within the specified dimensions	Using calipers			
5	Dielectric	Strength	No defects or abnormalities	No failure should be of is applied between the provided the charge/o	e terminatio	ns for 1 to 5 se	conds,
6	Insulation	Resistance	More than 10,000M Ω or 500 Ω • F (whichever is smaller)	The insulation resista voltage not exceeding max. and within 2 mir	the rated v	oltage at 25℃	
7	Capacita	nce	Within the specified tolerance	The capacitance/Q sh			at the
8	Q	30pF min. : Q≥1000 30pF max. : Q≥400+20C		Item Char Frequency		(1000pF and l 1±0.1MHz	
			C : Nominal Capacitance (pF)	Voltage		0.5 to 5Vrm	<u> </u>
		Capacitance Change	Within the specified tolerance (Table A)	The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through		•	
		Temperature Coefficient	Within the specified tolerance (Table A)	the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as in Table A.			lerance for the
9	Capacitance Temperature Characteristics	Capacitance Drift	Within ±0.2% or ±0.05pF (Whichever is larger.)	The capacitance drift is calculated by dividing between the maximum and minimum measure steps 1, 3 and 5 by the capacitance, value in steps 1, 3 and 5 by the capacitance, value in steps 1, 3 and 5 by the capacitance, value in steps 1, 3 and 5 by the capacitance, value in steps 25±2 2		num measured ce. value in ste emperature (** 25±2 —55±3 25±2 125±3	values in the ep 3.
10	Adhesive Strength		No removal of the terminations or other defect should occur.	Solder the capacitor to Fig. 1 using a eutectic with the test jig for 10d The soldering should I reflow method and sho soldering is uniform ar	solder. Ther 1sec. be done eith ould be cond	n apply 10N* fo er with an iron of ducted with care	or using the e so that the
10	of Termin	ation		Type	а	b	С
				GQM18	1.0	3.0	1.2
			Solder resist	GQM21 GQM32	1.2 2.2	4.0 5.0	<u>1.65</u> 2.9
			Baked electrode or copper foil	<u>GGINISZ</u>	Fig .		(in mm)
		Appearance	No defects or abnormalities	Solder the capacitor t	o the test iid	glass epoxv	board) in the
		Capacitance	Within the specified tolerance	same manner and un	der the sam	e conditions a	s (10).
11	Vibration Resistance	Q	30pF min. : Q≥1000 30pF max. : Q≥400+20C C : NominalCapacitance (pF)	The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute.			y being varied and 55Hz. The 10Hz, should
				This motion should be applied for a period of 2 hours in ear 3 mutually perpendicular directions (total of 6 hours).			

Continued on the following page.

Continued from the preceding page

7	Continued fr	om the prec	eding page.				
No.	Ite	em	Specifications	Test Method			
12	2 Deflection		No crack or marked defect should occur.	Solder the capacitor on the test jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 20 50 Pressurizing speed: 1.0mm/sec. Pressurize Flexure: ≤1 Capacitance meter 45 Fig. 3			
13	Solderab Terminati	-	75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5°C.			
14	Resistance to Soldering Heat	Appearance Capacitance Change Q I.R. Dielectric Strength	The measured and observed characteristics should satisfy the specifications in the following table. No marking defects Within ±2.5% or ±0.25 pF (Whichever is larger) 30pF min.: Q≥1000 30pF max.: Q≥400+20C C: Nominal Capacitance (pF) More than 10,000MΩ or 500Ω • F (Whichever is smaller) No failure	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in a eutectic solder solution at 270±5°C for 10±0.5 seconds. Let sit at room temperature for 24±2 hours.			
15	Temperature Cycle	Appearance Capacitance Change Q I.R. Dielectric Strength	The measured and observed characteristics should satisfy the specifications in the following table. No marking defects Within $\pm 2.5\%$ or $\pm 0.25 pF$ (Whichever is larger) $30pF$ min. : $Q \ge 1000$ $30pF$ max. : $Q \ge 400+20C$ C : Nominal Capacitance (pF) More than $10,000M\Omega$ or 500Ω • F (Whichever is smaller) No failure	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10). Perform the five cycles according to the four heat treatments listed in the following table. Let sit for 24±2 hours at room temperature, then measure. Step 1 2 3 4 Temp. (°C) Min. Operating Room Max. operating Room Temp.+0/-3 Temp. Time (min.) 30±3 2 to 3 30±3 2 to 3			
16	Humidity Steady State	Strength No failure The measured and observed characteristics should satisfy the specifications in the following table. Appearance Appearance Capacitance Change Within ±5% or ±0.5pF (Whichever is larger) 30pF min.: Q≥350		Let the capacitor sit at 40±2°C and 90 to 95% humidity for 500±12 hours. Remove and let sit for 24±2 hours (temperature compensating type) at room temperature, then measure.			

Continued on the following page.

muRata

Continued from the preceding page.

No.	Ite	em	Specifications	Test Method		
			The measured and observed characteristics should satisfy the specifications in the following table.			
		Appearance	No marking defects			
		Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	Apply the rated voltage at 40±2°C and 90 to 95% humidity for		
17	Humidity Load	Q	30pF min. : Q≥200 30pF max. : Q≥100+10C/3	500±12 hours. Remove and let sit for 24±2 hours at room temperature then measure. The charge/discharge current is less than 50mA.		
			C : Nominal Capacitance (pF)			
		I.R.	More than $500 \mathrm{M}\Omega$ or 25Ω • F (Whichever is smaller)			
		Dielectric Strength	No failure			
			The measured and observed characteristics should satisfy the specifications in the following table.			
		Appearance	No marking defects			
		Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	Apply 200% of the rated voltage for 1000±12 hours at the		
18	High Temperature Load	Temperature 10pF and over, 30pF and below : Q≥275+5C/2		maximum operating temperature ±3°C. Let sit for 24±2 hours (temperature compensating type) at room temperature, then measure. The charge/discharge current is less than 50mA.		
			C : Nominal Capacitance (pF)			
		I.R.	More than 1,000MΩ or 50Ω • F (Whichever is smaller)			
		Dielectric Strength	No failure			

Table A

			Capacitance Change from 25℃ (%)									
Char.	Nominal Values (ppm/℃) Note 1	-!	55	_	30	-10						
	(ppin/c) Note i	Max.	Min.	Max.	Min.	Max.	Min.					
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11					

Note1 : Nominal values denote the temperature coefficient within a range of 25℃ to 125℃ (for 5C)

Chip Monolithic Ceramic Capacitors

High-Q & High Power Type

SMD Type

■ Features (ERF Series)

- 1. The dielectric is composed of low dielectric loss ceramic. This series is perfectly suited to high frequency applications (VHS-microwave band).
- The series is ultraminiature, yet has a high-power capacity. This is the best capacitor available for transmitter and amplifier circuits such as those in broadcasting equipment and mobile base stations.
- ERF1D type is designed for both flow and reflow soldering and ERF22 type is designed for reflow soldering.

Don't Number		Dimensions (mm)									
Part Number	L	W	Т	е							
ERF1DM	1.4 ^{+0.6} _{-0.4}	1.4 ^{+0.6} _{-0.4}	1.15 ^{+0.50} - 0.35	0.25 ^{+0.25} _{-0.15}							
ERF22X	2.8 ^{+0.6} _{-0.4}	2.8 ^{+0.6} _{-0.4}	2.3 ^{+0.5} _{-0.3}	0.4 + 0.4 - 0.3							

■ Applications

High frequency and high power circuits

Part Number	ER	F1D					ER	RF22					
LxW	1.40	x1.40					2.80	0x2.80					
тс	C0G (5C)	CH (6C)		COG (5C)				CH (6C)					
Rated Volt.	50 (1H)	50 (1H)	500 (2H)	300 (YD)	200 (2D)	100 (2A)	50 (1H)	500 (2H)	300 (YD)	200 (2D)	100 (2A)	50 (1H)	
Capacitance (Ca	pacitance	part number	ering code)	and T (mm) Dimensio	n (T Dimen	sion part r	numbering c	ode)				
0.50pF(R50)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
0.6pF(R60)	1.15(M)		2.30(X)										
0.7pF(R70)	1.15(M)		2.30(X)										
0.75pF(R75)		1.15(M)						2.30(X)					
0.8pF(R80)	1.15(M)		2.30(X)										
0.9pF(R90)	1.15(M)		2.30(X)										
1.0pF(1R0)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
1.1pF(1R1)	1.15(M)		2.30(X)										
1.2pF(1R2)	1.15(M)		2.30(X)										
1.3pF(1R3)	1.15(M)		2.30(X)										
1.4pF(1R4)	1.15(M)		2.30(X)										
1.5pF(1R5)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
1.6pF(1R6)	1.15(M)		2.30(X)										
1.7pF(1R7)	1.15(M)		2.30(X)										
1.8pF(1R8)	1.15(M)		2.30(X)										
1.9pF(1R9)	1.15(M)		2.30(X)										
2.0pF(2R0)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
2.1pF(2R1)	1.15(M)		2.30(X)										
2.2pF(2R2)	1.15(M)		2.30(X)										
2.4pF(2R4)	1.15(M)		2.30(X)										
2.7pF(2R7)	1.15(M)		2.30(X)										
3.0pF(3R0)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
3.3pF(3R3)	1.15(M)		2.30(X)										
3.6pF(3R6)	1.15(M)		2.30(X)										
3.9pF(3R9)	1.15(M)		2.30(X)										
4.0pF(4R0)		1.15(M)						2.30(X)					
4.3pF(4R3)	1.15(M)		2.30(X)										
4.7pF(4R7)	1.15(M)		2.30(X)										

Continued from the preceding page.

Part Number		F1D ~1.40						RF22 0x2.80					
LxW		x1.40					2.80						
тс	C0G (5C)	(6C)			C0G (5C)					CH (6C)			
Rated Volt.	50 (1H)	50 (1H)	500 (2H)	300 (YD)	200 (2D)	100 (2A)	50 (1H)	500 (2H)	300 (YD)	200 (2D)	100 (2A)	50 (1H)	
Capacitance (Ca	pacitance	part number	ering code)	and T (mm) Dimensio	n (T Dimen	sion part n	umbering c	ode)			,	
5.0pF(5R0)		1.15(M)						2.30(X)					
5.1pF(5R1)	1.15(M)		2.30(X)										
5.6pF(5R6)	1.15(M)		2.30(X)										
6.0pF(6R0)		1.15(M)						2.30(X)					
6.2pF(6R2)	1.15(M)		2.30(X)										
6.8pF(6R8)	1.15(M)		2.30(X)										
7.0pF(7R0)		1.15(M)						2.30(X)					
7.5pF(7R5)	1.15(M)		2.30(X)										
8.0pF(8R0)		1.15(M)						2.30(X)					
8.2pF(8R2)	1.15(M)		2.30(X)										
9.0pF(9R0)		1.15(M)						2.30(X)					
9.1pF(9R1)	1.15(M)		2.30(X)										
10pF(100)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
11pF(110)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
12pF(120)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
13pF(130)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
15pF(150)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
16pF(160)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
18pF(180)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
20pF(200)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
22pF(220)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
24pF(240)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
27pF(270)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
30pF(300)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
33pF(330)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
36pF(360)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
39pF(390)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
43pF(430)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
47pF(470)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
51pF(510)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
56pF(560)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
62pF(620)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
68pF(680)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
75pF(750)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
82pF(820)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
91pF(910)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
100pF(101)	1.15(M)	1.15(M)	2.30(X)					2.30(X)					
110pF(111)				2.30(X)					2.30(X)				
120pF(121)				2.30(X)					2.30(X)				
130pF(131)				2.30(X)					2.30(X)				
150pF(151)				2.30(X)					2.30(X)				
160pF(161)				2.30(X)					2.30(X)				
180pF(181)				2.30(X)					2.30(X)				
200pF(201)				2.30(X)					2.30(X)				
220pF(221)					2.30(X)					2.30(X)			
240pF(241)					2.30(X)					2.30(X)			
270pF(271)					2.30(X)					2.30(X)			
300pF(301)					2.30(X)					2.30(X)			
330pF(331)					2.30(X)					2.30(X)			
360pF(361)					2.30(X)					2.30(X)			
390pF(391)					2.30(X)					2.30(X)			
430pF(431)					2.30(X)					2.30(X)			

$ \mathcal{N} $	Continued	from	the	preceding	page

Part Number	ER	F1D					ERI	RF22					
LxW	1.40	x1.40		2.8)x2.80					
тс	C0G (5C)	CH (6C)			C0G (5C)					CH (6C)			
Rated Volt.	50 (1H)	50 (1H)	500 (2H)	300 (YD)	200 (2D)	100 (2A)	50 (1H)	500 (2H)	300 (YD)	200 (2D)	100 (2A)	50 (1H)	
Capacitance (Ca	pacitance	part numb	ering code)	and T (mm	n) Dimensio	n (T Dimen	sion part n	umbering o	ode)	1	l .		
470pF(471)					2.30(X)					2.30(X)			
510pF(511)						2.30(X)					2.30(X)		
560pF(561)						2.30(X)					2.30(X)		
620pF(621)						2.30(X)					2.30(X)		
680pF(681)						2.30(X)					2.30(X)		
750pF(751)							2.30(X)					2.30(X)	
820pF(821)							2.30(X)					2.30(X)	
910pF(911)							2.30(X)					2.30(X)	
1000pF(102)							2.30(X)					2.30(X)	

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Ribbon Terminal

■ Features (ERH Series)

- The dielectric is composed of low dielectric loss ceramics. This series is perfectly suited to high frequency applications (VHS-microwave band).
- The series is ultraminiature, yet has a high power capacity. This is the best capacitor available for transmitter and amplifier circuits such as those in broadcasting equipment and mobile base stations.
- ERH1X/3X Series capacitors withstand high temperatures because ribbon leads are attached with silver paste.
- ERH1X/3X Series capacitors are easily soldered and especially well suited in applications where only a soldering iron can be used.

*** : Capacitance Code

Part Number	Dimensions (mm)									
Part Number	L	W	T max.	l	w					
ERH1XC	1.6 ±0.4	1.4 ±0.4	1.6	5.0 min.	1.3 ±0.4					
ERH3XX	3.2 ±0.4	2.8 ±0.4	3.0	9.0 ±2.0	2.35 ±0.15					

■ Applications

High frequency and high power circuits

Part Number	ERI	H1X					ER	H3X						
LxW	1.60	x1.40		3.2					0x2.80					
тс	C0G (5C)	CH (6C)			C0G (5C)					CH (6C)				
Rated Volt.	50 (1H)	50 (1H)	500 (2H)	300 (YD)	200 (2D)	100 (2A)	50 (1H)	500 (2H)	300 (YD)	200 (2D)	100 (2A)	50 (1H)		
Capacitance (Capacitance part numbering code) and T (mm) Dimension (T Dimension part numbering code)														
0.50pF(R50)	1.60(C)	1.60(C)	3.00(X)					3.00(X)						
0.6pF(R60)	1.60(C)		3.00(X)											
0.7pF(R70)	1.60(C)		3.00(X)											
0.75pF(R75)		1.60(C)						3.00(X)						
0.8pF(R80)	1.60(C)		3.00(X)											
0.9pF(R90)	1.60(C)		3.00(X)											
1.0pF(1R0)	1.60(C)	1.60(C)	3.00(X)					3.00(X)						
1.1pF(1R1)	1.60(C)		3.00(X)											
1.2pF(1R2)	1.60(C)		3.00(X)											
1.3pF(1R3)	1.60(C)		3.00(X)											
1.4pF(1R4)	1.60(C)		3.00(X)											
1.5pF(1R5)	1.60(C)	1.60(C)	3.00(X)					3.00(X)						

Continued from the preceding page.

Continued from	· ·		1										
Part Number		H1X						RH3X					
LxW		x1.40					3.20	x2.80					
тс	C0G (5C)	(6C)		ı	C0G (5C)					(6C)			
Rated Volt.	50 (1H)	50 (1H)	500 (2H)	300 (YD)	200 (2D)	100 (2A)	50 (1H)	500 (2H)	300 (YD)	200 (2D)	100 (2A)	50 (1H)	
Capacitance (Ca	pacitance	part number	ering code)	and T (mm	n) Dimensio	n (T Dimen	sion part n	umbering o	ode)		T		
1.6pF(1R6)	1.60(C)		3.00(X)										
1.7pF(1R7)	1.60(C)		3.00(X)										
1.8pF(1R8)	1.60(C)		3.00(X)										
1.9pF(1R9)	1.60(C)		3.00(X)										
2.0pF(2R0)	1.60(C)	1.60(C)	3.00(X)					3.00(X)					
2.1pF(2R1)	1.60(C)		3.00(X)										
2.2pF(2R2)	1.60(C)		3.00(X)										
2.4pF(2R4)	1.60(C)		3.00(X)										
2.7pF(2R7)	1.60(C)		3.00(X)										
3.0pF(3R0)	1.60(C)	1.60(C)	3.00(X)					3.00(X)					
3.3pF(3R3)	1.60(C)		3.00(X)										
3.6pF(3R6)	1.60(C)		3.00(X)										
3.9pF(3R9)	1.60(C)		3.00(X)										
4.0pF(4R0)		1.60(C)						3.00(X)					
4.3pF(4R3)	1.60(C)		3.00(X)										
4.7pF(4R7)	1.60(C)		3.00(X)										
5.0pF(5R0)		1.60(C)						3.00(X)					
5.1pF(5R1)	1.60(C)		3.00(X)										
5.6pF(5R6)	1.60(C)		3.00(X)										
6.0pF(6R0)		1.60(C)						3.00(X)					
6.2pF(6R2)	1.60(C)		3.00(X)										
6.8pF(6R8)	1.60(C)		3.00(X)										
7.0pF(7R0)		1.60(C)						3.00(X)					
7.5pF(7R5)	1.60(C)		3.00(X)										
8.0pF(8R0)		1.60(C)						3.00(X)					
8.2pF(8R2)	1.60(C)		3.00(X)										
9.0pF(9R0)		1.60(C)						3.00(X)					
9.1pF(9R1)	1.60(C)		3.00(X)										
10pF(100)	1.60(C)	1.60(C)	3.00(X)					3.00(X)					
11pF(110)	1.60(C)	1.60(C)	3.00(X)					3.00(X)					
12pF(120)	1.60(C)	1.60(C)	3.00(X)					3.00(X)					
13pF(130)	1.60(C)	1.60(C)	3.00(X)					3.00(X)					
15pF(150)	1.60(C)	1.60(C)	3.00(X)					3.00(X)					
16pF(160)	1.60(C)	1.60(C)	3.00(X)					3.00(X)					
18pF(180)	1.60(C)	1.60(C)	3.00(X)					3.00(X)					
20pF(200)	1.60(C)	1.60(C)	3.00(X)					3.00(X)					
22pF(220)	1.60(C)	1.60(C)	3.00(X)					3.00(X)					
24pF(240)	1.60(C)	1.60(C)	3.00(X)					3.00(X)					
27pF(270)	1.60(C)	1.60(C)	3.00(X)					3.00(X)					
30pF(300)	1.60(C)	1.60(C)	3.00(X)					3.00(X)					
33pF(330)	1.60(C)	1.60(C)	3.00(X)					3.00(X)					
36pF(360)	1.60(C)	1.60(C)	3.00(X)					3.00(X)					
39pF(390)	1.60(C)	1.60(C)	3.00(X)					3.00(X)					
43pF(430)	1.60(C)	1.60(C)	3.00(X)					3.00(X)					
47pF(470)	1.60(C)	1.60(C)	3.00(X)					3.00(X)					
51pF(510)	1.60(C)	1.60(C)	3.00(X)					3.00(X)					
56pF(560)	1.60(C)	1.60(C)	3.00(X)					3.00(X)					
62pF(620)	1.60(C)	1.60(C)	3.00(X)					3.00(X)					
68pF(680)	1.60(C)	1.60(C)	3.00(X)					3.00(X)					
75pF(750)	1.60(C)	1.60(C)	3.00(X)					3.00(X)					
82pF(820)	1.60(C)	1.60(C)	3.00(X)					3.00(X)					
91pF(910)	1.60(C)	1.60(C)	3.00(X)					3.00(X)					

muRata

Continued from the preceding page.

