ASYNCHRONOUS SRAM

128K x 8 SRAM

WITH TWO CHIP ENABLE TRADITIONAL PINOUT

FEATURES

- Fast access times: 10, 12, 15and 20ns
- Fast OE# access times: 5, 6, 7 and 8ns
- Single $+5V \pm 10\%$ power supply
- · Fully static -- no clock or timing strobes necessary
- All inputs and outputs are TTL-compatible
- Three state outputs
- Easy memory expansion with CE1#, CE2 and OE# options
- High-performance, low-power consumption, CMOS double-poly, double-metal process

OPTIONS	MARKING
• Timing	
10ns access	-10
12ns access	-12
15ns access	-15
20ns access	-20
Packages	
32-pin SOJ (400 mil)	J
32-pin SOJ (300 mil)	SJ
32-pin TSOP (type I)	TS
Power consumption	

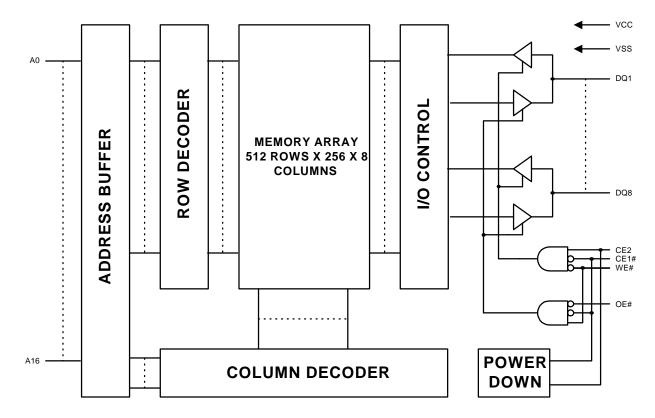
Power consumption
Standard
Low
L

٠	Temperature		
	Commercial	None	$(0^{\circ}C \text{ to } 70^{\circ}C)$
	Industrial	Ι	$(-40^{\circ}C \text{ to } 85^{\circ}C)$

GENERAL DESCRIPTIO N

The GVT72024A8 is organized as a 131,072 x 8 SRAM using a four-transistor memory cell with a high performance, silicon gate, low-power CMOS process. Galvantech SRAMs are fabricated using double-layer polysilicon, double-layer metal technology.

Static design eliminates the need for external clocks or timing strobes. For increased system flexibility and eliminating bus contention problems, this device offers two chip enables (CE1# and CE2) along with output enable (OE#) for this organization.


The chip is enabled when CE1# is LOW and CE2 is HIGH. With chip being enabled, writing to this device is accomplished when write enable (WE#) is LOW and reading is accomplished when (OE#) go LOW with (WE#) remaining HIGH. The device offers a low power standby mode when chip is not selected. This allows system designers to meet low standby power requirements.

PIN ASSIGNMENT 32-Pin SOJ						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	32 VCC 31 A15 30 CE2 29 WE# 21 A13 27 A8 28 A9 25 A11 24 OE# 25 CE1# 21 DQ8 22 DQ6 18 DQ5 17 DQ4					

	PIN ASSIGNMENT 32-Pin TSOP (Type I)	
A11 🗖 ' C)	32 OE#
A9 🗖 2	·	31 🗖 A10
A8 🗖 3		30 CE1#
A13 🗖 4		29 DQ8
WE# 🗖 5		28 DQ7
CE2 🗖 6		27 DQ6
A15 🗖 7		26 🗖 DQ5
VCC 🗖 8		25 DQ4
NC 🗖 🤋		24 🔲 VSS
A16 🗖 10		23 🗖 DQ3
A14 🗖 11		22 DQ2
A12 🗖 12		21 DQ1
A7 🗖 13		20 🗖 A0
A6 🗖 14		19 🗖 A1
A5 🗖 15		18 🗖 A2
A4 🗖 16		17 🗖 A3
	•	

GVT72024A8 TRADITIONAL PINOUT 128K X 8 SRAM

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

MODE	CE1#	CE2	WE#	OE#	DQ	POWER
READ	L	Н	Н	L	Q	ACTIVE
WRITE	L	Н	L	Х	D	ACTIVE
OUTPUT DISABLE	L	Н	Н	Н	HIGH-Z	ACTIVE
STANDBY	Н	Х	Х	Х	HIGH-Z	STANDBY
STANDBY	Х	L	Х	Х	HIGH-Z	STANDBY