Part Number	ER	H1X					ERI	ERH3X						
LxW	1.60	x1.40					3.20	0x2.80						
тс	C0G (5C)	CH (6C)			C0G (5C)			CH (6C)						
Rated Volt.	50 (1H)	50 (1H)	500 (2H)	300 (YD)	200 (2D)	100 (2A)	50 (1H)	500 (2H)	300 (YD)	200 (2D)	100 (2A)	50 (1H)		
Capacitance (Ca	pacitance	part number	ering code)	and T (mm) Dimensio	n (T Dimen	sion part n	umbering o	ode)					
100pF(101)	1.60(C)	1.60(C)	3.00(X)					3.00(X)						
110pF(111)				3.00(X)					3.00(X)					
120pF(121)				3.00(X)					3.00(X)					
130pF(131)				3.00(X)					3.00(X)					
150pF(151)				3.00(X)					3.00(X)					
160pF(161)				3.00(X)					3.00(X)					
180pF(181)				3.00(X)					3.00(X)					
200pF(201)				3.00(X)					3.00(X)					
220pF(221)					3.00(X)					3.00(X)				
240pF(241)					3.00(X)					3.00(X)				
270pF(271)					3.00(X)					3.00(X)				
300pF(301)					3.00(X)					3.00(X)				
330pF(331)					3.00(X)					3.00(X)				
360pF(361)					3.00(X)					3.00(X)				
390pF(391)					3.00(X)					3.00(X)				
430pF(431)					3.00(X)					3.00(X)				
470pF(471)					3.00(X)					3.00(X)				
510pF(511)						3.00(X)					3.00(X)			
560pF(561)						3.00(X)					3.00(X)			
620pF(621)						3.00(X)					3.00(X)			
680pF(681)						3.00(X)					3.00(X)			
750pF(751)							3.00(X)					3.00(X)		
820pF(821)							3.00(X)					3.00(X)		
910pF(911)							3.00(X)					3.00(X)		
1000pF(102)							3.00(X)					3.00(X)		

The part numbering code is shown in $\ (\).$

Dimensions are shown in mm and Rated Voltage in Vdc.

No.	Ite	em	Specifications		Test Method			
1	Operating Temperati	ıre Range	−55°C to +125°C					
2	Rated Vo	ltage	See the previous pages.	may be applied contir When AC voltage is s	defined as the maximum voltage which nously to the capacitor. Superimposed on DC voltage, VP-P or VO-P, hould be maintained within the rated volt-			
3	Appearar	nce	No defects or abnormalities	Visual inspection				
4	Dimensio	ns	Within the specified dimension	Using calipers				
5	Dielectric	Strength	No defects or abnormalities	is applied between th	observed when 250% of the rated voltage e terminations for 1 to 5 seconds, provid- rge current is less than 50mA.			
6	Insulation Resistance (I.R.)	25℃ 125℃	C≦ 470pF:1,000,000MΩ min. 470pF <c≦1,000pf: 100,000mω="" min.<br="">C≦ 470pF: 100,000MΩ min. 470pF<c≦1,000pf: 10,000mω="" min.<="" td=""><td></td><td>nce should be measured with a DC volter e rated voltage at 25℃ and 125℃ standard minutes of charging.</td></c≦1,000pf:></c≦1,000pf:>		nce should be measured with a DC volter e rated voltage at 25℃ and 125℃ standard minutes of charging.			
7	Capacita	nce	Within the specified tolerance.	The capacitance/Q sh	nould be measured at 25℃ at the frequen-			
			C≦ 220pF : Q≧10,000	cy and voltage showr				
8	Q		220pF <c≦ 470pf="" 5,000<="" :="" q≥="" td=""><td>Item</td><td>41048</td></c≦>	Item	41048			
Ü			470pF <c≦1,000pf 3,000<br="" :="" q≧="">C : Nominal Capacitance (pF)</c≦1,000pf>	Frequency Voltage	1±0.1MHz 0.5 to 5Vr.m.s.			
		Capacitance Variation Rate	Within the specified tolerance (Table A-7)	tance measured in ste temperature sequenti	fficient is determined using the capaciep 3 as a reference. When cycling the ally from step 1 through 5, the capacint the specified tolerance for the tempera-			
		Temperature Coefficient	Within the specified tolerance (Table A-7)	ture coefficient and ca	apacitance change as Table A. is calculated by dividing the differences			
9	Capacitance Temperature Characteristics	Capacitance Drift	Within $\pm 0.2\%$ or ± 0.05 pF (Whichever is larger)	1, 3 and 5 by the cap	m and minimum measured values in steps acitance value in step 3. age should be measured after 5 min. at rature stage. Temperature (°C) 25±2 -55±3 25±2 125±3			
				5	25±2			
10	Terminal	Adhesive Strength of Termination (for chip type)	No removal of the terminations or other defects should occur.	Solder the capacitor to Fig. 1 using solder co be done either with an care so the soldering shock. Then apply a 1	o the test jig (alumina substrate) shown in ntaining 2.5% silver. The soldering should iron or in furnace and be conducted with is uniform and free of defects such as heat 10N* force in the direction of the arrow. *ERF1D: 5N Alumina substrate			
10	Strength	Tensile Strength (for micro- strip type)	Capacitor should not be broken or damaged.		fixed and a load is applied gradually in il its value reaches 10N (5N for ERH1X).			
		Bending Strength of lead wire terminal (for micro- strip type)	Lead wire should not be cut or broken.	Position the main body of the capacitor so the lead wire terminal is perpendicular, and load 2.5N to the lead wire terminal. Bend the main body by 90 degrees, bend back to original position, bend 90 degrees in the reverse direction, and then bend back to original position.				

Continued on the following page. $\begin{tabular}{|c|c|c|c|} \hline \end{tabular}$

Continued from the preceding page.

Humidity

\overline{A}	Continued fr	om the prec	eding page.											
No.	Ite	em	S	pecifications	Test Method									
		Appearance	No defects or abnormalities	es	Solder the capacitor to the test jig (alumina substrate) shown in									
		Capacitance	Within the specified tolera	nce	Fig. 2 using solder containing 2.5% silver. The soldering should be done either with an iron or using the reflow method and should									
11	Vibration Resistance	Q	Satisfies the initial value. C≦ 220pF : Q≧1 220pF <c≦ 470pf="" 470pf<c≦1,000pf="" :="" c="" capacitance<="" nominal="" q≥="" td=""><td>0,000 5,000 3,000</td><td colspan="10">be conducted with care so the soldering is uniform and free of defects such as heat shock. The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours). Solder resist Ag/Pd Alumina substrate Fig. 2</td></c≦>	0,000 5,000 3,000	be conducted with care so the soldering is uniform and free of defects such as heat shock. The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours). Solder resist Ag/Pd Alumina substrate Fig. 2									
					Immerse the capacitor in a solution of ethanol (JIS-K-8101) and									
12	Solderabi Terminati	-	95% of the terminations are ly.	e to be soldered evenly and continuous-	rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating immerse in solder containing 2.5% silver for 5 \pm 0.5 seconds at 230 \pm 5°C. The dipping depth for microstrip type capacitors is up to 1 mm									
					from the root of the terminal.									
13	Resistanc to Solderi		The measured and obserspecifications in the follow Item Appearance Capacitance Change Q I.R. Dielectric Strength	ved characteristics should satisfy the ring table. Specifications No marked defect Within ±2.5% or ±0.25pF (Whichever is larger) C≤ 220pF : Q≥10,000 220pF <c≤ (pf)<="" 25°c.="" 3,000="" 30%="" 470pf="" 470pf<c≤1,000pf="" 5,000="" :="" at="" c="" capacitance="" failure="" initial="" more="" no="" nominal="" of="" q≥="" specification="" td="" than="" the="" value=""><td>Preheat the capacitor at 80 to 100°C for 2 minutes and then at 150 to 200°C for 5 minutes. Immerse in solder containing 2.5% silver for 3±0.5 seconds at 270±5°C. Set at room temperature for 24±2 hours, then measure. The dipping depth for microstrip type capacitors is up to 2mm from the root of the terminal.</td></c≤>	Preheat the capacitor at 80 to 100°C for 2 minutes and then at 150 to 200°C for 5 minutes. Immerse in solder containing 2.5% silver for 3±0.5 seconds at 270±5°C. Set at room temperature for 24±2 hours, then measure. The dipping depth for microstrip type capacitors is up to 2mm from the root of the terminal.									
14	Temperat Cycle	ture	The measured and obsers pecifications in the follow Item Appearance Capacitance Change Q I.R. Dielectric Strength	ved characteristics should satisfy the ring table. Specifications No marked defect Within ±1% or ±0.25pF (Whichever is larger) C≦ 220pF : Q≥10,000 220pF <c≤ 25°c.="" 3,000="" 30%="" 470pf="" 470pf<c≤1,000pf="" 5,000="" :="" at="" failure<="" initial="" more="" no="" of="" q≥="" specification="" td="" than="" the="" value=""><td>Fix the capacitor to the supporting jig in the same manner and under the same conditions as (11). Perform the five cycles according to the four heat treatments listed in the following table. Then, repeat twice the successive cycles of immersion, each cycle consisting of immersion in a fresh water at $65 \stackrel{+}{-}5$ °C for 15 minutes and immersion in a saturated aqueous solution of salt at 0 ± 3°C for 15 minutes. The capacitor is promptly washed with running water, dried with a dry cloth, and allowed to sit at room temperature for 24 ± 2 hours.</td></c≤>	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (11). Perform the five cycles according to the four heat treatments listed in the following table. Then, repeat twice the successive cycles of immersion, each cycle consisting of immersion in a fresh water at $65 \stackrel{+}{-}5$ °C for 15 minutes and immersion in a saturated aqueous solution of salt at 0 ± 3 °C for 15 minutes. The capacitor is promptly washed with running water, dried with a dry cloth, and allowed to sit at room temperature for 24 ± 2 hours.									
				C : Nominal Capacitance (pF)										
					Apply the 24-hour heat (-10 to +65°C) and humidity (80 to 98%) treatment shown below, 10 consecutive times. Remove, let sit for 24±2 hours at room temperature, and measure. Humidity Humidity									

The measured and observed characteristics should satisfy the specifications in the following table.

Item	Specifications
Appearance	No marked defect
Capacitance	Within ±5% or ±0.5pF
Change	(Whichever is larger)
	C≦ 220pF : Q≥10,000
Q	220pF <c≦ 470pf="" 5,000<="" :="" q≥="" td=""></c≦>
	470pF <c≦1,000pf 3,000<="" :="" q≥="" td=""></c≦1,000pf>
LD	More than 30% of the initial spec-
I.R.	ification value at 25℃.
	C : Naminal Canasitanas (n

C: Nominal Capacitance (pF)

Continued on the following page. $\begin{tabular}{|c|c|c|c|} \hline \end{tabular}$

Continued from the preceding page.

No.	Item	S	pecifications	Test Method
16	High Temperature Load	The measured and observed the specifications in the formal litem Appearance Capacitance Change Q	ved characteristics should satisfy Illowing table. Specifications No marked defect Within ±2.5% or ±0.25pF (Whichever is larger) C≦ 220pF : Q≧ 10,000 220pF <c≦ 3,000="" 30%="" 470pf="" 470pf<c≤1,000pf="" 5,000="" :="" initial="" more="" of="" q≥="" spec-<="" td="" than="" the=""><td>Apply 150% of the rated voltage for 2,000±12 hours at 125±3°C. Remove and let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.</td></c≦>	Apply 150% of the rated voltage for 2,000±12 hours at 125±3°C. Remove and let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.
		I.R.	ification value at 25℃.	
			C : Nominal Capacitance (pF)	

Table A

	T O		Capacitance Change from 25°C Value (%)												
Char. Code	Temp. Coeff. (ppm/℃) Note 1	-5	5℃	-3	0℃	−10°C									
	(ppin/c) Note i	Max.	Min.	Max.	Min.	Max.	Min.								
5C	5C 0±30		-0.24	0.40	-0.17	0.25	-0.11								

Note 1 : Nominal values denote the temperature coefficient within a range of 25 to 125°C.

Chip Monolithic Ceramic Capacitors

High Frequency Type

SMD Type

■ Features (ERA Series)

- Negligible inductance is achieved by its monolithic structure so the series can be used at frequencies above 1GHz
- 2. Nickel barriered terminations of ERA series improve solderability and decrease solder leaching.
- ERA11A/21A series are designed for both flow and reflow soldering and ERA32 series are designed for reflow soldering.

Part Number	Dimensions (mm)												
Part Number	L	W	T max.	е	g min.								
ERA11A	1.25 +0.5	1.0 +0.5	1.0±0.2	0.15 min.	0.3								
ERA21A ERA21B	2.0 +0.5	1.25 ^{+0.5} _{-0.3}	1.0±0.2 1.25±0.2	0.2 min.	0.5								
ERA32X	3.2 ^{+0.6} _{-0.4}	2.5 ^{+0.5} _{-0.3}	1.7±0.2	0.3 min.	0.5								

■ Applications

High frequency and high power circuits

Part Number	ERA11 1.25x1.00							ERA21								ERA32								
LxW								2.00x1.25								3.20x2.50								
тс		C0G (5C)			CH (6C)		CJ (7C)	CK (8C)		C0G (5C)		CH (6C)			CJ (7C)	CK (8C)	C0G (5C)			CH (6C)			CJ (7C)	CK (8C)
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)
Capacitance (Ca	pacit	ance	part r	numb	ering	code)	and	T (mm	n) Dim	ensio	n (T [Dimen	sion p	oart n	umbe	ring c	ode)							
0.50pF (R50)	1.00 (A)							1.20 (A)	1.00 (A)							1.00 (A)	1.70 (X)							1.70 (X)
0.6pF (R60)	1.00 (A)								1.00 (A)								1.70 (X)							
0.7pF (R70)	1.00 (A)								1.00 (A)								1.70 (X)							
0.75pF (R75)								1.20 (A)								1.00 (A)								1.70 (X)
0.8pF (R80)	1.00 (A)								1.00 (A)								1.70 (X)							
0.9pF (R90)	1.00 (A)								1.00 (A)								1.70 (X)							
1.0pF (1R0)	1.00 (A)							1.20 (A)	1.00 (A)							1.00 (A)	1.70 (X)							1.70 (X)
1.1pF (1R1)	1.00 (A)								1.00 (A)								1.70 (X)							
1.2pF (1R2)	1.00 (A)								1.00 (A)								1.70 (X)							
1.3pF (1R3)	1.00 (A)								1.00 (A)								1.70 (X)							
1.4pF (1R4)	1.00 (A)								1.00 (A)								1.70 (X)							
1.5pF (1R5)	1.00 (A)							1.20 (A)	1.00 (A)							1.00 (A)	1.70 (X)							1.70 (X)
1.6pF (1R6)	1.00 (A)								1.00 (A)								1.70 (X)							
1.7pF (1R7)	1.00 (A)								1.00 (A)								1.70 (X)							
1.8pF (1R8)	1.00 (A)								1.00 (A)								1.70 (X)							

Continued from the preceding page.

Part Number	ERA11									ERA21									ERA32									
LxW	1.25x1.00											2.00	x1.25			3.20x2.50												
тс	C0G (5C)			CH (6C)			CJ (7C)	CK (8C)		C0G (5C)			CH (6C)		CJ (7C)	CK (8C)		C0G (5C)		CH (6C)			CJ (7C)	CK (8C)				
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)				
Capacitance (Ca	r e	ance	part r	numbe	ering	code)	and	T (mm	1	ensio	n (T E	Dimen	sion	oart n	umbe	ring o	1	ı	ı	ı	ı	ı	Ι					
1.9pF (1R9)	1.00 (A)								1.00 (A)								1.70 (X)											
2.0pF (2R0)	1.00 (A)							1.20 (A)	1.00 (A)							1.00 (A)	1.70 (X)							1.70 (X)				
2.1pF (2R1)	1.00 (A)								1.00 (A)								1.70 (X)											
2.2pF (2R2)	1.00 (A)								1.00 (A)								1.70 (X)											
2.4pF (2R4)	1.00 (A)								1.00 (A)								1.70 (X)											
2.7pF (2R7)	1.00 (A)								1.00 (A)								1.70 (X)											
3.0pF (3R0)	1.00 (A)						1.20 (A)		1.00 (A)						1.00 (A)		1.70 (X)						1.70 (X)					
3.3pF (3R3)	1.00 (A)								1.00 (A)								1.70 (X)											
3.6pF (3R6)	1.00 (A)								1.00 (A)								1.70 (X)											
3.9pF (3R9)	1.00 (A)								1.00 (A)								1.70 (X)											
4.0pF (4R0)				1.00 (A)								1.00 (A)								1.70 (X)								
4.3pF (4R3)	1.00 (A)								1.00 (A)								1.70 (X)											
4.7pF (4R7)	1.00 (A)								1.00 (A)								1.70 (X)											
5.0pF (5R0)				1.00 (A)								1.00 (A)								1.70 (X)								
5.1pF (5R1)	1.00 (A)								1.00 (A)			, ,					1.70 (X)											
5.6pF (5R6)	1.00 (A)								1.00 (A)								1.70 (X)											
6.0pF (6R0)	(-1)			1.00 (A)					(-1)			1.00 (A)					(24)			1.70 (X)								
6.2pF (6R2)	1.00 (A)			(7.7)					1.00 (A)			(*1)					1.70 (X)			(24)								
6.8pF (6R8)	1.00 (A)								1.00 (A)								1.70 (X)											
7.0pF (7R0)	(- *)			1.20 (A)					(-1)			1.00 (A)					(-1)			1.70 (X)								
7.5pF (7R5)	1.00 (A)			(**)					1.00 (A)			(* *)					1.70 (X)			(51)								
8.0pF (8R0)	(A)			1.20 (A)					(A)			1.00 (A)					(A)			1.70 (X)								
8.2pF (8R2)	1.00			(A)					1.00			(A)					1.70			(A)								
9.0pF	(A)			1.20	1.00				(A)			1.25					(X)			1.70								
9.1pF	1.00			(A)	(A)				1.25			(B)					1.70			(X)								
(9R1) 10pF	(A)			1.00	1.00				(B)			1.25					(X)			1.70								
(100)	(A)			(A)	(A)				(B)			(B)					(X)			(X)								

Continued from the preceding page.

Continued from Part Number	the pre	ecedin	g page		A11								A 24								A 2 2			
L x W					x1.00								A21 x1.25								A32 x2.50			
TC		C0G (5C)		1.23	CH (6C)		CJ (7C)	CK (8C)		C0G (5C)		2.00	CH (6C)		CJ (7C)	CK (8C)		C0G (5C)		3.20	CH (6C)		CJ (7C)	CK (8C)
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)
Capacitance (Ca	pacit	ance	part r	numbe	ering	code)	and ⁻	Γ (mm	n) Dim	ensio	n (T E	imen	sion p	part n	umbe	ring o	ode)							
11pF (110)	1.00 (A)			1.00 (A)	1.00 (A)				1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
12pF (120)	1.00 (A)			1.00 (A)	1.00 (A)				1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
13pF (130)	1.00 (A)			1.00 (A)	1.00 (A)				1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
15pF (150)		1.00 (A)			1.00 (A)				1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
16pF (160)		1.00 (A)			1.00 (A)	1.00 (A)			1.25 (B)			1.25 (B)					1.00 (X)			1.70 (X)				
18pF (180)		1.00 (A)			1.00 (A)	1.00 (A)			1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
20pF (200)		1.00 (A)			1.00 (A)	1.00 (A)			1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
22pF (220)		1.00 (A)			1.00 (A)	1.00 (A)			1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
24pF (240)			1.00 (A)			1.00 (A)			1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
27pF (270)			1.00 (A)			1.00 (A)			1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
30pF (300)			1.00 (A)			1.00 (A)			1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
33pF (330)			1.00 (A)			1.00 (A)			1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
36pF (360)			1.00 (A)			1.00 (A)			1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
39pF (390)			1.00 (A)			1.00 (A)			1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
43pF (430)			1.00 (A)			1.00 (A)			1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
47pF (470)			1.00 (A)			1.00 (A)			1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
51pF (510)			1.00 (A)			1.00 (A)			1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
56pF (560)										1.25 (B)			1.25 (B)				1.70 (X)			1.70 (X)				
62pF (620)										1.25 (B)			1.25 (B)				1.70 (X)			1.70 (X)				
68pF (680)										1.25 (B)			1.25 (B)				1.70 (X)			1.70 (X)				
75pF (750)										1.25 (B)			1.25 (B)				1.70 (X)			1.70 (X)				
82pF (820)										1.25 (B)			1.25 (B)				1.70 (X)			1.70 (X)				
91pF (910)										1.25 (B)			1.25 (B)				1.70 (X)			1.70 (X)				
100pF (101)											1.00 (A)			1.00 (A)			1.70 (X)			1.70 (X)				
110pF (111)											1.25 (B)			1.25 (B)			1.70 (X)			1.70 (X)				
120pF (121)											1.25 (B)			1.25 (B)			1.70 (X)			1.70 (X)				

Continued from the preceding page.

Part Number				ER	A11							ER	A21							ER	A32			
LxW				1.25	x1.00							2.00	x1.25							3.20	x2.50			
тс		C0G (5C)			CH (6C)		CJ (7C)	CK (8C)		C0G (5C)			CH (6C)		CJ (7C)	CK (8C)		C0G (5C)			CH (6C)		CJ (7C)	CK (8C
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	20 (2 E
Capacitance (Ca	pacit	ance	part r	numbe	ering	code)	and ⁻	Γ (mm	n) Dim	ensio	n (T E	Dimen	sion	part n	umbe	ring c	ode)							
130pF (131)											1.25 (B)			1.25 (B)			1.70 (X)			1.70 (X)				
150pF (151)											1.25 (B)			1.25 (B)			1.70 (X)			1.70 (X)				
160pF (161)											1.25 (B)			1.25 (B)			1.70 (X)			1.70 (X)				
180pF (181)																		1.70 (X)			1.70 (X)			
200pF (201)																		1.70 (X)			1.70 (X)			
220pF (221)																		1.70 (X)			1.70 (X)			
240pF (241)																		1.70 (X)			1.70 (X)			
270pF (271)																		1.70 (X)			1.70 (X)			
300pF (301)																		1.70 (X)			1.70 (X)			
330pF (331)																		1.70 (X)			1.70 (X)			
360pF (361)																		1.70 (X)			1.70 (X)			
390pF (391)																		1.70 (X)			1.70 (X)			
430pF (431)																		1.70 (X)			1.70 (X)			
470pF (471)																		1.70 (X)			1.70 (X)			
510pF (511)																		1.70 (X)			1.70 (X)			
560pF (561)																		, ,	1.70 (X)		. ,	1.70 (X)		
620pF (621)																			1.70 (X)			1.70 (X)		
680pF (681)																			1.70 (X)			1.70 (X)		
750pF (751)																			1.70 (X)			1.70 (X)		
820pF (821)																			1.70 (X)			1.70 (X)		
910pF (911)																			1.70 (X)			1.70 (X)		
1000pF (102)																			1.70 (X)			1.70 (X)		

The part numbering code is shown in $\ (\).$

Dimensions are shown in mm and Rated Voltage in Vdc.

Ribbon Terminal

■ Features (ERD Series)

- 1. Negligible inductance is achieved by its monolithic structure so the series can be used at frequencies above 1GHz.
- 2. ERD Series capacitors withstand at high temperatures because ribbon leads are attached with silver paste.
- 3. ERD Series capacitors are easily soldered and are especially well suited in applications where only a soldering iron can be used.

*** : Capacitance Code

Part Number	Dimensions (mm)								
Part Number	L max.	W max.	T max.						
ERD32D	4.0	3.0	2.3						

■ Application

High frequency and high power circuits

Part Number				EF	D32			'
LxW				4.00	x3.00			
тс		C0G (5C)			CH (6C)		CJ (7C)	CK (8C)
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)
Capacitance (Cap	pacitance part r	numbering code)	and T (mm) Din	nension (T Dime	nsion part numb	ering code)		
0.50pF(R50)	2.30(D)							2.30(D)
0.6pF(R60)	2.30(D)							
0.7pF(R70)	2.30(D)							
0.75pF(R75)								2.30(D)
0.8pF(R80)	2.30(D)							
0.9pF(R90)	2.30(D)							
1.0pF(1R0)	2.30(D)							2.30(D)
1.1pF(1R1)	2.30(D)							
1.2pF(1R2)	2.30(D)							
1.3pF(1R3)	2.30(D)							
1.4pF(1R4)	2.30(D)							
1.5pF(1R5)	2.30(D)							2.30(D)
1.6pF(1R6)	2.30(D)							
1.7pF(1R7)	2.30(D)							
1.8pF(1R8)	2.30(D)							
1.9pF(1R9)	2.30(D)							
2.0pF(2R0)	2.30(D)							2.30(D)
2.1pF(2R1)	2.30(D)							
2.2pF(2R2)	2.30(D)							
2.4pF(2R4)	2.30(D)							
2.7pF(2R7)	2.30(D)							
3.0pF(3R0)	2.30(D)						2.30(D)	
3.3pF(3R3)	2.30(D)							
3.6pF(3R6)	2.30(D)							
3.9pF(3R9)	2.30(D)							
4.0pF(4R0)				2.30(D)				
4.3pF(4R3)	2.30(D)							
4.7pF(4R7)	2.30(D)							
5.0pF(5R0)	. ,			2.30(D)				
5.1pF(5R1)	2.30(D)							
5.6pF(5R6)	2.30(D)							
6.0pF(6R0)	. ,			2.30(D)				
6.2pF(6R2)	2.30(D)							
6.8pF(6R8)	2.30(D)							
7.0pF(7R0)	. ,			2.30(D)				

Continued from the preceding page.

Part Number L x W					D32 x3.00			
TC		ÇOG		4.00	СН		CJ	CK
		(5C)			(6C)		(7C)	(8C)
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)
-	pacitance part n	umbering code)	and T (mm) Dim	ension (T Dimer	sion part numbe	ering code)		I
7.5pF(7R5)	2.30 (D)							
8.0pF(8R0)				2.30(D)				
8.2pF(8R2)	2.30(D)							
9.0pF(9R0)				2.30(D)				
9.1pF(9R1)	2.30(D)							
10pF(100)	2.30(D)			2.30(D)				
11pF(110)	2.30(D)			2.30(D)				
12pF(120)	2.30(D)			2.30(D)				
13pF(130)	2.30(D)			2.30(D)				
15pF(150)	2.30(D)			2.30(D)				
16pF(160)	2.30(D)			2.30(D)				
18pF(180)	2.30(D)			2.30(D)				
20pF(200)	2.30 (D)			2.30(D)				
22pF(220)	2.30(D)			2.30(D)				
24pF(240)	2.30(D)			2.30(D)				
27pF(270)	2.30(D)			2.30(D)				
30pF(300)	2.30(D)			2.30(D)				
33pF(330)	2.30(D)			2.30(D)				
36pF(360)	2.30(D)			2.30(D)				
39pF(390)	2.30(D)			2.30(D)				
43pF(430)	2.30(D)			2.30(D)				
47pF(470)	2.30(D)			2.30(D)				
51pF(510)	2.30(D)			2.30(D)				
56pF(560)	2.30(D)			2.30(D)				
62pF(620)	2.30(D)			2.30(D)				
68pF(680)	2.30(D)			2.30(D)				
75pF(750)	2.30(D)			2.30(D)				
82pF(820)	2.30 (D)			2.30(D)				
91pF(910)	2.30 (D)			2.30(D)				
100pF(101)	2.30 (D)			2.30(D)				
110pF(111)	2.30 (D)			2.30(D)				
120pF(121)	2.30(D)			2.30(D)				
130pF(131)	2.30(D)			2.30(D)				
150pF(151)	2.30(D)			2.30(D)				
160pF(161)	2.30(D)			2.30(D)				
180pF(181)		2.30(D)			2.30(D)			
200pF(201)		2.30(D)			2.30(D)			
220pF(221)		2.30(D)			2.30(D)			
240pF(241)		2.30(D)			2.30(D)			
270pF(271)		2.30(D)			2.30(D)			
300pF(301)		2.30(D)			2.30(D)			
330pF(331)		2.30(D)			2.30(D)			
360pF(361)		2.30(D)			2.30(D)			
390pF(391)		2.30(D)			2.30(D)			
430pF(431)		2.30(D)			2.30(D)			
470pF(471)		2.30(D)			2.30(D)			
510pF(511)		2.30(D)			2.30(D)			
560pF(561)			2.30(D)			2.30(D)		
620pF(621)			2.30(D)			2.30(D)		
680pF(681)			2.30(D)			2.30(D)		
750pF(751)			2.30(D)			2.30(D)		
820pF(821)			2.30(D)			2.30(D)	_	

Continued from the preceding page.

Part Number				ER	D32						
LxW				4.00	κ3.00						
тс		COG (5C) CH (CJ (7C) (8C)									
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	200 (2D)	200 (2D)				
Capacitance (Ca	pacitance part n	umbering code)	and T (mm) Dim	ension (T Dimen	sion part numbe	ring code)					
910pF(911)		2.30(D) 2.30(D)									
1000pF(102)		2.30(D) 2.30(D) 2.30(D)									

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

No.	Ite	em	Specifications	Test Method
1	Operating Temperati	ure Range	-55℃ to +125℃	
2	Rated Vo	ltage	See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p-p} or V ^{o-p} , whichever is larger, should be maintained within the rated voltage range.
3	Appearar	nce	No defects or abnormalities	Visual inspection
4	Dimensio	ns	Within the specified dimension	Using calipers
5	Dielectric	Strength	No defects or abnormalities	No failure should be observed when 300% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.
6	Insulation (I.R.)	Resistance	10,000MΩ min.	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 25°C and standard humidity and within 2 minutes of charging.
7	Capacita	nce	Within the specified tolerance	The capacitance/Q should be measured at 25℃ at the frequen-
8	Q		C≦ 220pF: Q≧10,000 220pF <c≦ 470pf:="" 5,000<br="" q≥="">470pF<c≦1,000pf: 3,000<br="" q≥="">C: Nominal Capacitance (pF)</c≦1,000pf:></c≦>	cy and voltage shown in the table. Item Char. C0G (1,000pF and below) Frequency 1±0.1MHz Voltage 0.5 to 5Vr.m.s.
		Capacitance Variation Rate	Within the specified tolerance (Table A-6)	The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5, the capacitance should be within the specified tolerance for the tempera-
		Temperature Coefficient	Within the specified tolerance (Table A-6)	ture coefficient and capacitance change as Table A. The capacitance drift is calculated by dividing the differences
9	Capacitance Temperature Characteristics	Capacitance Drift	Within ±0.2% or ±0.05pF (Whichever is larger)	between the maximum and minimum measured values in steps 1, 3 and 5 by the capacitance value in step 3. The capacitance change should be measured after 5 min. at each specified temperature stage. Step Temperature(°C) 1 25±2 2 -55±3 3 25±2 4 125±3 5 25±2
10	Terminal	Adhesive Strength of Termination (for chip type)	No removal of the terminations or other defects should occur.	Solder the capacitor to the test jig (alumina substrate) shown in Fig.1 using solder containing 2.5% silver. The soldering should be done either with an iron or in furnace and be conducted with care so the soldering is uniform and free of defects such as heat shock. Then apply a 10N* force in the direction of the arrow. *5N (ERA11)
	Strength	Tensile Strength (for micro- strip type)	Capacitor should not be broken or damaged.	The capacitor body is fixed and a load is applied gradually in the axial direction until its value reaches 5N.
		Bending Strength of lead wire terminal (for micro- strip type)	Lead wire should not be cut or broken.	Position the main body of the capacitor so the lead wire terminal is perpendicular, and load 2.5N to the lead wire terminal. Bend the main body by 90 degrees, bend back to original position, bend 90 degrees in the reverse direction, and then bend back to original position.

Continued from the preceding page

\overline{A}	Continued from	n the prec	eding page.		
No.	. Item	1	S	pecifications	Test Method
		Appearance Capacitance	No defects or abnormalitie Within the specified tolera		Solder the capacitor to the test jig (alumina substrate) shown in Fig. 2 using solder containing 2.5% silver. The soldering should be done either with an iron or using the reflow method and should be conducted with care so the soldering is uniform and free of defects such as heat shock. The capacitor should be subjected to
11	Vibration Resistance	Ω	Satisfies the initial value. C≦ 220pF : Q≧1 220pF < C≦ 470pF : Q≥ 470pF < C≦1,000pF : Q≥ C : Nominal Capacitance	5,000 3,000	a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours). Solder resist Ag/Pd Alumina substrate
					Immerse the capacitor in a solution of ethanol (JIS-K-8101) and
12	Solderabilit Termination	•	75% of the terminations are ly.	e to be soldered evenly and continuous-	rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating immerse in solder containing 2.5% silver for 5±0.5 seconds at 230±5°C. The dipping depth for microstrip type capacitors is up to 1 mm from the root of the terminal.
			The measured and obser specifications in the follow	ved characteristics should satisfy the ring table. Specifications	Preheat according to the conditions listed in the table below. Immerse in solder containing 2.5% silver for 3±0.5 seconds at
10	Resistance		Appearance Capacitance	No marked defect Within ±2.5% or ±0.25pF (Whichever is larger)	270±5°C. Set at room temperature for 24±2 hours, then measure. The dipping depth for microstrip type capacitors is up to
13	to Soldering	g Heat	Change	(Whichever is larger) C≦ 220pF : Q≥10,000	2mm from the root of the terminal. Chip Size Preheat Condition
			Q 	220pF <c≤ 470pf="" 5,000<br="" :="" q≥="">470pF<c≤1,000pf 3,000<="" :="" q≥="" td=""><td>2.0×1.25mm max. 1minute at 120 to 150°C 3.2×2.5mm Each 1 minute at 100 to 120°C and then 170 to 200°C</td></c≤1,000pf></c≤>	2.0×1.25mm max. 1minute at 120 to 150°C 3.2×2.5mm Each 1 minute at 100 to 120°C and then 170 to 200°C
			Dielectric Strength	No failure C : Nominal Capacitance (pF)	5.27.2.511111 East 1 11111111 East 1 10 to 120 3 and their 110 to 2003
			The measured and obser specifications in the follow	ved characteristics should satisfy the ving table.	
			Item	Specifications	Fix the capacitor to the supporting jig in the same manner and
			Appearance Capacitance	No marked defect Within ±5% or ±0.5pF	under the same conditions as (11). Perform the five cycles according to the four heat treatments listed in the following table.
	Temperatur	re	Change	(Whichever is larger)	Let sit for 24±2 hours at room temperature, then measure.
14	Cycle		_	C≥30pF : Q≥350	Step 1 2 3 4
			Q	10pF≦C<30pF : Q≥275+ ½ C C<10pF : Q≥200+10C	Temp.(°C) -55^{+0}_{-3} RoomTemp. 125^{+3}_{-0} RoomTemp.
			I.R.	1,000MΩ min.	Time(min.) 30±3 2 to 3 30±3 2 to 3
			Dielectric Strength	No failure	
				C : Nominal Capacitance (pF)	Apply the 24-hour heat (-10 to +65°C) and humidity (80 to 98%) treatment shown below, 10 consecutive times. Remove, let sit for 24±2 hours at room temperature, and measure.
			The measured and obser specifications in the follow	ved characteristics should satisfy the ving table.	Humidity Humidity 80–98% Humidity 80–98% 90–98% Humidity 90–98% Humidity 90–98% Humidity 90–98% Humidity 90–98% 90–98% Humidity 90–98% 90–98% 90–98% Humidity 90–98% 90–98
			Item	Specifications	60 55
			Appearance	No marked defect	50 45
15	Lluma! alita		Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)	
15	Humidity			C≧30pF : Q≧350 10pF≦C<30pF : Q≥275+ ½ C	8 40 35 30 30 30 40 20 +10 c
			Q	10pr≦C<30pr : Q≥275+ 2 C C<10pF : Q≥200+10C	\$\frac{25}{20}\$ \tag{+10}{\tag{c}}\$ \tag{-2} \tag{-2}
			I.R.	1,000MΩ min.	10 Initial measurement
				C : Nominal Capacitance (pF)	Applied voltage 50Vdc
					One cycle 24 hours
					0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2021 22 23 24 — Hours
					nouis

muRata

Continued from the preceding page.

No.	Item	S	pecifications	Test Method
16	High Temperature Load	The measured and obse specifications in the follow Item Appearance Capacitance Change	rved characteristics should satisfy the ving table. Specifications No marked defect Within ±3% or ±0.3pF (Whichever is larger) C≧30pF : Q≥350 10pF≤C<30pF : Q≥275+ ½ C	Apply 200% of the rated voltage for 1,000±12 hours at 125±3°C. Remove and let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.
		I.R.	C<10pF : Q≥200+10C 1,000MΩ min. C : Nominal Capacitance (pF)	

Table A

	T		Cap	oacitance Change	from 25℃ Value	(%)	
Char. Code	Temperature Coefficient (ppm/℃) Note 1	-5	5℃	-3	0℃	-1	0℃
	(ppin/c) Note i	Max.	Min.	Max.	Min.	Max.	Min.
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11

Note 1 : Nominal values denote the temperature coefficient within a range of 25 to 125℃.

ERA/ERD/ERF/ERH Series Data

■ Q-Frequency Characteristics

ERF Series

■ Impedance-Frequency Characteristics

ERF Series

ERA Series

■ ESR-Frequency Characteristics

ERF Series

ERA Series

ERA/ERD/ERF/ERH Series Data

(Variable) Continued from the preceding page.

■ Resonant Frequency-Capacitance

ERF Series

■ Allowable Voltage-Frequency

■ Allowable Current-Frequency

■ Allowable Apparent Power-Frequency

■ Allowable Effective Power-Frequency

Package

■ Packaging Code

Dookoging Typo	Topo Carrior Dookoging	Bulk Coso Dookoging	Bulk Pa	ckaging
Packaging Type	Tape Carrier Packaging	Bulk Case Packaging	Bulk Packaging in a bag	Bulk Packaging in a tray
Packaging Code	D, L, K, J, E, F	С	В	Т

■ Minimum Quantity Guide

	Dim	ensions	(mm)			Quantit	ty (pcs.)		
mber	ווווט	ensions	(11111)	ø180m	ım reel	ø330m	nm reel	Bulk Coco	Bulk Bos
	L	W	Т	Paper Tape	Plastic Tape	Paper Tape	Plastic Tape	Bulk Case	Bulk Baç
GRM03	0.6	0.3	0.3	15,000	-	50,000	-	-	1,000
GRM18	1.6	0.8	0.8	4,000	-	10,000	-	15,000	1,000
			0.6	4,000	-	10,000	-	10,000	1,000
CDM24	2.0	1.05	0.85	4,000	-	10,000	-	-	1,000
GRIVIZT	2.0	1.25	1.0	-	3,000	-	10,000	-	1,000
			1.25	-	3,000	-	10,000	5,000 3)	1,000
			0.6	4,000	-	10,000	-	-	1,000
CDM21	2.2	1.6	0.85	4,000	-	10,000	-	-	1,000
GINIMOT	3.2	1.0	1.15	-	3,000	-	10,000	-	1,000
			1.6	-	2,000	-	6,000	-	1,000
GRM155	1.0	0.5	0.5	10,000	-	50,000	-	50,000	1,000
GRM15X	1.0	0.5	0.25	10,000	-	50,000	-	-	1,000
			1.15	-	3,000	-	10,000	-	1,000
			1.35	-	2,000	-	8,000	-	1,000
GRM32	3.2	2.5	1.8/1.6	-	1,000	-	4,000	-	1,000
			2.0	-	1,000	-	4,000	-	1,000
			2.5	-	1,000	-	4,000	-	1,000
			1.15	-	1,000	-	5,000	-	1,000
GRM43	4.5	3.2	1.35/1.6 1.8/2.0	-	1,000	-	4,000	-	1,000
Ortini-10	7.0	0.2	2.5	-	500	-	2,000	-	1,000
			2.8	-	500	-	1,500	-	1,000
				-	1,000	-		-	1,000
GRM55	5.7	5.0	1.35/1.6 1.8/2.0	-	1,000	-		-	1,000
Ortimos	0.7	0.0	2.5	-	500	-	2,000	-	500
				-	300	-	1,500	-	500
GJM03	0.6	0.3	0.3	15,000	-	50,000	-	-	1,000
GJ6/GJM15	1.0	0.5	0.5	10,000	-	50,000	-	50,000	1,000
GJ221	2.0	1.25		-		-		-	-
GJ231	3.2	1.6		-	3,000	-	10,000	-	-
	0.2			-		-	-	-	-
GJ232	3.2	2.5		-		-		-	-
				-		-	-	-	-
GJ243	4.5	3.2		-		-	-	-	-
				-	500	-	2,000	-	-
					-		-	-	1,000
				4,000	-	10,000	-	-	1,000
				-	-	-	-	-	1,000
				-	· ·	-	-	-	1,000
				-		-	-	-	1,000
		-		-		-	-	-	1,000
						-	-	-	1,000
						<u> </u>			1,000
		+							400 2)
								-	400 2)
GNM1M	1.37	1.0		4,000	-	10,000	-	-	1,000
GNM31	3.2	1.6	0.8	4,000	-	10,000	-	-	1,000
GININISI		1	1.0	-	3,000	-	10,000	-	1,000
					I	10,000		-	1,000
GNM21	2.0	1.25	0.6/0.85	4,000	-	-	_		
	2.0	1.25 1.6	0.6	4,000	-	10,000	-	-	1,000
GNM21			0.6 0.6	4,000	4,000	10,000	10,000	-	1,000 1,000
GNM21 LLL18	0.8	1.6	0.6	4,000		10,000		-	1,000
	GRM03 GRM18 GRM21 GRM31 GRM155 GRM15X GRM32 GRM43 GRM55 GJM03	C	Remote R	GRM03 0.6 0.3 0.3 GRM18 1.6 0.8 0.8 GRM21 2.0 1.25 0.6 GRM31 3.2 1.6 0.85 1.0 GRM155 1.0 0.5 0.5 0.5 GRM32 3.2 2.5 1.15 1.35 1.81.6 GRM32 3.2 2.5 1.81.6 2.0 2.5 GRM34 4.5 3.2 1.15 1.35/1.6 1.8/2.0 2.5 GRM43 4.5 3.2 1.15 1.35/1.6 1.8/2.0 2.5 2.8 1.15 1.35/1.6 1.8/2.0 2.5 2.8 1.15 1.35/1.6 1.8/2.0 2.5 2.8 1.15 1.35/1.6 1.8/2.0 2.5 2.8 1.15 1.35/1.6 1.35/1.6 1.35/1.6 1.35/1.6 1.35/1.6 1.35/1.6 1.35/1.6 1.35/1.6 1.35/1.6 1.35/1.6 1.35/1.6 1.35/1.6 1.35/1.6 1.35/1.6 1.35/1.6 1.35/1.6 1.35/1.6<	Commonweal	Ref	Mathematical Math	New Column New Column New New	No.

¹⁾ Available in tape/reel only. 2) Tray 3) $3.3/4.7\mu F$ of 6.3 R6 rated are not available by bulk case.

Package

Continued from the preceding page.

■ Tape Carrier Packaging

(1) Dimensions of Reel

(2) Dimensions of Paper Tape

Part Number	Α	В
GRM18 GQM18	1.05±0.1	1.85±0.1
GNM1M	1.17±0.05	1.55±0.05
GRM21 (T≦0.85mm) GQM21 GNM21	1.55±0.15	2.3±0.15
GRM31 (T≦0.85mm) GNM31 (T≦0.8mm)	2.0±0.2	3.6±0.2
GRM32 (T=0.85mm)	2.8±0.2	3.6±0.2

8mm width 2mm pitch Tape

Part Number	A*	B*
GJM03 GRM03	0.37	0.67
GJM15 GRM15	0.65	1.15

*Nominal Value

(in mm)

*Nominal Value

Package

Continued from the preceding page.

(3) Dimensions of Plastic Tape

Part Number	Α	В
LLL18	1.05±0.1	1.85±0.1
GRM21 (T≧1.0mm) LLL21, GJ221	1.45±0.2	2.25±0.2
GRM31 (T≥1.15mm) LLL31 GNM31 (T≥1.0mm) GJ231	1.9±0.2	3.5±0.2
GRM32 (T≧1.15mm) GJ232	2.8±0.2	3.5±0.2
ERA21	1.8*	2.6*
ERA32	2.8*	3.5*
ERF1D	2.0*	2.1*
ERF22	3.1*	3.2*

Part Number	A*	B*
GRM43, GJ243	3.6	4.9
GRM55	5.2	6.1

*Nominal Value

(in mm)

(4) Taping Method

- 1) Tapes for capacitors are wound clockwise. The sprocket holes are to the right as the tape is pulled toward the user.
- 2 Part of the leader and part of the empty tape should be attached to the end of the tape as follows.
- 3 The top tape and base tape are not attached at the end of the tape for a minimum of 5 pitches.
- 4 Missing capacitors number within 0.1% of the number per reel or 1 pc, whichever is greater, and are not continuous.
- 5 The top tape and bottom tape should not protrude beyond the edges of the tape and should not cover sprocket holes.
- 6 Cumulative tolerance of sprocket holes, 10 pitches: ±0.3mm.
- 7 Peeling off force: 0.1 to 0.6N* in the direction shown *GRM03 GJM03 }: 0.05 to 0.5N below.

Package

Continued from the preceding page.

■ Dimensions of Bulk Case Packaging The bulk case uses antistatic materials. Please contact Murata for details.

■ Storage and Operating Conditions

Chip monolithic ceramic capacitors (chips) can experience degradation of termination solderability when subjected to high temperature or humidity, or if exposed to sulfur or chlorine gases.

Storage environment must be at an ambient temperature of 5-40 degree C and an ambient humidity of 20-70%RH. Use chip within 6 months. If 6 months or more have elapsed, check solderability before use. (Reference Data 1. Solderability)

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND FUMING WHEN THE PRODUCTS IS USED.

■ Handling

- 1. Inspection
 - Thrusting force of the test probe can flex the PCB, resulting in cracked chips or open solder joints. Provide support pins on the back side of the PCB to prevent warping or flexing.
- 2. Board Separation (or depanalization)
 - (1) Board flexing at the time of separation causes cracked chips or broken solder.
- (2) Severity of stresses imposed on the chip at the time of board break is in the order of : Pushback<Slitter<V Slot<Perforator.</p>

- (3) Board separation must be performed using special jigs, not with hands.
- Reel and bulk case In the handling of reel and case, please be careful and do not drop it.

Please do not use chips from a case which has been dropped.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND FUMING WHEN THE PRODUCTS IS USED.

■ Soldering and Mounting

1. Mounting Position

Choose a mounting position that minimizes the stress imposed on the chip during flexing or bending of the board.

Locate chip horizontal to the direction in which stress [Chip Mounting Close to Board Separation Point] Chip arrangement Perforation В Worst A-C-(B₂D) Best Α Slit

[Component Direction]

(Reference Data 2. Board bending strength for solder fillet height) (Reference Data 3. Temperature cycling for solder fillet height) (Reference Data 4. Board bending strength for board material)

2. Solder Paste Printing

- Overly thick application of solder paste results in excessive fillet height solder. This makes the chip more susceptible to mechanical and
 - thermal stress on the board and may cause cracked chips.
- Too little solder paste results in a lack of adhesive strength on the outer electrode, which may result in chips breaking loose from the PCB.
- Make sure the solder has been applied smoothly to the end surface to a height of 0.2mm min.

3. Chip Placing

- An excessively low bottom dead point of the suction nozzle imposes great force on the chip during mounting, causing cracked chips. So adjust the suction nozzle's bottom dead point by correcting warp in the board. Normally, the suction nozzle's bottom dead point must be set on the upper surface of the board. Nozzle pressure for chip mounting must be a 1 to 3N static load.
- Dirt particles and dust accumulated between the suction nozzle and the cylinder inner wall prevent the nozzle from moving smoothly. This imposes great force on the chip during mounting, causing cracked chips. And the locating claw, when worn out, imposes uneven forces on the chip when positioning, causing cracked chips. The suction nozzle and the locating claw must be maintained, checked and replaced periodically. (Reference Data 5. Break strength)

Continued from the preceding page.

4. Reflow Soldering

- Sudden heating of the chip results in distortion due to excessive expansion and construction forces within the chip causing cracked chips. So when preheating, keep temperature differential, ΔT , within the range shown in Table 1. The smaller the ΔT , the less stress on the chip.
- When components are immersed in solvent after mounting, be sure to maintain the temperature difference (ΔT) between the component and solvent within the range shown in the above table.

Table 1

Part Number	Temperature Differential
GRM03/15/18/21/31	
GJ615, GJ221/31	
LLL18/21/31	ΔT≦190°C
ERA11/21/32, ERF1D	
GQM18/21	
GRM32/43/55	
GNM, GJ232/43	ΔT≦130°C
ERA32, ERF22	

Inverting the PCB

Make sure not to impose an abnormal mechanical shock on the PCB.

5. Leaded Component Insertion

If the PCB is flexed when leaded components (such as transformers and ICs) are being mounted, chips may crack and solder joints may break.

Before mounting leaded components, support the PCB using backup pins or special jigs to prevent warping.

Continued from the preceding page.

6. Flow Soldering

- Sudden heating of the chip results in thermal distortion causing cracked chips. And an excessively long soldering time or high soldering temperature results in leaching of the outer electrodes, causing poor adhesion or a reduction in capacitance value due to loss of contact between electrodes and end termination.
- When preheating, keep the temperature differential between solder temperature and chip surface temperature, ΔT , within the range shown in Table 2. The smaller the ΔT , the less stress on the chip. When components are immersed in solvent after mounting, be sure to maintain the temperature difference between the component and solvent within the range shown in Table 2.

Do not apply flow soldering to chips not listed in Table 5.

Table 2

Part Number	Temperature Differential
GRM18/21/31	
LLL21/31	AT<150%
ERA11/21, ERF1D	ΔΤ≦150℃
GQM18/21	

Optimum Solder Amount for Flow Soldering

Continued from the preceding page.

7. Correction with a Soldering Iron

(1) For Chip Type Capacitors < Except GJ2 Series>

 Sudden heating of the chip results in distortion due to a high internal temperature differential, causing cracked chips. When preheating, keep temperature differential, ΔT , within the range shown in Table 3. The smaller the ΔT , the less stress on the chip.

Table 3

Part Number	Temperature Differential
GRM15/18/21/31	
GJ615	
LLL18/21/31	ΔΤ≦190℃
GQM18/21	
ERA11/21, ERF1D	
GRM32/43/55	
GNM	ΔΤ≦130℃
ERA32, ERF22	

[Standard Conditions for Soldering Iron Temperature]

[Allowable Time and Temperature for Making Corrections with a Soldering Iron]

The accumulated soldering Time / temperature including reflow / flow soldering must be within the range shown above.

 Optimum Solder Amount when Corrections Are Made Using a Soldering Iron

(2) For GJ2 Series

• When solder GJ2 series chip capacitor, keep the following conditions.

<Soldering iron method>

Part Number	Pre-heating	Temperature of iron tip	Soldering iron wattage	Diameter of iron tip	Soldering time	Soldering amount	Restriction
GJ221/31/32/43	Δ≦130℃	300℃ max.	20W max.	φ 3mm max.	5 sec. max.	≤1/2 of chip thickness	Do not allow the iron tip to directly touch the ceramic element.

(3) For Microstrip Types

- Solder 1mm away from the ribbon terminal base, being careful that the solder tip does not directly contact the capacitor. Preheating is unnecessary.
- Complete soldering within 3 seconds with a soldering tip less than 270°C in temperature.

Continued from the preceding page.

8. Washing

Excessive output of ultrasonic oscillation during cleaning causes PCBs to resonate, resulting in cracked chips or broken solder. Take note not to vibrate PCBs.

Failure to follow the above cautions may result, worst case, in a short circuit and fuming when the product is used.

■ Rating

Die Bonding/Wire Bonding (GMA Series)

- 1. Die Bonding of Capacitors
- •Use the following materials Braze alloy:
 Au-Si (98/2) 400 to 420 degree C in N2 atmosphere
 Au-Sn (80/20) 300 to 320 degree C in N2 atmosphere
 Au-Ge (88/12) 380 to 400 degree C in N2 atmosphere
- Mounting
- Control the temperature of the substrate so that it matches the temperature of the braze alloy.
- (2) Place braze alloy on substrate and place the capacitor on the alloy. Hold the capacitor and

gently apply the load. Be sure to complete the operation in 1 minute.

- 2. Wire Bonding
- Wire

Gold wire:

20mm (0.0008 inch), 25mm (0.001 inch) diameter

- •Bonding
- (1) Thermocompression, ultrasonic ball bonding.
- (2) Required stage temperature: 150 to 250 degree C
- (3) Required wedge or capillary weight: 0.5N to 2N.
- (4) Bond the capacitor and base substrate or other devices with gold wire.

■ Soldering and Mounting

1. PCB Design

(1) Notice for Pattern Forms

Unlike leaded components, chip components are susceptible to flexing stresses since they are mounted directly on the substrate.

They are also more sensitive to mechanical and thermal stresses than leaded components.

Excess solder fillet height can multiply these stresses and cause chip cracking. When designing substrates, take land patterns and dimensions into consideration to eliminate the possibility of excess solder fillet height.

Pattern Forms

	Placing Close to Chassis	Placing of Chip Components and Leaded Components	Placing of Leaded Components after Chip Component	Lateral Mounting
Incorrect	Chassis Solder (ground) Electrode Pattern	Lead Wire	Soldering Iron Lead Wire	
Correct	Solder Resist	Solder Resist	Solder Resist	Solder Resist

Continued from the preceding page.

(2) Land Dimensions

Table 1 Flow Soldering Method

Dimensions Part Number	Dimensions (LXW)	a	b	С	
GRM18 GQM18	1.6×0.8	0.6-1.0	0.8-0.9	0.6-0.8	
GRM21 GQM21	2.0×1.25	1.0-1.2	0.9-1.0	0.8-1.1	
GRM31	3.2×1.6	2.2-2.6	1.0-1.1	1.0-1.4	
LLL21	1.25×2.0	0.4-0.7	0.5-0.7	1.4-1.8	
LLL31	1.6×3.2 0.6-1.0		0.8-0.9	2.6-2.8	
ERA11	1.25×1.0	0.4-0.6	0.6-0.8	0.8-1.0	
ERA21	2.0×1.25	0×1.25 1.0-1.2 0.9-1.0		0.8-1.0	
ERF1D	1.4×1.4	0.5-0.8	0.8-0.9	1.0-1.2	

(in mm)

Table 2 Reflow Soldering Method

Table 2. Reliew Soldering Wethou							
Dimensions Part Number	Dimensions (L×W)	а	b	С			
GRM03	0.6×0.3	0.2-0.3	0.2-0.35	0.2-0.4			
GRM15	1.0×0.5	0.3-0.5	0.35-0.45	0.4-0.6			
GRM18	1.6×0.8	0.6-0.8	0.6-0.7	0.6-0.8			
GQM18	1.0 \ 0.0	0.0-0.0	0.6-0.7	0.0-0.6			
GRM21							
GQM21	2.0×1.25	1.0-1.2	0.6-0.7	0.8-1.1			
GJ221							
GRM31	3.2×1.6	2.2-2.4	0.8-0.9	1.0-1.4			
GJ231	3.2 1.0	2.2-2.4	0.6-0.9	1.0-1.4			
GRM32	3.2×2.5	2.0-2.4	1.0-1.2	1.8-2.3			
GJ232	3.2 \ 2.5	2.0-2.4	1.0-1.2	1.0-2.3			
GRM43	4.5×3.2	4.5×3.2 3.0−3.5	1.2-1.4	2.3-3.0			
GJ243	4.5 \ \ 3.2	3.0-3.5	1.2-1.4	2.5-3.0			
GRM55	5.7×5.0	4.0-4.6	1.4-1.6	3.5-4.8			
LLL18	0.8×1.6	0.2-0.4	0.3-0.4	1.0-1.4			
LLL21	1.25×2.0	0.4-0.6	0.3-0.5	1.4-1.8			
LLL31	1.6×3.2	0.6-0.8	0.6-0.7	2.6-2.8			
ERA11	1.25×1.0	0.4-0.6	0.6-0.8	0.8-1.0			
ERA21	2.0×1.25	1.0-1.2	0.6-0.8	0.8-1.0			
ERA32	3.2×2.5	2.2-2.5	0.8-1.0	1.9-2.3			
ERF1D	1.4×1.4	0.4-0.8	0.6-0.8	1.0-1.2			
ERF22	2.8×2.8	1.8-2.1	0.7-0.9	2.2-2.6			

(in mm)

Continued from the preceding page.

GNM Series for reflow soldering method

Table 3

Part Number	Dimensions (mm)					
	L	W	a	b	С	р
GNM1M2	1.37	1.0	0.45~0.5	0.5~0.55	0.3~0.35	0.64+/-0.1
GNM212	2.0	1.25	0.6~0.7	0.5~0.7	0.4~0.5	1.0+/-0.1
GNM214	2.0	1.25	0.6~0.7	0.5~0.7	0.25~0.35	0.5+/-0.05
GNM314	3.2	1.6	0.8~1.0	0.7~0.9	0.3~0.4	0.8+/-0.05

2. Adhesive Application

- Thin or insufficient adhesive causes chips to loosen or become disconnected when flow soldered. The amount of adhesive must be more than dimension C shown in the drawing below to obtain enough bonding strength. The chip's electrode thickness and land thickness must be taken into consideration.
- Low viscosity adhesive causes chips to slip after mounting. Adhesive must have a viscosity of 5000Pa•s (500ps) min. (at 25℃)
- Adhesive Coverage*

<u> </u>				
Part Number	Adhesive Coverage*			
GRM18	O OF my Min			
GQM18	0.05mg Min.			
GRM21				
GQM21	0.1mg Min.			
GRM31	0.15mg Min.			

*Nominal Value

3. Adhesive Curing

Insufficient curing of the adhesive causes chips to disconnect during flow soldering and causes deteriorated insulation resistance between outer electrodes due to moisture absorption.

Control curing temperature and time in order to prevent insufficient hardening.

Inverting the PCB

Make sure not to impose an abnormal mechanical shock on the PCB.

Continued from the preceding page.

4. Flux Application

- An excessive amount of flux generates a large quantity of flux gas, causing deteriorated solderability. So apply flux thinly and evenly throughout. (A foaming system is generally used for flow soldering).
- Flux containing too high a percentage of halide may cause corrosion of the outer electrodes unless sufficiently

cleaned. Use flux with a halide content of 0.2wt% max. But do not use strong acidic flux.

Wash thoroughly because water soluble flux causes deteriorated insulation resistance between outer electrodes unless sufficiently cleaned.

5. Flow Soldering

• Set temperature and time to ensure that leaching of the outer electrode does not exceed 25% of the chip end area as a single chip (full length of the edge A-B-C-D shown below) and 25% of the length A-B shown below as mounted on substrate.

(Reference Data 6. Thermal shock) (Reference Data 7. Solder heat resistance)

■ Others

- Resin Coating
 When selecting resin materials, select those with low contraction.
- Circuit Design
 The capacitors listed in the previous sections of this catalog are not safety recognized products.
- 3. Remarks

The above notices are for standard applications and conditions. Contact us when the products are used in special mounting conditions. Select optimum conditions for operation as they determine the reliability of the product after assembly. The data herein are given in typical values, not guaranteed ratings.

1. Solderability

(1) Test Method

Subject the chip capacitor to the following conditions. Then apply flux (a ethanol solution of 25% rosin) to the chip and dip it in 230℃ eutectic solder for 2 seconds. Conditions:

Expose prepared at room temperature (for 6 months and 12 months, respectively)

Prepared at high temperature (for 100 hours at 85°C) Prepared left at high humidity (for 100 hours under 90%RH to 95%RH at 40℃)

(2) Test Samples

GRM21: Products for flow/reflow soldering.

(3) Acceptance Criteria

With a 60-power optical microscope, measure the surface area of the outer electrode that is covered with solder.

(4) Results

Refer to Table 1.

Table 1

Sample	Initial State	Prepared at Room Temperature		Prepared at High Temperature for	Prepared at High Humidity for 100 Hours at 90 to	
Sample	IIIIIai State	6 months	12 months	100 Hours at 85℃	95% RH and 40℃	
GRM21 for flow/reflow soldering	95 to 100%	95 to 100%	95%	90 to 95%	95%	

2. Board Bending Strength for Solder Fillet Height

(1) Test Method

Solder the chip capacitor to the test PCB with the amount of solder paste necessary to achieve the fillet heights. Then bend the PCB using the method illustrated and measure capacitance.

(2) Test Samples

GRM21 C0G/X7R/Y5V Characteristics T=0.6mm

(3) Acceptance Criteria

Products shall be determined to be defective if the change in capacitance has exceeded the values specified in Table 2.

Table 2

Characteristics	Change in Capacitance
COG	Within ±5% or ±0.5pF, whichever is greater
X7R	Within ±12.5%
Y5V	Within ±20%

Continued from the preceding page.

(4) Results

3. Temperature Cycling for Solder Fillet Height

(1) Test Method

Solder the chips to the substrate various test fixtures using sufficient amounts of solder to achieve the required fillet height. Then subject the fixtures to the cycle illustrated below 200 times.

(1) Solder Amount

Alumina substrates are typically designed for reflow soldering.

Glass epoxy or paper phenol substrates are typically used for flow soldering.

② Material

Alumina (Thickness: 0.64mm) Glass epoxy (Thickness: 1.6 mm) Paper phenol (Thickness: 1.6 mm)

(3) Land Dimension

Continued from the preceding page.

(2) Test Samples

GRM40 C0G/X7R/Y5V Characteristics T=0.6mm

(3) Acceptance Criteria

Products are determined to be defective if the change in capacitance has exceeded the values specified in Table 3.

Table 3

Characteristics	Change in Capacitance			
C0G	Within ±2.5% or ±0.25pF, whichever is greater			
X7R	Within ±7.5%			
Y5V	Within ±20%			

Continued from the preceding page.

4. Board Bending Strength for Board Material

(1) Test Method

Solder the chip to the test board. Then bend the board using the method illustrated below, to measure capacitance.

(2) Test Samples

GRM21 C0G/X7R/Y5V Characteristics T=0.6mm typical

(3) Acceptance Criteria

Products shall be determined to be defective if the change in capacitance has exceeded the values specified in Table 4.

Table 4

Characteristics	Change in Capacitance			
COG	Within ±5% or ±0.5pF, whichever is greater			
X7R	Within ±12.5%			
Y5V	Within ±20%			

(4) Results

Continued from the preceding page.

5. Break Strength

(1) Test Method

Place the chip on a steel plate as illustrated on the right. Increase load applied to a point near the center of the test sample.

(2) Test Samples

GRM21 C0G/X7R/Y5V Characteristics GRM31 C0G/X7R/Y5V Characteristics

(3) Acceptance Criteria

Define the load that has caused the chip to break or crack, as the bending force.

(4) Explanation

Break strength, P, is proportionate to the square of the thickness of the ceramic element and is expressed as a curve of secondary degree.

The formula is:

$$P = \frac{2\gamma W T^2}{3L} \quad (N)$$

W: Width of ceramic element (mm) T: Thickness of element (mm) L: Distance between fulcrums (mm) γ: Bending stress (N/mm²)

(5) Results

6. Thermal Shock

(1) Test method

After applying flux (an ethanol solution of 25% rosin), dip the chip in a solder bath (6X4 eutectic solder) in accordance with the following conditions:

(2) Test samples

GRM21 C0G/X7R/Y5V Characteristics T=0.6mm typical

(3) Acceptance criteria

Visually inspect the test sample with a 60-power optical microscope. Chips exhibiting breaks or cracks shall be determined to be defective.

Continued from the preceding page.

(4) Results

7. Solder Heat Resistance

(1) Test Method

① Reflow soldering:

Apply about 300 μm of solder paste over the alumina substrate. After reflow soldering, remove the chip and check for leaching that may have occurred on the outer electrode.

2 Flow soldering:

After dipping the test sample with a pair of tweezers in wave solder (eutectic solder), check for leaching that may have occurred on the outer electrode.

(2) Test samples

GRM21: For flow/reflow soldering T=0.6mm

(3) Acceptance criteria

The starting time of leaching should be defined as the time when the outer electrode has lost 25 % of the total edge length of A-B-C-D as illustrated:

3 Dip soldering:

After dipping the test sample with a pair of tweezers in static solder (eutectic solder), check for leaching that may have occurred on the outer electrode.

4 Flux to be used: An ethanol solution of 25% rosin.

(4) Results

Continued from the preceding page.

8. Thermal Shock when Making Corrections with a Soldering Iron

(1) Test Method

Apply a soldering iron meeting the conditions below to the soldered joint of a chip that has been soldered to a paper phenol board, while supplying wire solder. (Note: the soldering iron tip should not directly touch the ceramic element of the chip.)

(2) Test Samples
GRM21 C0G/X7R/Y5V Characteristics T=0.6mm

(3) Acceptance Criteria for Defects Observe the appearance of the test sample with a 60-power optical microscope. Those units displaying any breaks or cracks are determined to be defective.

(4) Results

Chip Monolithic Ceramic Capacitors

Medium-voltage Low Dissipation Factor

■ Features

- 1. Murata's original internal electrode structure realizes high flash-over voltage.
- 2. A new monolithic structure for small, surfacemountable devices capable of operating at high voltage levels.
- 3. Sn-plated external electrodes realize good solderability.
- 4. Use the GRM31 type with flow or reflow soldering, and other types with reflow soldering only.
- 5. Low-loss and suitable for high frequency circuits.
- 6. The temperature characteristics C0G and SL are temperature compensating type, and R is high dielectric constant type.

■ Applications

- 1. Ideal for use on high frequency pulse circuits such as snubber circuits for switching power supplies, DC/DC converters, ballasts (inverter fluorescent
- 2. Ideal for use as the ballast in liquid crystal back lighting inverters.
- 3. Please contact our sales representatives or engineers before using our products for other applications not specified above.

Dant Namelana	Dimensions (mm)					
Part Number	L	W	Т	e min.	g min.	
GRM31A GRM31B	3.2 ±0.2	1.6 ±0.2	1.0 +0,-0.3 1.25 +0,-0.3		1.5*	
GRM32Q	3.2 ±0.2	2.5 ±0.2	1.5 +0,-0.3	İ	1.8	
GRM42A GRM42B GRM42D	4.5 ±0.3	2.0 ±0.2	1.0 +0,-0.3 1.25 +0,-0.3 2.0 ±0.3	0.3	2.9	
GRM43D GRM43E	4.5 ±0.3	3.2 ±0.3	2.0 +0,-0.3 2.5 +0,-0.3			

^{*} GRM31B1X3D : 1.8mm min.

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM31AR32J101KY01D	DC630	R (JIS)	100 ±10%	3.2	1.6	1.0	1.5	0.3 min.
GRM31AR32J151KY01D	DC630	R (JIS)	150 ±10%	3.2	1.6	1.0	1.5	0.3 min.
GRM31AR32J221KY01D	DC630	R (JIS)	220 ±10%	3.2	1.6	1.0	1.5	0.3 min.
GRM31AR32J331KY01D	DC630	R (JIS)	330 ±10%	3.2	1.6	1.0	1.5	0.3 min.
GRM31BR32J471KY01L	DC630	R (JIS)	470 ±10%	3.2	1.6	1.25	1.5	0.3 min.
GRM31BR32J681KY01L	DC630	R (JIS)	680 ±10%	3.2	1.6	1.25	1.5	0.3 min.
GRM31BR32J102KY01L	DC630	R (JIS)	1000 ±10%	3.2	1.6	1.25	1.5	0.3 min.
GRM31AR33A470KY01D	DC1000	R (JIS)	47 ±10%	3.2	1.6	1.0	1.5	0.3 min.
GRM31AR33A680KY01D	DC1000	R (JIS)	68 ±10%	3.2	1.6	1.0	1.5	0.3 min.
GRM31AR33A101KY01D	DC1000	R (JIS)	100 ±10%	3.2	1.6	1.0	1.5	0.3 min.
GRM31AR33A151KY01D	DC1000	R (JIS)	150 ±10%	3.2	1.6	1.0	1.5	0.3 min.
GRM31AR33A221KY01D	DC1000	R (JIS)	220 ±10%	3.2	1.6	1.0	1.5	0.3 min.
GRM31AR33A331KY01D	DC1000	R (JIS)	330 ±10%	3.2	1.6	1.0	1.5	0.3 min.
GRM31BR33A471KY01L	DC1000	R (JIS)	470 ±10%	3.2	1.6	1.25	1.5	0.3 min.
GRM31B1X3D100JY01L	DC2000	SL (JIS)	10 ±5%	3.2	1.6	1.25	1.8	0.3 min.
GRM31B1X3D120JY01L	DC2000	SL (JIS)	12 ±5%	3.2	1.6	1.25	1.8	0.3 min.
GRM31B1X3D150JY01L	DC2000	SL (JIS)	15 ±5%	3.2	1.6	1.25	1.8	0.3 min.
GRM31B1X3D180JY01L	DC2000	SL (JIS)	18 ±5%	3.2	1.6	1.25	1.8	0.3 min.
GRM31B1X3D220JY01L	DC2000	SL (JIS)	22 ±5%	3.2	1.6	1.25	1.8	0.3 min.
GRM32Q1X3D270JY01L	DC2000	SL (JIS)	27 ±5%	3.2	2.5	1.5	1.8	0.3 min.
GRM32Q1X3D330JY01L	DC2000	SL (JIS)	33 ±5%	3.2	2.5	1.5	1.8	0.3 min.
GRM32Q1X3D390JY01L	DC2000	SL (JIS)	39 ±5%	3.2	2.5	1.5	1.8	0.3 min.
GRM32Q1X3D470JY01L	DC2000	SL (JIS)	47 ±5%	3.2	2.5	1.5	1.8	0.3 min.
GRM32Q1X3D560JY01L	DC2000	SL (JIS)	56 ±5%	3.2	2.5	1.5	1.8	0.3 min.

Continued from the preceding page.

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM32Q1X3D680JY01L	DC2000	SL (JIS)	68 ±5%	3.2	2.5	1.5	1.8	0.3 min.
GRM32Q1X3D820JY01L	DC2000	SL (JIS)	82 ±5%	3.2	2.5	1.5	1.8	0.3 min.
GRM43D1X3D121JY01L	DC2000	SL (JIS)	120 ±5%	4.5	3.2	2.0	2.9	0.3 min.
GRM43D1X3D151JY01L	DC2000	SL (JIS)	150 ±5%	4.5	3.2	2.0	2.9	0.3 min.
GRM43D1X3D181JY01L	DC2000	SL (JIS)	180 ±5%	4.5	3.2	2.0	2.9	0.3 min.
GRM43D1X3D221JY01L	DC2000	SL (JIS)	220 ±5%	4.5	3.2	2.0	2.9	0.3 min.
GRM42A5C3F100JW01L	DC3150	C0G (EIA)	10 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F120JW01L	DC3150	COG (EIA)	12 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F150JW01L	DC3150	C0G (EIA)	15 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F180JW01L	DC3150	C0G (EIA)	18 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F220JW01L	DC3150	C0G (EIA)	22 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42D1X3F560JY02L	DC3150	SL (JIS)	56 ±5%	4.5	2.0	2.0	2.9	0.3 min.
GRM42D1X3F680JY02L	DC3150	SL (JIS)	68 ±5%	4.5	2.0	2.0	2.9	0.3 min.
GRM42D1X3F820JY02L	DC3150	SL (JIS)	82 ±5%	4.5	2.0	2.0	2.9	0.3 min.
GRM43E1X3F101JY01L	DC3150	SL (JIS)	100 ±5%	4.5	3.2	2.5	2.9	0.3 min.

Please contact us for SL characteristics information.

DC3150V items are considered to use for the application which is not LCD back lighting inverters circuit.

		Specifi	cations			
No.	Item	Temperature Compensating Type (C0G, SL Char.)	High Dielectric Constant Type (R Char.)	_	Test Method	
1	Operating Temperature Range	-55 to +125℃				
2	Appearance	No defects or abnormalities		Visual inspection		
3	Dimensions	Within the specified dimension		Using calipers		
4	Dielectric Strength	No defects or abnormalities			served when voltage in Table is applied as for 1 to 5 sec., provided the charge/ as than 50mA. Test voltage 150% of the rated voltage 120% of the rated voltage DC4095V	
5	Insulation Resistance (I.R.)	More than 10,000MΩ		The insulation resistanc and within 60±5 sec. of	e should be measured with DC500±50V charging.	
6	Capacitance	Within the specified tolerance		The capacitance/Q/D.F.	should be measured at 20℃ at the	
7	Q/ Dissipation Factor (D.F.)	C0G char. : Q≥1,000 SL char. : C≥30pF : Q≥1,000 C<30pF : Q≥400+20C* ²	D.F.≦0.01	frequency and voltage shown as follows. (1) Temperature Compensating Type Frequency: 1±0.2MHz Voltage: AC0.5 to 5V (r.m.s.) (2) High Dielectric Constant Type Frequency: 1±0.2kHz Voltage: AC1±0.2V (r.m.s.) •Pretreatment Perform a heat treatment at 150±9. ℃ for 60±5 min then let sit for 24±2 hrs. at *¹room condition.		
8	Capacitance Temperature Characteristics	Temp. Coefficient COG char.: 0±30ppm/°C (Temp. Range: -55 to +125°C) SL char.: +350 to −1,000 ppm/°C (Temp. Range: +20 to +85°C)	Cap. Change Within ±15%	capacitance measure When cycling the ter through 5 (SL: +20 within the specified to Step 1 2 3 4 5 (2) High Dielectric Cons The range of capacit within -55 to +125% • Pretreatment Perform a heat treate	officient is determined using the ed in step 3 as a reference. Inperature sequentially from step 1 to +85 °C) the capacitance should be oblerance for the temperature coefficient. Temperature (°C) 20±2 (25±2 for COG char.) Min. Operating Temp.±3 20±2 (25±2 for COG char.) Max. Operating Temp.±2 20±2 (25±2 for COG char.)	
9	Adhesive Strength of Termination	No removal of the terminations	or other defect should occur.	in Fig. 1 using a eutection. Then apply 10N force in The soldering should be reflow method and should be the soldering should be reflow method.	the testing jig (glass epoxy board) shown a solder. In the direction of the arrow. In the di	

^{*1 &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

^{*2 &}quot;C" expresses nominal capacitance value (pF).

Continued from the preceding page.

	T	om me prec								
			Sį	oecific	cations					
No.	Ite	em	Temperature Compensat Type (C0G, SL Char.)	-		h Diele nt Type	ctric (R Char.)	Test Method		
		Appearance	No defects or abnormalitie	s				Solder the capacitor to the test jig (glass epoxy board).		
		Capacitance	Within the specified tolerar	nce				The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied		
10	Vibration Resistance	Q/D.F.	C0G char.: Q≥1,000 SL char.: C≥30pF: Q≥1,000 C<30pF: Q≥400+20C* ²	D.F.≦0.01			uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each 3 mutually perpendicular directions (total of 6 hrs.).			
			No cracking or marking de	fects	should occu	r.		Glass Epoxy Board Solder the capacitor to the testing jig (glass epoxy board) shown		
11	Deflection		-	b c c	04.5 04.5 04 t:1	1.6		in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 20 50 Pressurizing speed: 1.0mm/s		
			LXW	Di	imension (m	ım)		R230		
			(mm) a 3.2×1.6 2.2		b c 5.0 2.	0	d	Flexure=1		
			3.2×2.5 2.2			.9	4.0	Capacitance meter		
			4.5×2.0 3.5		7.0 2.		1.0	45 45 (in mm)		
			4.5×3.2 3.5		-	.7		Fig. 3		
12	Solderabi Terminati	,	Fig. 2 75% of the terminations are to be soldered evenly and continuously.			enly	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in eutectic solder solution for 2±0.5 sec. at 235±5°C. Immersing speed: 25±2.5mm/s			
		Appearance	No marking defects					Preheat the capacitor at 120 to 150°C* for 1 min.		
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)		Within ±10	%		Immerse the capacitor in eutectic solder solution at 260±5°C for 10±1 sec. Let sit at *¹room condition for 24±2 hrs., then measure.		
13	Resistance to Soldering Heat	o Soldering Q/D.F. C≥30pF : Q≥1,000 D.F.≤0.01		•Immersing speed: 25±2.5mm/s •Pretreatment for high dielectric constant type Perform a heat treatment at 150 ± 0.0 °C for 60±5 min. and then let sit for 24±2 hrs. at *1room condition.						
		I.R.	More than 10,000MΩ					*Preheating for more than 3.2×2.5mm		
		Dielectric						Step Temperature Time 1 100°C to 120°C 1 min.		
		Strength	In accordance with item No	0.4				2 170°C to 200°C 1 min.		

^{*1 &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa *2 "C" expresses nominal capacitance value (pF).

Continued from the preceding page.

			Specifi	ications					
No.	Ite	em	Temperature Compensating Type (C0G, SL Char.)	High Dielectric Constant Type (R Char.)		Test Method			
		Appearance Capacitance Change	No marking defects Within ±2.5% or ±0.25pF (Whichever is larger)	Within ±10%	Fix the capacitor to the supporting jig (glass epoin Fig. 4 using a eutectic solder. Perform the 5 cycles according to the 4 heat treather the following table.			treatments listed in	
		Q/D.F.	C0G char. : Q≥1,000 SL char. : C≥30pF : Q≥1,000 C<30pF : Q≥400+20C* ²	D.F.≦0.01	Step 1 2 3	Temp Min. Oper Roc	poom condition, therefore (°C) rating Temp.±3 pm Temp. pratting Temp.±2	Time (min.) 30±3 2 to 3 30±3	
	Temperature	I.R.	More than 10,000MΩ		4		om Temp.	2 to 3	
14	Cycle	Dielectric Strength	In accordance with item No.4		Pretreatment for high dielectric constant type Perform a heat treatment at 150 ± ° ° ° ° ° C for 60±5 min. and the let sit for 24±2 hrs. at *1 room condition.			50±5 min. and then	
		Appearance	No marking defects			-			
		Capacitance Change	Within ±5.0% or ±0.5pF (Whichever is larger)	Within ±10%	Let the capaci	tor sit at 40-	+2℃ and relative h	umidity of 90 to 95%	
15	Humidity (Steady State)	Q/D.F.	C0G char. : Q≥350 SL char. : C≥30pF : Q≥350 C<30pF : Q≥275+ ½ C*2	D.F.≦0.01	for 500±24 hrs. Remove and let sit for 24±2 hrs. at *¹room condition, then measure. •Pretreatment for high dielectric constant type Perform a heat treatment at 150±18 °C for 60±5 min. and the				
		I.R.	More than 1,000MΩ		let sit for 24±	:2 hrs. at *1rd	oom condition.		
		Dielectric Strength	In accordance with item No.4						
		Appearance	No marking defects				ving table for 1,000	+48 hrs. at	
		Capacitance Change	Within ±3.0% or ±0.3pF (Whichever is larger)	Within ±10%	maximum ope Remove and I measure.	• .	erature ±3℃. ±2 hrs. at *¹room co	ondition, then	
16	Life	Q/D.F.	C0G char. : Q≥350 SL char. : C≥30pF : Q≥350 C<30pF : Q≥275+ ½ C*2	D.F.≦0.02	The charge/dis •Pretreatment Apply test vo	for high die	rent is less than 50 electric constant typ ±5 min. at test tem et 2 hrs. at *1room of	e perature.	
		I.R.	More than 1,000M Ω			voltage		roltage	
		Dielectric Strength	In accordance with item No.4		More than Less than			l voltage e rated voltage	

^{*1 &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

^{*2 &}quot;C" expresses nominal capacitance value (pF).

Chip Monolithic Ceramic Capacitors

Medium-voltage High-Capacitance for General-Use

■ Features

- A new monolithic structure for small, high capacitance capable of operating at high voltage levels
- 2. Sn-plated external electrodes realized good solderability.
- Use the GRM18/21/31 types with flow or reflow soldering, and other types with reflow soldering only.

■ Applications

- Ideal for use as a hot-cold coupling for DC/DC converter.
- 2. Ideal for use on line filters and ringer detectors for telephones, facsimiles and modems.
- 3. Ideal for use on diode-snubber circuits for switching power supplies.

* GRM55DR73A	:	2.5mm	min
--------------	---	-------	-----

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM188R72E221KW07D	DC250	X7R (EIA)	220pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM188R72E331KW07D	DC250	X7R (EIA)	330pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM188R72E471KW07D	DC250	X7R (EIA)	470pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM188R72E681KW07D	DC250	X7R (EIA)	680pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM188R72E102KW07D	DC250	X7R (EIA)	1000pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM21AR72E102KW01D	DC250	X7R (EIA)	1000pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM188R72E152KW07D	DC250	X7R (EIA)	1500pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM21AR72E152KW01D	DC250	X7R (EIA)	1500pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM188R72E222KW07D	DC250	X7R (EIA)	2200pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM21AR72E222KW01D	DC250	X7R (EIA)	2200pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM21AR72E332KW01D	DC250	X7R (EIA)	3300pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM21AR72E472KW01D	DC250	X7R (EIA)	4700pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM21AR72E682KW01D	DC250	X7R (EIA)	6800pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM21BR72E103KW03L	DC250	X7R (EIA)	10000pF ±10%	2.0	1.25	1.25	0.7	0.3 min.
GRM31BR72E153KW01L	DC250	X7R (EIA)	15000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72E223KW01L	DC250	X7R (EIA)	22000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31CR72E333KW03L	DC250	X7R (EIA)	33000pF ±10%	3.2	1.6	1.6	1.2	0.3 min.
GRM31CR72E473KW03L	DC250	X7R (EIA)	47000pF ±10%	3.2	1.6	1.6	1.2	0.3 min.
GRM32QR72E683KW01L	DC250	X7R (EIA)	68000pF ±10%	3.2	2.5	1.5	1.2	0.3 min.
GRM31CR72E104KW03L	DC250	X7R (EIA)	0.10μF ±10%	3.2	1.6	1.6	1.2	0.3 min.
GRM32DR72E104KW01L	DC250	X7R (EIA)	0.10μF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM43QR72E154KW01L	DC250	X7R (EIA)	0.15μF ±10%	4.5	3.2	1.5	2.2	0.3 min.
GRM32DR72E224KW01L	DC250	X7R (EIA)	0.22μF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM43DR72E224KW01L	DC250	X7R (EIA)	0.22μF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM43DR72E334KW01L	DC250	X7R (EIA)	0.33μF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM55DR72E334KW01L	DC250	X7R (EIA)	0.33μF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM43DR72E474KW01L	DC250	X7R (EIA)	0.47μF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM55DR72E474KW01L	DC250	X7R (EIA)	0.47μF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM55DR72E105KW01L	DC250	X7R (EIA)	1.0μF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM31BR72J102KW01L	DC630	X7R (EIA)	1000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J152KW01L	DC630	X7R (EIA)	1500pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J222KW01L	DC630	X7R (EIA)	2200pF ±10%	3.2	1.6	1.25	1.2	0.3 min.

Continued from the preceding page.

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM31BR72J332KW01L	DC630	X7R (EIA)	3300pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J472KW01L	DC630	X7R (EIA)	4700pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J682KW01L	DC630	X7R (EIA)	6800pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J103KW01L	DC630	X7R (EIA)	10000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31CR72J153KW03L	DC630	X7R (EIA)	15000pF ±10%	3.2	1.6	1.6	1.2	0.3 min.
GRM32QR72J223KW01L	DC630	X7R (EIA)	22000pF ±10%	3.2	2.5	1.5	1.2	0.3 min.
GRM32DR72J333KW01L	DC630	X7R (EIA)	33000pF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM32DR72J473KW01L	DC630	X7R (EIA)	47000pF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM43QR72J683KW01L	DC630	X7R (EIA)	68000pF ±10%	4.5	3.2	1.5	2.2	0.3 min.
GRM43DR72J104KW01L	DC630	X7R (EIA)	0.10μF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM55DR72J154KW01L	DC630	X7R (EIA)	0.15μF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM55DR72J224KW01L	DC630	X7R (EIA)	0.22μF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM31BR73A102KW01L	DC1000	X7R (EIA)	1000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR73A152KW01L	DC1000	X7R (EIA)	1500pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR73A222KW01L	DC1000	X7R (EIA)	2200pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR73A332KW01L	DC1000	X7R (EIA)	3300pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR73A472KW01L	DC1000	X7R (EIA)	4700pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM32QR73A682KW01L	DC1000	X7R (EIA)	6800pF ±10%	3.2	2.5	1.5	1.2	0.3 min.
GRM32QR73A103KW01L	DC1000	X7R (EIA)	10000pF ±10%	3.2	2.5	1.5	1.2	0.3 min.
GRM32DR73A153KW01L	DC1000	X7R (EIA)	15000pF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM32DR73A223KW01L	DC1000	X7R (EIA)	22000pF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM43DR73A333KW01L	DC1000	X7R (EIA)	33000pF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM43DR73A473KW01L	DC1000	X7R (EIA)	47000pF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM55DR73A104KW01L	DC1000	X7R (EIA)	0.10μF ±10%	5.7	5.0	2.0	2.5	0.3 min.

No.	Item	1	Specifications	Test Method
1	Operating Temperature	e Range	-55 to +125℃	_
2	Appearance	е	No defects or abnormalities	Visual inspection
3	Dimensions	S	Within the specified dimensions	Using calipers
4	Dielectric Strength		No defects or abnormalities	No failure should be observed when 150% of the rated voltage (200% of the rated voltage in case of rated voltage: DC250V, 120% of the rated voltage in case of rated voltage: DC1kV) is applied between the terminations for 1 to 5 sec., provided the charge/discharge current is less than 50mA.
5	Insulation Re (I.R.)	sistance	C≥0.01μF : More than 100MΩ • μF C<0.01μF : More than 10,000MΩ	The insulation resistance should be measured with DC500±50V (DC250±50V in case of rated voltage : DC250V) and within 60±5 sec. of charging.
6	6 Capacitance Within the specified tolerance		Within the specified tolerance	The capacitance/D.F. should be measured at 25°C at a frequency of 1±0.2kHz and a voltage of AC1±0.2V (r.m.s.) •Pretreatment
7	Dissipation Factor (D.F		0.025 max.	Perform a heat treatment at 150^{+0}_{-10} °C for 60 ± 5 min. and then let sit for 24 ± 2 hrs. at *room condition.
8	Capacitance Temperature Characteristics		Cap. Change Within ±15% (Temp. Range : −55 to +125°C)	The range of capacitance change compared with the 25°C value within -55 to $+125$ °C should be within the specified range. •Pretreatment Perform a heat treatment at $150 \stackrel{+}{=} ^{\circ}_{10}$ °C for 60 ± 5 min. and then let sit for 24 ± 2 hrs. at *room condition.
9	Adhesive Strength of Termination		No removal of the terminations or other defect should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply 10N force in the direction of the arrow. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 10N (5N: Size 1.6×0.8mm only), 10±1s Speed: 1.0mm/s Glass Epoxy Board
				Fig. 1
10	<u> </u>	Appearance Capacitance	No defects or abnormalities Within the specified tolerance	Solder the capacitor to the test jig (glass epoxy board). The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each 3 mutually perpendicular directions (total of 6 hrs.).
		D.F. 0.025 max.		Solder resist Glass Epoxy Board
			No cracking or marking defects should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 2 using a eutectic solder.
11	1 Deflection		Dimension (mm)	Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 20 50 Pressurizing speed: 1.0mm/s Pressurize Pressurize Capacitance meter (in mm) Fig. 3

^{* &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

Continued from the preceding page.

7	Continued fr	om the prec	eding page.					
No.	Ite	em	Specifications		Test Method			
12	Solderab Terminati	•	75% of the terminations are to be soldered evenly and continuously.	rosin (JIS-K-5) Immerse in eu	902) (25% rosin in weight prop	er solution for 2±0.5 sec. at 235±5℃.		
		Appearance	No marking defects		apacitor at 120 to 150°C* for 1 r			
		Capacitance Change	Within ±10%	10±1 sec. Let	capacitor in eutectic solder solu sit at *room condition for 24±2 peed: 25±2.5mm/s			
	Dociotopoo	D.F.	0.025 max.	Pretreatment				
13	Resistance to Soldering Heat	I.R.	C≧0.01μF : More than 100MΩ • μF C<0.01μF : More than 10,000MΩ		at treatment at $150 \pm_{1} \%$ c for 6 $\pm_{2} \%$ hrs. at *room condition.	60±5 min. and then		
				*Preheating for	or more than 3.2X2.5mm			
		Dielectric	In accordance with item No.4	Step	Temperature 100°C to 120°C	Time		
		Strength		1	170°C to 200°C	1 min. 1 min.		
			N 11 17 1					
		Appearance	No marking defects		tor to the supporting jig (glass of a eutectic solder.	epoxy board) shown		
		Capacitance	Within ±7.5%	Perform the 5 cycles according to the 4 heat treatments listed				
		Change	0.005	the following t				
		D.F.	0.025 max.		2 hrs. at *room condition, then			
		I.R.	$C \ge 0.01 \mu F$: More than $100 M \Omega $	Step 1	Temperature (℃) Min. Operating Temp.±3	Time (min.) 30±3		
			C<0.01μ1 : More than 10,000Ms2	2	Room Temp.	2 to 3		
				3	Max. Operating Temp.±2	30±3		
	Tomporoturo			4	Room Temp.	2 to 3		
14	Temperature Cycle			Pretreatmen	t			
	Cycle				at treatment at 150 ⁺ ₁°° for 6	60±5 min. and then		
					2 hrs. at *room condition.			
		Dielectric	In accordance with item No.4					
		Strength						
					Solde	r resist		
					Glass Epoxy Board			
		Appearance	No marking defects		Fig. 4			
			No marking defects	Lot the conce	tor cit at 40±2°C and relative b	umidity of 00 to 05%		
		Capacitance Change	Within ±15%	Let the capacitor sit at 40±2°C and relative humidity of 90 for 500±26 hrs.				
15	Humidity (Steady	D.F.	0.05 max.	Remove and I measure.	et sit for 24±2 hrs. at *room co	ndition, then		
	State)	I.R.	C≧0.01μF : More than 10MΩ • μF	•Pretreatmen		2015		
			C<0.01μF : More than 1,000MΩ		at treatment at 150±₁8°C for 6 2 hrs. at *room condition.	50±5 min. and then		
		Dielectric Strength	In accordance with item No.4	101 01 101 2 12	z me. at reem conducti.			
		Appearance	No marking defects		f the rated voltage (150% of the			
		Capacitance	Within ±15% (rated voltage : DC250V, DC630V)	case of rated	voltage: DC250V, 110% of the	rated voltage in		
		Change	Within ±20% (rated voltage : DC1kV)		voltage : DC1kV) for 1,000±⁴& perature ±3℃. Remove and let			
16	Life	D.F.	0.05 max.		on, then measure.	. 5 101 £ 1 £ 1110. at		
		I.R.	C ≥0.01μF : More than 10M Ω • μF C <0.01μF : More than 1,000M Ω	The charge/discharge current is less than 50mA. •Pretreatment Apply test voltage for 60±5 min. at test temperature. Remove and let sit for 24±2 hrs. at *room condition.				
		Dielectric Strength	In accordance with item No.4					
		Appearance	No marking defects					
	Humidity	Capacitance Change	Within ±15%	Apply the rated voltage at $40\pm2^{\circ}$ C and relative humidity of 90 to 95% for $500\pm^{2}$ 6 hrs.				
	Loading (Application :	D.F.	0.05 max.	Remove and I	et sit for 24±2 hrs. at *room co	ndition, then		
17	DC250V,	D.1 .		measure.				
	DC630V	I.R.	C≥0.01μF : More than 10MΩ • μF C<0.01μF : More than 1,000MΩ	Pretreatmen Apply test vo	t Itage for 60±5 min. at test tem	perature		
	item)	Dieloctric			let sit for 24±2 hrs. at *room c			
	Dielectric Strength In accordance with item No.4							

^{* &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

Chip Monolithic Ceramic Capacitors

Only for Information Devices/Tip & Ring

■ Features

- 1. These items are designed specifically for telecommunication devices (IEEE802.3) in Ethernet LAN.
- 2. A new monolithic structure for small, high capacitance capable of operating at high voltage levels
- 3. Sn-plated external electrodes realizes good solderability.
- 4. Only for reflow soldering.
- 5. The low-profile type (thickness: 1.5mm max.) is available. Fit for use on thinner type equipment.

Dout Number	Dimensions (mm)						
Part Number	L	W	T	g min.			
GR442Q	4.5 ±0.3	2.0 ±0.2	1.5 +0, -0.3	2.5			
GR443D	4.5 ±0.4	3.2 ±0.3	2.0 +0, -0.3	2.2*			
GR443Q	4.5 ±0.4	3.2 ±0.3	1.5 +0, -0.3	2.5			

^{*} GR443DR73D : 2.5mm min.

■ Applications

Ideal for use on telecommunication devices in Ethernet LAN.

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GR442QR73D101KW01L	DC2000	X7R (EIA)	100 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D121KW01L	DC2000	X7R (EIA)	120 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D151KW01L	DC2000	X7R (EIA)	150 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D181KW01L	DC2000	X7R (EIA)	180 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D221KW01L	DC2000	X7R (EIA)	220 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D271KW01L	DC2000	X7R (EIA)	270 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D331KW01L	DC2000	X7R (EIA)	330 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D391KW01L	DC2000	X7R (EIA)	390 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D471KW01L	DC2000	X7R (EIA)	470 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D561KW01L	DC2000	X7R (EIA)	560 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D681KW01L	DC2000	X7R (EIA)	680 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D821KW01L	DC2000	X7R (EIA)	820 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D102KW01L	DC2000	X7R (EIA)	1000 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D122KW01L	DC2000	X7R (EIA)	1200 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D152KW01L	DC2000	X7R (EIA)	1500 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR443QR73D182KW01L	DC2000	X7R (EIA)	1800 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D222KW01L	DC2000	X7R (EIA)	2200 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D272KW01L	DC2000	X7R (EIA)	2700 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D332KW01L	DC2000	X7R (EIA)	3300 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D392KW01L	DC2000	X7R (EIA)	3900 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443DR73D472KW01L	DC2000	X7R (EIA)	4700 ±10%	4.5	3.2	2.0	2.5	0.3 min.

No.	Ite	em	Specifications		Test Method			
1	Operating Temperatu	ıre Range	-55 to +125℃		-			
2	Appearar	ice	No defects or abnormalities	Visual inspection				
3	Dimensio	ns	Within the specified dimensions	Using calipers				
4	Dielectric	electric Strength No defects or abnormalities			observed when voltage in tabations, provided the charge/dis			
7	Dicicotiio	Suchgan	140 delects of abnormalities	Rated voltage	Test Voltage	Time		
				DC2kV	120% of the rated voltage AC1500V (r.m.s.)	60±1 sec. 60±1 sec.		
5	Pulse Voltage (Application : DC2kV item)		No self healing break downs or flash-overs have taken place in the capacitor.	10 impulse of alterna (5 impulse for each The interval between Applied Voltage: 2.9	n impulse is 60 sec.			
6	Insulation F (I.R.)	Resistance	More than $6{,}000M\Omega$	The insulation resist and within 60±5 sec	ance should be measured with c. of charging.	h DC500±50V		
7	Capacita	Capacitance Within the specified tolerance			The capacitance/D.F. should be measured at 25°C at a frequency of 1±0.2kHz and a voltage of AC1±0.2V (r.m.s.) •Pretreatment			
8	Dissipation Factor (D	sipation 0.025 max.			Perform a heat treatment at 150^{+0}_{-10} °C for 60 ± 5 min. and then let sit for 24 ± 2 hrs. at *room condition.			
9	Capacitance 9 Temperature Characteristics		Cap. Change within ±15% (Temp. Range : −55 to +125℃)	The range of capacitance change compared with the 25°C valuation vithin the specified range. •Pretreatment Perform a heat treatment at $150 \pm 9_{\circ}$ °C for 60 ± 5 min. and the let sit for 24 ± 2 hrs. at *room condition.				
10	Adhesive of Termin			Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply 10N force in the direction of the arrow. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 10N, 10±1s Speed: 1.0mm/s Glass Epoxy Board				
		Appearance	No defects or abnormalities	Fig. 1 Solder the capacitor to the test jig (glass epoxy board).				
		Capacitance	Within the specified tolerance	The capacitor should	d be subjected to a simple har	monic motion		
11	Vibration Resistance D.F.		ion tance		having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each 3 mutually perpendicular directions (total of 6 hrs.). Solder resist			

^{* &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

Continued from the preceding page

\overline{A}	Continued fr	om the pred	eding page.			
No.	Ite	em	Specifications	Test Method		
12	2 Deflection		Deflection No cracking or marking defects should occur.			Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 20 50 Pressurizing speed: 1.0mm/s Pressurize Pressurize (in mm) Fig. 3
13	Solderability of Termination		75% of the terminations are to be soldered evenly and continuously	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion).		
		Appearance	No marking defects	Preheat the capacitor at 120 to 150°C* for 1 min.		
		Capacitance Change D.F.	Within ±10% 0.025 max.	Immerse the capacitor in eutectic solder solution at 260±5°C for 10±1 sec. Let sit at *room condition for 24±2 hrs., then measure •Immersing speed : 25±2.5mm/s •Pretreatment		
	Resistance	I.R.	More than $1.000 M\Omega$	Perform a heat treatment at 150± ₁ 8 °C for 60±5 min. and then		
14	to Soldering	I.K.	More than 1,000Ms2	let sit for 24±2 hrs. at *room condition.		
	Heat	Dielectric Strength	In accordance with item No.4	Step Temperature Time 1 100°C to 120°C 1 min. 2 170°C to 200°C 1 min.		
		Appearance	No marking defects	Fix the capacitor to the supporting jig (glass epoxy board) shown		
		Capacitance Change	Within ±15%	in Fig. 4 using a eutectic solder. Perform the 5 cycles according to the 4 heat treatments listed in the following table.		
		D.F.	0.05 max.	Let sit for 24±2 hrs. at *room condition, then measure.		
		I.R.	More than $3,000M\Omega$	Step Temperature (°C) Time (min.)		
				1 Min. Operating Temp.±3 30±3 2 Room Temp. 2 to 3		
				3 Max. Operating Temp.±2 30±3		
	Temperature			4 Room Temp. 2 to 3		
15	Cycle	Dielectric Strength	In accordance with item No.4	Pretreatment Perform a heat treatment at 150 ± 18 ℃ for 60±5 min. and then let sit for 24±2 hrs. at *room condition. Solder resist Glass Epoxy Board Fig. 4		
		Appearance	No marking defects			
	Humidity	Capacitance Change	Within ±15%	Let the capacitor sit at 40±2°C and relative humidity of 90 to 95% for 500±26 hrs. Remove and let sit for 24±2 hrs. at *room condition, then		
16	,	D.F.	0.05 max.	measure.		
	State)	I.R.	More than 1,000M Ω	•Pretreatment		
		Dielectric Strength	In accordance with item No.4	Perform a heat treatment at 150 ± 10 °C for 60±5 min. and then let sit for 24±2 hrs. at *room condition.		

^{* &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

Continued from the preceding page.

_			0 15 11			
No.	Item		Specifications	Test Method		
		Appearance	No marking defects	148		
		Capacitance Change	Within ±20%	Apply 110% of the rated voltage for 1,000 ±48 hrs. at maximum operating temperature ±3°C. Remove and let sit for 24 ±2 hrs. at *room condition, then measure.		
17	Life	D.F.	0.05 max.	The charge/discharge current is less than 50mA.		
		I.R.	More than $2,000 \text{M}\Omega$	Pretreatment Apply test voltage for 60±5 min. at test temperature.		
		Dielectric Strength	In accordance with item No.4	Remove and let sit for 24±2 hrs. at *room condition.		
		Appearance	No marking defects			
	Humidity Loading	Capacitance Change	Within ±15%	Apply the rated voltage at 40±2°C and relative humidity of 90 to 95% for 500±26 hrs. Remove and let sit for 24±2 hrs. at *room condition, then		
18	(Applicat ion :	D.F.	0.05 max.	measure.		
	DC250V	I.R.	More than 10MΩ • μF	Pretreatment Apply test voltage for 60±5 min. at test temperature.		
	item)	Dielectric Strength	In accordance with item No.4	Remove and let sit for 24±2 hrs. at *room condition.		

^{* &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

Chip Monolithic Ceramic Capacitors

AC250V Type (Which Meet Japanese Law)

■ Features

- 1. Chip monolithic ceramic capacitor for AC lines.
- A new monolithic structure for small, high capacitance capable of operating at high voltage levels.
- 3. Sn-plated external electrodes realizes good solderability.
- 4. Only for reflow soldering.
- 5. Capacitance 0.01 to 0.1 uF for connecting lines and 470 to 4700 pF for connecting lines to earth.

■ Applications

Noise suppression filters for switching power supplies, telephones, facsimiles, modems.

■ Reference Standard

GA2 series obtains no safety approval. This series is based on JIS C 5102, JIS C 5150, and the standards of the electrical appliance and material safety law of Japan (separated table 4).

			_	•••					
Part Number	Dimensions (mm)								
Part Number	L	W	Т	e min.	g min.				
GA242Q	4.5 ±0.3	2.0 ±0.2	1.5 +0, -0.3		2.5				
GA243D	4 5 +0 4	3.2 +0.3	2.0 +0, -0.3	0.3					
GA243Q	4.5 ± 0.4 3.2 ± 0.3	3.2 ±0.3	1.5 +0, -0.3	0.3					
GA255D	5.7 ±0.4	5.0 ±0.4	2.0 +0, -0.3						

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA242QR7E2471MW01L	AC250 (r.m.s.)	X7R (EIA)	470pF ±20%	4.5	2.0	1.5	2.5	0.3 min.
GA242QR7E2102MW01L	AC250 (r.m.s.)	X7R (EIA)	1000pF ±20%	4.5	2.0	1.5	2.5	0.3 min.
GA243QR7E2222MW01L	AC250 (r.m.s.)	X7R (EIA)	2200pF ±20%	4.5	3.2	1.5	2.5	0.3 min.
GA243QR7E2332MW01L	AC250 (r.m.s.)	X7R (EIA)	3300pF ±20%	4.5	3.2	1.5	2.5	0.3 min.
GA243DR7E2472MW01L	AC250 (r.m.s.)	X7R (EIA)	4700pF ±20%	4.5	3.2	2.0	2.5	0.3 min.
GA243QR7E2103MW01L	AC250 (r.m.s.)	X7R (EIA)	10000pF ±20%	4.5	3.2	1.5	2.5	0.3 min.
GA243QR7E2223MW01L	AC250 (r.m.s.)	X7R (EIA)	22000pF ±20%	4.5	3.2	1.5	2.5	0.3 min.
GA243DR7E2473MW01L	AC250 (r.m.s.)	X7R (EIA)	47000pF ±20%	4.5	3.2	2.0	2.5	0.3 min.
GA255DR7E2104MW01L	AC250 (r.m.s.)	X7R (EIA)	0.10μF ±20%	5.7	5.0	2.0	2.5	0.3 min.

No.	Ite	em	Specifications	Test Method
1	Operating Temperatu	ıre Range	-55 to +125℃	-
2	Appearan	nce	No defects or abnormalities	Visual inspection
3	Dimensio	ns	Within the specified dimensions	Using calipers
4	4 Dielectric Strength		No defects or abnormalities	No failure should be observed when voltage in table is applied between the terminations for 60±1 sec., provided the charge/discharge current is less than 50mA. Nominal Capacitance Test voltage
5	Insulation F (I.R.)	Resistance	More than $2,000M\Omega$	The insulation resistance should be measured with DC500±50V and within 60±5 sec. of charging.
6	Capacitar	nce	Within the specified tolerance	The capacitance/D.F. should be measured at 25°C at a frequency
7	Dissipation Factor (D		0.025 max.	of 1±0.2kHz and a voltage of AC1±0.2V (r.m.s.) •Pretreatment Perform a heat treatment at 150±18° for 60±5 min. and then let sit for 24±2 hrs. at *room condition.
8	Capacitan Temperati Character	ure	Cap. Change Within ±15% (Temp. Range : −55 to +125°C)	The range of capacitance change compared with the 25°C value within −55 to +125°C should be within the specified range. •Pretreatment Perform a heat treatment at 150±₁8°C for 60±5 min. and then let sit for 24±2 hrs. at *room condition.
9	Discharge Test (Application: Nominal Capacitance C<10,000pF)	Appearance	No defects or abnormalities	As in Fig., discharge is made 50 times at 5 sec. intervals from the capacitor (Cd) charged at DC voltage of specified. R3 R1 Ct: Capacitor under test Cd: $0.001\mu F$ R1: $1,000\Omega$ R2: $100M\Omega$ R3: Surge resistance
10		in Fig. 1 usir direction of t an iron or us		Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply 10N force in the direction of the arrow. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 10N, 10±1s Speed: 1.0mm/s Glass Epoxy Board Fig. 1
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board).
		Capacitance	Within the specified tolerance	The capacitor should be subjected to a simple harmonic motion
11	Vibration Resistance	D.F.	0.025 max.	having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each 3 mutually perpendicular directions (total of 6 hrs.). Solder resist

^{* &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

Continued from the preceding page

7	Continued fr	om the prec	eding page.				
No.	Ite	em	Specifications	Test Method			
12	12 Deflection		No cracking or marking defects should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 20 50 Pressurizing speed: 1.0mm/s Pressurize 10 Flexure=1 11 Capacitance meter 13 (in mm) 14 Fig. 3			
13	Solderab Terminati	-	75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in eutectic solder solution for 2±0.5 sec. at 235±5°C. Immersing speed: 25±2.5mm/s			
14	Humidity Insulation	Appearance Capacitance Change D.F. I.R. Dielectric	No marking defects $Within \pm 15\%$ 0.05 max. $More than 1,000M\Omega$ In accordance with item No.4	The capacitor should be subjected to 40±2°C, relative humidity of 90 to 98% for 8 hrs., and then removed in *room condition for 16 hrs. until 5 cycles.			
	_	Strength Appearance Capacitance Change	No marking defects Within ±10%	Preheat the capacitor as table. Immerse the capacitor in eutectic solder solution at 260±5°C for 10±1 sec. Let sit at *room condition for 24±2 hrs., then measure.			
	Resistance	D.F.	0.025 max.	•Immersing speed : 25±2.5mm/s •Pretreatment Perform a heat treatment at 150 ⁺ ₁ 8 °C for 60±5 min. and then let sit for 24±2 hrs. at *room condition. *Preheating			
15	to Soldering Heat	I.R.	More than $2,000M\Omega$				
		Dielectric Strength	In accordance with item No.4	Step Temperature Time 1 100℃ to 120℃ 1 min. 2 170℃ to 200℃ 1 min.			
		Appearance Capacitance Change	No marking defects Within ±15%	Fix the capacitor to the supporting jig (glass epoxy board) shown in Fig. 4 using a eutectic solder. Perform the 5 cycles according to the 4 heat treatments listed in the following table.			
		D.F.	0.05 max.	Let sit for 24±2 hrs. at *room condition, then measure.			
		I.R.	More than $2,000M\Omega$	Step Temperature (℃) Time (min.) 1 Min. Operating Temp.±3 30±3			
16	Temperature Cycle	Dielectric Strength	In accordance with item No.4	2 Room Temp. 2 to 3 3 Max. Operating Temp.±2 30±3 4 Room Temp. 2 to 3 •Pretreatment Perform a heat treatment at 150 ± 10 °C for 60±5 min. and then let sit for 24±2 hrs. at *room condition.			
* "D	1:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4	ion" Tomp	erature: 15 to 35°C. Relative humiditv: 45 to 75%. Atmospheric	Glass Epoxy Board Fig. 4			

^{* &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

Continued from the preceding page.

No.	Ite	em	Specifications	Test Method
		Appearance	No marking defects	
	Humidity	Capacitance Change	Within ±15%	Let the capacitor sit at 40±2°C and relative humidity of 90 to 95% for 500±26 hrs. Remove and let sit for 24±2 hrs. at *room condition, then
17	(Steady	D.F.	0.05 max.	measure.
	State)	I.R.	More than 1,000MΩ	Pretreatment Perform a heat treatment at 150 ⁺ ₁₀ °C for 60±5 min, and then
		Dielectric Strength	In accordance with item No.4	let sit for 24±2 hrs. at *room condition.
		Appearance	No marking defects	Apply voltage and time as Table at 85±2°C. Remove and let sit
		Capacitance Change Within ±20%	Within ±20%	for 24 ±2 hrs. at *room condition, then measure. The charge / discharge current is less than 50mA.
		D.F.	0.05 max.	Nominal Capacitance Test Time Test voltage C≥10,000pF 1,000 ^{±48} hrs. AC300V (r.m.s.)
18	Life	I.R.	More than 1,000M Ω	C<10,000pF 1,500 ⁺⁴⁸ hrs. AC500V (r.m.s.) *
		Dielectric Strength	In accordance with item No.4	 * Except that once each hour the voltage is increased to AC1,000V (r.m.s.) for 0.1 sec. •Pretreatment Apply test voltage for 60±5 min. at test temperature. Remove and let sit for 24±2 hrs. at *room condition.
		Appearance	No marking defects	
		Capacitance Change	Within ±15%	Apply the rated voltage at $40\pm2^{\circ}$ and relative humidity of 90 to 95% for $500^{\pm2^{\circ}}$ hrs. Remove and let sit for 24 ± 2 hrs. at *room condition, then
19	Humidity Loading	D.F.	0.05 max.	measure.
	Louding	I.R.	More than 1,000MΩ	Pretreatment Apply test voltage for 60±5 min. at test temperature.
		Dielectric Strength	In accordance with item No.4	Remove and let sit for 24±2 hrs. at *room condition.

^{* &}quot;Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Chip Monolithic Ceramic Capacitors

Safety Standard Recognized Type GC (UL, IEC60384-14 Class X1/Y2)

■ Features

- 1. Chip monolithic ceramic capacitor (certified as conforming to safety standards) for AC lines.
- 2. A new monolithic structure for small, high capacitance capable of operating at high voltage levels
- 3. Compared to lead type capacitors, this new capacitor is greatly downsized and low-profiled to 1/10 or less in volume, and 1/4 or less in height.
- 4. The type GC can be used as an X1-class and Y2-class capacitor, line-by-pass capacitor of UL1414.
- 5. +125 degree C guaranteed.
- 6. Only for reflow soldering.

■ Applications

- Ideal for use as Y capacitor or X capacitor for various switching power supplies
- 2. Ideal for modem applications

Part Number		Dimensions (mm)								
Part Number	L	L W T e min. g min.								
GA355D	5.7 ±0.4	5.0 ±0.4	2.0 ±0.3	0.3	4.0					

■ Standard Recognition

	Standard No.	Status of R	Status of Recognition			
	Standard No.	Type GB	Type GC	Voltage		
UL	UL1414	_	0*			
BSI		_	0			
VDE	EN132400	0	0	AC250V		
SEV	EN132400	0	0	(r.m.s.)		
SEMKO		0	0			
EN132400 Class		X2	X1, Y2			

*: Line-By-Pass only

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA355DR7GC101KY02L	AC250 (r.m.s.)	X7R (EIA)	100 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC151KY02L	AC250 (r.m.s.)	X7R (EIA)	150 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC221KY02L	AC250 (r.m.s.)	X7R (EIA)	220 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC331KY02L	AC250 (r.m.s.)	X7R (EIA)	330 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC471KY02L	AC250 (r.m.s.)	X7R (EIA)	470 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC681KY02L	AC250 (r.m.s.)	X7R (EIA)	680 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC102KY02L	AC250 (r.m.s.)	X7R (EIA)	1000 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC152KY02L	AC250 (r.m.s.)	X7R (EIA)	1500 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC222KY02L	AC250 (r.m.s.)	X7R (EIA)	2200 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC332KY02L	AC250 (r.m.s.)	X7R (EIA)	3300 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC472KY02L	AC250 (r.m.s.)	X7R (EIA)	4700 ±10%	5.7	5.0	2.0	4.0	0.3 min.

17

Chip Monolithic Ceramic Capacitors

Safety Standard Recognized Type GD (IEC60384-14 Class Y3)

■ Features

- A new monolithic structure for small, high capacitance capable of operating at high voltage levels.
- 2. The type GD can be used as a Y3-class capacitor.
- 3. Available for equipment based on IEC/EN60950 and UL1950.
- 4. +125 degree C guaranteed.
- 5. Only for reflow soldering.
- 6. The low-profile type (thickness: 1.5mm max.) is available. Fit for use on thinner type equipment.

Applications

- 1. Ideal for use on line filters and couplings for DAA modems without transformers.
- 2. Ideal for use on line filters for information equipment.

	Dimensions (mm)								
Part Number	L	W	T	e min.	g min.				
GA342D	4.5 ±0.3	2.0 ±0.2	2.0 ±0.2*		2.5				
GA342Q	4.5 <u>1</u> 0.5	2.0 ±0.2	1.5 +0, -0.3	0.3					
GA343D	4.5 ±0.4	3.2 ±0.3	2.0 +0, -0.3	0.3	2.5				
GA343Q	4.5 ±0.4		1.5 +0, -0.3						

^{*} GA342D1X : 2.0±0.3

■ Standard Recognition

	Standard	Class	Status of Recognition	Rated	
	No.	Class	Type GD	Voltage	
SEMKO	EN132400	Y3	0	AC250V (r.m.s.)	
Application	ns				

Size	Switching power supplies	Communication network devices such as a modem
4.5×3.2mm and under	_	0

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA342D1XGD100JY02L	AC250 (r.m.s.)	SL (JIS)	10 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD120JY02L	AC250 (r.m.s.)	SL (JIS)	12 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD150JY02L	AC250 (r.m.s.)	SL (JIS)	15 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD180JY02L	AC250 (r.m.s.)	SL (JIS)	18 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD220JY02L	AC250 (r.m.s.)	SL (JIS)	22 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD270JY02L	AC250 (r.m.s.)	SL (JIS)	27 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD330JY02L	AC250 (r.m.s.)	SL (JIS)	33 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD390JY02L	AC250 (r.m.s.)	SL (JIS)	39 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD470JY02L	AC250 (r.m.s.)	SL (JIS)	47 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD560JY02L	AC250 (r.m.s.)	SL (JIS)	56 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD680JY02L	AC250 (r.m.s.)	SL (JIS)	68 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD820JY02L	AC250 (r.m.s.)	SL (JIS)	82 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342QR7GD101KW01L	AC250 (r.m.s.)	X7R (EIA)	100 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD151KW01L	AC250 (r.m.s.)	X7R (EIA)	150 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD221KW01L	AC250 (r.m.s.)	X7R (EIA)	220 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD331KW01L	AC250 (r.m.s.)	X7R (EIA)	330 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD471KW01L	AC250 (r.m.s.)	X7R (EIA)	470 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD681KW01L	AC250 (r.m.s.)	X7R (EIA)	680 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD102KW01L	AC250 (r.m.s.)	X7R (EIA)	1000 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD152KW01L	AC250 (r.m.s.)	X7R (EIA)	1500 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA343QR7GD182KW01L	AC250 (r.m.s.)	X7R (EIA)	1800 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GA343QR7GD222KW01L	AC250 (r.m.s.)	X7R (EIA)	2200 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GA343DR7GD472KW01L	AC250 (r.m.s.)	X7R (EIA)	4700 ±10%	4.5	3.2	2.0	2.5	0.3 min.

Chip Monolithic Ceramic Capacitors

Safety Standard Recognized Type GF (IEC60384-14 Class Y2)

■ Features

- A new monolithic structure for small, high capacitance capable of operating at high voltage levels.
- 2. The type GF can be used as a Y2-class capacitor.
- Available for equipment based on IEC/EN60950 and UL1950. Besides, the GA352/355 types are available for equipment based on IEC/EN60065, UL1492, and UL6500.
- 4. +125 degree C guaranteed.
- 5. Only for reflow soldering.
- 6. The low-profile type (thickness: 1.5mm max.) is available. Fit for use on thinner type equipment.

■ Applications

- Ideal for use on line filters and couplings for DAA modems without transformers.
- 2. Ideal for use on line filters for information equipment.
- Ideal for use as Y capacitor or X capacitor for various switching power supplies. (GA352/355 types only)

Part Number		Dir	mensions (mm)			
Part Number	L	W	T	e min.	g min.	
GA342D	4.5 ±0.3	2.0 ±0.2	2.0 ±0.2*		2.5	
GA342Q	4.5 <u>1</u> 0.5	2.0 ±0.2	1.5 +0, -0.3	0.3	2.5	
GA352Q	5.7 ±0.4	2.8 ±0.3	1.5 +0, -0.3	0.3	4.0	
GA355Q	3.7 ±0.4	5.0 ±0.4	1.5 +0, -0.3		4.0	

^{*} GA342D1X: 2.0±0.3

■ Standard Recognition

7	\			Status of R	ecognition	
		Standard	Class	Туре	e GF	Rated
		No.		Size : 4.5×2.0mm	Size : 5.7×2.8mm and over	Voltage
	UL	UL1414	X1, Y2	_	0	AC250V
	SEMKO	EN132400	Y2	0	0	(r.m.s.)

Α	pp	lica	tioi	าร

Size	Switching power supplies	Communication network devices such as a modem
4.5×2.0mm	_	0
5.7×2.8mm and over	0	0

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA342D1XGF100JY02L	AC250 (r.m.s.)	SL (JIS)	10 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF120JY02L	AC250 (r.m.s.)	SL (JIS)	12 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF150JY02L	AC250 (r.m.s.)	SL (JIS)	15 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF180JY02L	AC250 (r.m.s.)	SL (JIS)	18 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF220JY02L	AC250 (r.m.s.)	SL (JIS)	22 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF270JY02L	AC250 (r.m.s.)	SL (JIS)	27 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF330JY02L	AC250 (r.m.s.)	SL (JIS)	33 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF390JY02L	AC250 (r.m.s.)	SL (JIS)	39 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF470JY02L	AC250 (r.m.s.)	SL (JIS)	47 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF560JY02L	AC250 (r.m.s.)	SL (JIS)	56 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF680JY02L	AC250 (r.m.s.)	SL (JIS)	68 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF820JY02L	AC250 (r.m.s.)	SL (JIS)	82 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342QR7GF101KW01L	AC250 (r.m.s.)	X7R (EIA)	100 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GF151KW01L	AC250 (r.m.s.)	X7R (EIA)	150 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342DR7GF221KW02L	AC250 (r.m.s.)	X7R (EIA)	220 ±10%	4.5	2.0	2.0	2.5	0.3 min.
GA342DR7GF331KW02L	AC250 (r.m.s.)	X7R (EIA)	330 ±10%	4.5	2.0	2.0	2.5	0.3 min.
GA352QR7GF471KW01L	AC250 (r.m.s.)	X7R (EIA)	470 ±10%	5.7	2.8	1.5	4.0	0.3 min.
GA352QR7GF681KW01L	AC250 (r.m.s.)	X7R (EIA)	680 ±10%	5.7	2.8	1.5	4.0	0.3 min.
GA352QR7GF102KW01L	AC250 (r.m.s.)	X7R (EIA)	1000 ±10%	5.7	2.8	1.5	4.0	0.3 min.
GA352QR7GF152KW01L	AC250 (r.m.s.)	X7R (EIA)	1500 ±10%	5.7	2.8	1.5	4.0	0.3 min.
GA355QR7GF182KW01L	AC250 (r.m.s.)	X7R (EIA)	1800 ±10%	5.7	5.0	1.5	4.0	0.3 min.
GA355QR7GF222KW01L	AC250 (r.m.s.)	X7R (EIA)	2200 ±10%	5.7	5.0	1.5	4.0	0.3 min.
GA355QR7GF332KW01L	AC250 (r.m.s.)	X7R (EIA)	3300 ±10%	5.7	5.0	1.5	4.0	0.3 min.

Chip Monolithic Ceramic Capacitors

Safety Standard Recognized Type GB (IEC60384-14 Class X2)

■ Features

- 1. Chip monolithic ceramic capacitor (certified as conforming to safety standards) for AC lines.
- 2. A new monolithic structure for small, high capacitance capable of operating at high voltage levels
- 3. Compared to lead type capacitors, this new capacitor is greatly downsized and low-profiled to 1/10 or less in volume, and 1/4 or less in height.
- 4. The type GB can be used as an X2-class capacitor.
- 5. +125 degree C guaranteed.
- 6. Only for reflow soldering.

■ Applications

Ideal for use as X capacitor for various switching power supplies.

Part Number	Dimensions (mm)							
Part Number	L	W	T	e min.	g min.			
GA355D	5.7 ±0.4	5.0 ±0.4	2.0 ±0.3	0.3	4.0			
GA355X	3.7 ±0.4	3.0 ±0.4	2.7 ±0.3	0.3	4.0			

■ Standard Recognition

	Standard No.	Status of R	Recognition	Rated
	Standard NO.	Type GB	Type GC	Voltage
UL	UL1414	_	0*	
BSI		_	0	
VDE	EN132400	0	0	AC250V
SEV	EN132400	0	0	(r.m.s.)
SEMKO		0	0	
EN13240	0 Class	X2	X1, Y2	

*: Line-By-Pass only

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA355DR7GB103KY02L	AC250 (r.m.s.)	X7R (EIA)	10000 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GB153KY02L	AC250 (r.m.s.)	X7R (EIA)	15000 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GB223KY02L	AC250 (r.m.s.)	X7R (EIA)	22000 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355XR7GB333KY06L	AC250 (r.m.s.)	X7R (EIA)	33000 ±10%	5.7	5.0	2.7	4.0	0.3 min.

No.	Ite	em	Specifications	Test Method		
1	Operating Temperatu	ure Range	−55 to +125°C	-		
2	Appearar	nce	No defects or abnormalities	Visual inspection		
3	Dimensio	ns	Within the specified dimensions	Using calipers		
4	Dielectric	: Strength	No defects or abnormalities	No failure should be observed when voltage in table is applied between the terminations for 60±1 sec., provided the charge/discharge current is less than 50mA. Test voltage Type GB DC1075V Type GC/GD/GF AC1500V (r.m.s.)		
5	Pulse Vol (Applicati GD/GF)		No self healing break downs or flash-overs have taken place in the capacitor.	10 impulse of alternating polarity is subjected. (5 impulse for each polarity) The interval between impulse is 60 sec. Applied Voltage: 2.5kV zero to peak		
6	Insulation F (I.R.)	Resistance	More than $6{,}000M\Omega$	The insulation resistance should be measured with DC500±50V and within 60±5 sec. of charging.		
7	Capacita	nce	Within the specified tolerance	The capacitance/Q/D.F. should be measured at 20℃ at a		
8	Dissipation Factor (D.F.) Q		Char. Specification X7R D.F.≤0.025 SL Q≥400+20C*² (C<30pF)	frequency of 1±0.2kHz (SL char. : 1±0.2MHz) and a voltage of AC1±0.2V (r.m.s.). •Pretreatment for X7R char. Perform a heat treatment at 150±18° c for 60±5 min. and then let sit for 24±2 hrs. at *room condition.		
9	Capacitance Temperature Characteristics		Char. Capacitance Change X7R Within ±15% Temperature characteristic guarantee is −55 to +125°C Char. Temperature Coefficient SL +350 to -1000ppm/°C Temperature characteristic guarantee is +20 to +85°C	The range of capacitance change compared with the 25°C (SL char. : 20°C) value within -55 to $+125$ °C should be within the specified range. •Pretreatment for X7R char. Perform a heat treatment at 150^{+}_{-1} °C for 60 ± 5 min. and then let sit for 24 ±2 hrs. at *'room condition.		
		Appearance	No defects or abnormalities	As in Fig., discharge is made 50 times at 5 sec. intervals from		
		I.R.	More than 1,000M Ω	the capacitor (Cd) charged at DC voltage of specified.		
10	Discharge Test (Application: Type GC)	Dielectric Strength	In accordance with item No.4	R3 R1 Ct R2 R2		
				Ct : Capacitor under test Cd : $0.001\mu F$ R1 : $1,000\Omega$ R2 : $100M\Omega$ R3 : Surge resistance		
11	Adhesive Strength of Termination		No removal of the terminations or other defect should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply 10N force in the direction of the arrow. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 10N, 10±1s Speed: 1.0mm/s Glass Epoxy Board Fig. 1		

^{*1 &}quot;Room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

^{*2 &}quot;C" expresses nominal capacitance value (pF).

Continued from the preceding page.

<u></u>			eding page.						
lo.	Ite	em		Specifications	3			Test Method	
		Appearance	No defects or abnorm	alities			-	acitor to the test jig (glass eposhould be subjected to a simp	-
2	Vibration Resistance	D.F.	X7R D	ecification .F.≦0.025 20C*² (C<30pF)			 having a total a uniformly betw frequency rang traversed in ap 	amplitude of 1.5mm, the frequence the approximate limits of ge, from 10 to 55Hz and return proximately 1 min. This motion 2 hrs. in each 3 mutually pergonal to the second	uency being varied 10 and 55Hz. The n to 10Hz, should be on should be applied
3	Deflection	n	L×W (mm) a 4.5×2.0 3. 4.5×3.2 3. 5.7×2.8 4. 5.7×5.0 4.	100 Dimensi b 5 7.0 5 7.0 5 8.0	t: 1.6	d 1.0	in Fig. 2 using direction show with an iron or	acitor to the testing jig (glass a eutectic solder. Then apply n in Fig. 3. The soldering sho using the reflow method and at the soldering is uniform an 20 50 Pressurizing speed: 1.0m Pressurize Pressurize Capacitance meter	a force in the uld be done either should be conducte d free of defects suc
				Fig. 2			Fig. 3		
4	Solderabi Terminati	•	75% of the terminations	s are to be soldered	d evenly and	I continuously.	rosin (JIS-K-59 Immerse in eur	apacitor in a solution of ethar 102) (25% rosin in weight projectic solder solution for 2±0. 120 seed: 25±2.5mm/s	portion).
		Appearance	No marking defects					apacitor as table. Immerse the solution at 260±5°C for 10±	•
5	Capacitar Change Resistance to Soldering		X7R Within ±:	itance Change ithin ±10% 2.5% or ±0.25pF ver is larger)	_ - -		*¹room conditi •Immersing sp •Pretreatment Perform a hea	on for 24±2 hrs., then measu need : 25±2.5mm/s	ure.
	Heat	I.R.	More than 1,000M Ω						
		Dielectric Strength	In accordance with ite	m No.4			*Preheating Step 1	Temperature 100°C to 120°C	Time 1 min.

^{*1 &}quot;Room condition" Temperature : 15 to 35℃, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

^{*2 &}quot;C" expresses nominal capacitance value (pF).

Continued from the preceding page.

No.	Ite	em	Specifications	Test Method
		Appearance Capacitance Change	No marking defects Char. Capacitance Change X7R Within ±15% SL Within ±2.5% or ±0.25pF	Fix the capacitor to the supporting jig (glass epoxy board) shown in Fig. 4 using a eutectic solder. Perform the 5 cycles according to the 4 heat treatments listed in the following table. Let sit for 24±2 hrs. at *1room condition, then measure.
16	Temperature Cycle	D.F. Q	Char. Specification X7R	Step Temperature (°C) Time (min.) 1 Min. Operating Temp.±3 30±3 2 Room Temp. 2 to 3 3 Max. Operating Temp.±2 30±3 4 Room Temp. 2 to 3 • Pretreatment for X7R char. Perform a heat treatment at 150±10° for 60±5 min. and then let sit for 24±2 hrs. at *room condition.
		Dielectric Strength	In accordance with item No.4	Solder resist Glass Epoxy Board Fig. 4
		Appearance	No marking defects	Ţ
		Capacitance Change	Char. Capacitance Change X7R Within ±15% SL Within ±5.0% or ±0.5pF (Whichever is larger)	Let the capacitor sit at 40±2°C and relative humidity of 90 to 95% for 500±12 hrs.
17	Humidity (Steady State)	D.F. Q	Char. Specification X7R D.F.≤0.05 SL Q≥275+5/2C*² (C<30pF)	Remove and let sit for 24±2 hrs. at *¹room condition, then measure. •Pretreatment for X7R char. Perform a heat treatment at 150±18°C for 60±5 min. and ther let sit for 24±2 hrs. at *¹room condition.
		I.R.	More than 3,000MΩ	
		Dielectric Strength	In accordance with item No.4	
		Appearance Capacitance Change	No marking defects Char. Capacitance Change X7R Within ±20% SL Within ±3.0% or ±0.3pF (Whichever is larger)	Impulse Voltage Each individual capacitor should be subjected to a 2.5kV (Type GC/GF: 5kV) Impulses (the voltage value means zero to peak) for three times. Then the capacitors are applied to life test.
18	Life	D.F. Q	Char. Specification X7R D.F.≤0.05 SL Q≥275+5/2C*² (C<30pF)	Apply voltage as Table for 1,000 hrs. at 125 $^{+2}_{-0}$ °C, relative humidity 50% max. Type Applied voltage AC312.5V (r.m.s.), except that once each hour the
		I.R.	More than 3,000MΩ	voltage is increased to AC1,000V (r.m.s.) for 0.1 sec.
		Dielectric Strength	In accordance with item No.4	GD GF AC425V (r.m.s.), except that once each hour the voltage is increased to AC1,000V (r.m.s.) for 0.1 sec. Let sit for 24±2 hrs. at *¹room condition, then measure. •Pretreatment for X7R char. Perform a heat treatment at 150 ± 18 °C for 60±5 min. and then let sit for 24±2 hrs. at *¹room condition.

^{*1 &}quot;Room condition" Temperature : 15 to 35℃, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

^{*2 &}quot;C" expresses nominal capacitance value (pF).

Continued from the preceding page.

		om the proof	g pg	
No.	Ite	em	Specifications	Test Method
		Appearance	No marking defects	
		Capacitance Change	Char. Capacitance Change X7R Within ±15% SL Within ±5.0% or ±0.5pF (Whichever is larger)	Apply the rated voltage at 40±2°C and relative humidity of 90 to 95% for 500±2°c hrs. Remove and let sit for 24±2 hrs. at *troom
19	Humidity Loading	D.F. Q	Char. Specification X7R D.F.≦0.05 SL Q≥275+5/2C*² (C<30pF)	condition, then measure. •Pretreatment for X7R char. Perform a heat treatment at 150 ± 18 ℃ for 60±5 min. and then let sit for 24±2 hrs. at *¹room condition.
		I.R. More than $3{,}000\text{M}\Omega$	More than $3{,}000M\Omega$	
		Dielectric Strength	In accordance with item No.4	

^{*1 &}quot;Room condition" Temperature : 15 to 35℃, Relative humidity : 45 to 75%, Atmospheric pressure : 86 to 106kPa

^{*2 &}quot;C" expresses nominal capacitance value (pF).

GRM/GR4/GA2/GA3 Series Data (Typical Example)

■ Capacitance-Temperature Characteristics

■ Impedance-Frequency Characteristics

GRM/GR4/GA2/GA3 Series Data (Typical Example)

Continued from the preceding page.

■ Impedance-Frequency Characteristics

GRM Series (X7R Char. 250V)

Continued on the following page. $\begin{tabular}{|c|c|c|c|}\hline \end{tabular}$

GRM/GR4/GA2/GA3 Series Data (Typical Example)

(Variable) Continued from the preceding page.

■ Impedance-Frequency Characteristics

■ Capacitance-AC Voltage Characteristics

GA3 Series (Type GC)

GA3 Series (Type GD/GF, X7R char.)

Package

Taping is standard packaging method.

■ Minimum Quantity Guide

		Dimensions (mm)		n)	Quantity (pcs.)		
Part Nur	mber				φ180mm reel		
		L	W	T	Paper Tape	Plastic Tape	
	GRM18	1.6	0.8	0.8	4,000	-	
	GRM21	2.0	1.25	1.0	4,000	-	
	GINWIZI	2.0	1.23	1.25	-	3,000	
				1.0	4,000	-	
	GRM31/GR431	3.2	1.6	1.25	-	3,000	
				1.6	-	2,000	
	GRM32/GR432	3.2	2.5	1.5	-	2,000	
Medium-voltage	GRW32/GR432	3.2	2.5	2.0	-	1,000	
				1.0	-	3,000	
	CDM42/CD442	4.5	2.0	1.25	-	2,000	
	GRM42/GR442	4.5	2.0	1.5	-	2,000	
				2.0	-	2,000	
	GRM43/GR443	4.5		1.5	-	1,000	
			3.2	2.0	-	1,000	
				2.5	-	500	
	GRM55/GR455	5.7	5.0	2.0	-	1,000	
	GA242	4.5	2.0	1.5	-	2,000	
400501/	GA243			1.5	-	1,000	
AC250V		4.5	3.2	2.0	-	1,000	
	GA255	5.7	5.0	2.0	-	1,000	
	04242	4.5	0.0	1.5	-	2,000	
	GA342	4.5	2.0	2.0	-	2,000	
0.61.011	CA242	4.5	2.2	1.5	-	1,000	
Safety Std. Recognition	GA343	4.5	3.2	2.0	-	1,000	
Recognition	CASES	F 7	2.0	1.5	-	1,000	
	GA352	5.7	2.8	2.0	-	1,000	
				1.5	-	1,000	
	GA355	5.7	5.0	2.0	-	1,000	
				2.7	-	500	

■ Tape Carrier Packaging

- (1) Appearance of Taping
- 1) Plastic Tape

2 Paper Tape

muRata

Package

- Continued from the preceding page.
- (2) Dimensions of Tape
- ① Plastic Tape

Part Number	A*	B*
GRM21 (T≧1.25mm)	1.45	2.25
GRM31/GR431 (T≧1.25mm)	2.0	3.6
GRM32/GR432	2.9	3.6

*Nominal Value

12mm width 8mm/4mm pitch Tape

Part Number	A*	B*
GRM42/GR442/GA242/GA342	2.5	5.1
GRM43/GR443/GA243/GA343	3.6	4.9
GA252/GA352	3.2	6.1
GRM55/GR455/ GA255/GA355	5.4	6.1

^{*1 4.0±0.1}mm in case of GRM42/GR442/GA242/GA342

*Nominal Value

(in mm)

2 Paper Tape

Part Number	A*	B*
GRM18	1.05	1.85
GRM21 (T=1.0mm)	1.45	2.25
GRM31 (T=1.0mm)	2.0	3.6

*Nominal value (in mm)

(3) Dimensions of Reel

Package

- Continued from the preceding page.
- (4) Taping Method
 - ① Tapes for capacitors are wound clockwise. The sprocket holes are to the right as the tape is pulled toward the user.
 - 2 Part of the leader and part of the empty tape shall be attached to the end of the tape as shown at right.
 - 3 The top tape or cover tape and base tape are not attached at the end of the tape for a minimum of 5 pitches.
 - 4 Missing capacitors number within 0.1% of the number per reel or 1 pc, whichever is greater, and are not continuous.
 - 5 The top tape or cover tape and bottom tape shall not protrude beyond the edges of the tape and shall not cover sprocket holes.
 - 6 Cumulative tolerance of sprocket holes, 10 pitches:
 - 7 Peeling off force: 0.1 to 0.7N in the direction shown at right.

■ Storage and Operating Conditions

Operating and storage environment
Do not use or store capacitors in a corrosive
atmosphere, especially where chloride gas, sulfide
gas, acid, alkali, salt or the like are present. And
avoid exposure to moisture. Before cleaning, bonding
or molding this product, verify that these processes
do not affect product quality by testing the
performance of a cleaned, bonded or molded product
in the intended equipment. Store the capacitors

where the temperature and relative humidity do not exceed 5 to 40 degrees centigrade and 20 to 70%. Use capacitors within 6 months. Check the solderability after 6 months or more. FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

■ Handling

- Vibration and impact
 Do not expose a capacitor to excessive shock or vibration during use.
- 2. Do not directly touch the chip capacitor, especially the ceramic body. Residue from hands/fingers may create a short circuit environment.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

■ Caution (Rating)

1. Operating Voltage

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range.

When the voltage is applied to the circuit, starting or stopping may generate irregular voltage for a transit period because of resonance or switching. Be sure to use a capacitor with a rated voltage range that includes these irregular voltages.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage (1)	Pulse Voltage (2)
Positional Measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

2. Operating Temperature and Self-generated Heat

(1) In case of X7R char. and GA3 series SL char. Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a highfrequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. Applied voltage should be the load such as selfgenerated heat is within 20°C on the condition of atmosphere temperature 25°C. When measuring, use a thermocouple of small thermal capacity-K of Ø0.1mm in conditions where the capacitor is not affected by radiant heat from other components or surrounding ambient fluctuations. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

(2) In case of COG/R char.

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a high-frequency current, pulse current or similar current, it may self-generate heat due to dielectric loss.

The frequency of the applied sine wave voltage should be less than 500kHz (less than 100kHz in case of rated voltage: DC3.15kV). The applied voltage should be less than the value shown in figure at right.

In case of non-sine wave which include a harmonic frequency, please contact our sales representatives or product engineers. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running.

Otherwise, accurate measurement cannot be ensured.)

Continued from the preceding page

(3) In case of GRM series SL char.

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a highfrequency current, pulse current or similar current, it may self-generate heat due to dielectric loss.

The frequency of the applied sine wave voltage should be less than 500kHz. The applied voltage should be less than the value shown in figure at right.

In case of non-sine wave which include a harmonic frequency, please contact our sales representatives or product engineers. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running.

Otherwise, accurate measurement cannot be ensured.)

3. Test condition for AC withstanding Voltage

(1) Test Equipment

Tests for AC withstanding voltage should be made with equipment capable of creating a wave similar to a 50/60 Hz sine wave.

If the distorted sine wave or overload exceeding the specified voltage value is applied, a defect may be caused.

(2) Voltage applied method

The capacitor's leads or terminals should be firmly connected to the output of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage. If the test voltage is applied directly to the capacitor without raising it from near zero, it should be applied with the *zero cross. At the end of the test time, the test voltage should be reduced to near zero, and then the capacitor's leads or terminals should be taken off the output of the withstanding voltage test equipment. If the test voltage is applied directly to the capacitor without raising it from near zero, surge voltage may occur and cause a defect.

*ZERO CROSS is the point where voltage sine wave pass 0V.

- See the figure at right -

Continued from the preceding page.

4. Fail-Safe

Failure of a capacitor may result in a short circuit. Be sure to provide an appropriate fail-safe function such as a fuse on your product to help eliminate possible electric shock, fire, or fumes.

Please consider using fuses on each AC line if the capacitors are used between the AC input lines and earth (line bypass capacitors), to prepare for the worst case, such as a short circuit.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

■ Caution (Soldering and Mounting)

- Vibration and Impact
 Do not expose a capacitor to excessive shock or vibration during use.
- 2. Circuit Board Material
 In case that chip size is 4.5×3.2mm or more, a metal-board or metal-frame such as Aluminum board is not available because soldering heat causes expansion and shrinkage of a board or frame, which will cause a chip to crack.

3. Land Layout for Cropping PC Board

Choose a mounting position that minimizes the stress

imposed on the chip during flexing or bending of the board.

Continued on the following page.

139

Continued from the preceding page.

4. Soldering (Prevention of the thermal shock) If a chip component is heated or cooled abruptly during soldering, it may crack due to the thermal shock. To prevent this, follow our recommendations below for adequate soldering conditions.

Carefully perform pre-heating so that temperature difference (ΔT) between the solder and component surface is in the following range. When components are immersed in solvent after mounting, pay special attention to keep the temperature difference within 100°C.

Chip Size Soldering Method	3.2×1.6mm and under	3.2×2.5mm and over
Reflow Method or Soldering Iron Method	ΔT≦190°C	ΔΤ≦130°C
Flow Method or Dip Soldering Method	ΔT≦150°C	

When correcting chips with a soldering iron, no preheating is required if the chip is listed in following table and the following conditions are met. Preheating should be performed on chips not listed in following table.

Item	Conditions		
Chip Size	≦2.0×1.25mm	3.2×1.6mm	
Temperature of Iron tip	300°C max.	270°C max.	
Soldering Iron Wattage	20W max.		
Diameter of Iron tip	φ 3.0mm max.		
Soldering Time	3 sec. max.		
Caution	Do not allow the touch the cerami		

Infrared Reflow Soldering Conditions (Example)

Flow Soldering Conditions (Example)

Vapor Reflow Soldering (VPS) Conditions (Example)

Dip Soldering/Soldering Iron Conditions (Example)

5. Soldering Method

GR/GA products whose sizes are 3.2×1.6mm and under for flow and reflow soldering, and other sizes for reflow

Be sure to contact our sales representatives or engineers in case that GR/GA products (size 3.2×2.5mm and over) are to be mounted with flow soldering. It may crack due to the thermal shock.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND FUMING WHEN THE PRODUCT IS USED.

■ Notice (Soldering and Mounting)

- 1. Mounting of Chips
- Mechanical shock of the chip placer
 When the positioning claws and pick-up nozzle are worn, the load is applied to the chip while positioning is concentrated in one position, thus causing cracks, breakage, faulty positioning accuracy, etc.
 Careful checking and maintenance are necessary to prevent unexpected trouble.

An excessively low bottom dead point of the suction nozzle imposes great force on the chip during mounting, causing cracked chips. Please set the suction nozzle's bottom dead point on the upper surface of the board.

2. Construction of Board Pattern

After installing chips, if solder is excessively applied to the circuit board, mechanical stress will cause destruction resistance characteristics to lower. To prevent this, be extremely careful in determining shape and dimension before designing the circuit board diagram.

Termination Thickness of Chip Capacitor and Desirable Thickness of Adhesives Applied

Construction and Dimensions of Pattern (Example)

Preparing slit helps flux cleaning and resin coating on the back of the capacitor.

Flow Soldering

L×W	a	b	С
1.6×0.8	0.6-1.0	0.8-0.9	0.6-0.8
2.0×1.25	1.0-1.2	0.9-1.0	0.8-1.1
3.2×1.6	2.2-2.6	1.0-1.1	1.0-1.4

Reflow Soldering

L×W	а	b	С	d	е
1.6×0.8	0.6-0.8	0.6-0.7	0.6-0.8	-	-
2.0×1.25	1.0-1.2	0.9-1.0	0.8-1.1	-	-
3.2×1.6	2.2-2.4	0.8-0.9	1.0-1.4	1.0-2.0	3.2-3.7
3.2×2.5	2.0-2.4	1.0-1.2	1.8-2.3	1.0-2.0	4.1-4.6
4.5×2.0	2.8-3.4	1.2-1.4	1.4-1.8	1.0-2.8	3.6-4.1
4.5×3.2	2.8-3.4	1.2-1.4	2.3-3.0	1.0-2.8	4.8-5.3
5.7×2.8	4.0-4.6	1.4-1.6	2.1-2.6	1.0-4.0	4.4-4.9
5.7×5.0	4.0-4.6	1.4-1.6	3.5-4.8	1.0-4.0	6.6-7.1

(in mm)

Continued from the preceding page.

Land Layout to Prevent Excessive Solder

	Mounting Close to a Chassis	Mounting with Leaded Components	Mounting Leaded Components Later
Examples of Arrangements to be Avoided	Chassis Solder (Ground solder) Adhesive Base board Land Pattern in section	Lead Wire Connected to a Part Provided with Lead Wires.	Soldering Iron Lead Wire of Component to be Connected Later. in section
Examples of Improvements by the Land Division	Solder Resist	Solder Resist in section	Solder Resist in section
	in section	in section	in section

3. Soldering

(1) Care for minimizing loss of the terminations. The information below illustrates the soldering conditions needed to minimize the loss of the effective area on the terminations.

Depending on the conditions of the soldering temperature and/or immersion (melting time), effective areas may be lost in some part of the terminations.

To prevent this, be careful in soldering so that any possible loss of the effective area on the terminations will securely remain at a maximum of 25% on all edge length A-B-C-D-A of part with A, B, C, D, shown in the Figure below.

In case of repeated soldering, the accumulated soldering time must be within the range shown above.

(2) Flux

142

• Use rosin-type flux and do not use a highly acidic flux (any containing a minimum of 0.2wt% chlorine).

(3) Solder Buildup

① Flow soldering and iron soldering

When soldering, use less than the maximum and more than the minimum solder buildup as shown in the illustration to the right.

During the soldering process, insure that the solder is securely placed.

Continued from the preceding page.

2 Reflow soldering

When soldering, confirm that the solder is placed over 0.2mm of the surface of the terminations.

4. Cleaning

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum. Do not vibrate the PWBs.

5. Resin Coating

- When selecting resin materials, select those with low contraction and low moisture absorption coefficient (generally epoxy resin is used).
- Buffer coat can decrease the influence of the resin shrinking (generally silicone resin).

■ Rating

Capacitance change of capacitor

- 1. In case of X7R char.
 - Capacitors have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor is left on for a long time. Moreover, capacitance might change greatly depending on the surrounding temperature or an applied voltage. So, it is not likely to be
- suitable for use in a time constant circuit.

 Please contact us if you need detailed information.
- In case of C0G/R/SL char.
 Capacitance might change a little depending on the surrounding temperature or an applied voltage.
 Please contact us if you intend to use this product in a strict time constant circuit.

ISO 9000 Certifications

Plant	Certified Date	Organization	Registration No.
Fukui Murata Manufacturing Co., Ltd.	Apr. 2, '97	UL *1	A5287
Izumo Murata Manufacturing Co., Ltd.	Jul. 25, '97	ISO9001	A5587
Murata Electronics Singapore (Pte.) Ltd.	Nov. 3, '99	PSB *2 ISO9001	99-2-1085
Murata Manufacturing (UK) Ltd.	Jun. 24, '98	BSI *3 ISO9001	FM 22169
Murata Amazonia Industria Comercio Ltda.	Jul. 28, '98	FUNDACAO VANZOLINI ISO9002	SQ-480-675/98
Murata Electronics North America State College Plant	Mar. 7, '96	UL *1 ISO9001	A1734
Beijing Murata Electronics Co., Ltd.	Dec. 10, '98	UL *1 ISO9002	A7123

^{*1} UL : Underwriters Laboratories Inc.

^{*2} PSB : Singapore Productivity and Standards Board

^{*3} BSI : British Standards Institution

⚠ Note:

1. Export Control

(For customers outside Japan)

Murata products should not be used or sold for use in the development, production, stockpiling or utilization of any conventional weapons or mass-destructive weapons (nuclear weapons, chemical or biological weapons, or missiles), or any other weapons.

For products which are controlled items subject to the "Foreign Exchange and Foreign Trade Law" of Japan, the export license specified by the law is required for export.

- 2. Please contact our sales representatives or product engineers before using the products in this catalog for the applications listed below, which require especially high reliability for the prevention of defects which might directly damage to a third party's life, body or property, or when one of our products is intended for use in applications other than those specified in this catalog.
 - Aircraft equipment
 Undersea equipment
- ② Aerospace equipment④ Power plant equipment
- Medical equipment
- 6 Transportation equipment (vehicles, trains, ships, etc.)
- 7 Traffic signal equipment
- Disaster prevention / crime prevention equipment
- Data-processing equipment
- (1) Application of similar complexity and/or reliability requirements to the applications listed in the above
- 3. Product specifications in this catalog are as of August 2003. They are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering. If there are any questions, please contact our sales representatives or product engineers.
- 4. Please read rating and ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
- 5. This catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
- 6. Please note that unless otherwise specified, we shall assume no responsibility whatsoever for any conflict or dispute that may occur in connection with the effect of our and/or a third party's intellectual property rights and other related rights in consideration of your use of our products and/or information described or contained in our catalogs. In this connection, no representation shall be made to the effect that any third parties are authorized to use the rights mentioned above under licenses without our consent.
- 7. No ozone depleting substances (ODS) under the Montreal Protocol are used in our manufacturing process.

http://www.murata.com/