PIN DESCRIPTIONS

SOJ & DIP Pin Numbers	TSOP Pin Numbers	SYMBOL	TYPE	DESCRIPTION
	20, 19, 18, 17, 16, 15, 14, 13, 3, 2, 31, 1, 12, 4, 11, 7, 10	A0-A16	Input	Addresses Inputs: These inputs determine which cell is addressed .
29	5	WE#	Input	Write Enable: This input determines if the cycle is a READ or WRITE cycle. WE# is LOW for a WRITE cycle and HIGH for a READ cycle .
22, 30	30, 6	CE1#, CE2	Input	Chip Enables: These inputs are used to enable the device. When CE1# is LOW and CE2 is HIGH, the chip is selected. When either CE1# is HIGH or CE2 is LOW, the chip is disabled and automatically goes into standby power mode .
24	32	OE#	Input	Output Enable: This active LOW input enables the output drivers .
13, 14, 15, 17, 18, 19, 20, 21	21, 22, 23, 25, 26, 27, 28, 29	DQ1-DQ8	Input/ Output	SRAM Data I/O: Data inputs and data output s
32	8	VCC	Supply	Power Supply: 5V ±10%
16	24	VSS	Supply	Ground

2

GVT72024A8 TRADITIONAL PINOUT 128K X 8 SRAM

ABSOLUTE MAXIMUM RATINGS *

Voltage on VCC Supply Relative to VSS	0.5V to +7.0V
V _{IN} 0.5	V to VCC+0.5V
Storage Temperature (plastic)	$\dots -55^{\circ}C \text{ to } +125^{\circ}$
Junction Temperature	+125°
Power Dissipation	1.2W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability

DC ELECTRICAL CHARACTERISTICS AND RECOMMENDED OPERATING CONDITION S

(All Temperature Ranges; VCC = $5V \pm 10\%$ unless otherwise noted)

DESCRIPTION	CONDITIONS	SYMBOL	MIN	МАХ	UNITS	NOTES
Input High (Logic 1) voltage		V _{IH}	2.2	VCC+1	V	1, 2
Input Low (Logic 0) Voltage		VII	-0.5	0.8	V	1, 2
Input Leakage Current	0V <u><</u> V _{IN} <u><</u> VCC	IL	-5	5	uA	
Output Leakage Current	Output(s) disabled, $0V \le V_{OUT} \le VCC$	IL _O	-5	5	uA	
Output High Voltage	I _{OH} = -4.0mA	V _{OH}	2.4		V	1
Output Low Voltage	I _{OL} = 8.0mA	V _{OL}		0.4	V	1
Supply Voltage		VCC	4.5	5.5	V	1

DESCRIPTION	CONDITIONS	SYM	TYP	POWER	-10	-12	-15	-20	UNITS	NOTES
Power Supply	Device selected; CE1# \leq V _{IL} & CE2 \geq V _{IH} ;	lcc	80	standard	210	180	150	110	mA	3, 14
Current: Operating	VCC =MAX; f=f _{MAX} ; outputs open			low	200	170	140	110		
TTL Standby	CE1# \geq V _{IH} or CE2 \leq V _{IL} ; VCC = MAX;	I _{SB1}	20	standard	60	55	50	40	mA	14
	f=f _{MAX}			low	45	40	35	30		
CMOS Standby	CE1# <u>></u> VCC -0.2 or CE2 <u><</u> VSS +0.2;	I _{SB2}	0.02	standard	10	10	10	10	mA	14
	VCC = MAX; all other inputs \leq VSS +0.2 or \geq VCC -0.2; all inputs static; f= 0			low	1.0	1.0	1.0	1.0		

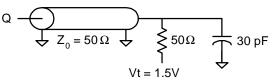
CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	МАХ	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1 MHz	CI	6	pF	4
Input/Output Capacitance (DQ)	VCC = 5V	C _{I/O}	8	pF	4

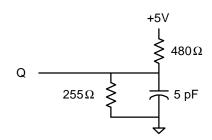
GVT72024A8 TRADITIONAL PINOUT 128K X 8 SRAM

AC ELECTRICAL CHARACTERISTICS

(Note 5) (All Temperature Ranges; VCC = $5V \pm 10\%$)


DECODIDITION	- 10		10	- '	12	- '	15	- :	20		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAN	UNITS	NOTES
READ Cycle											
READ cycle time	^t RC	10		12		15		20		ns	
Address access time	^t AA		10		12		15		20	ns	
Chip Enable access time	^t ACE		10		12		15		20	ns	
Output hold from address change	^t OH	3		4		4		4		ns	
Chip Enable to output in Low-Z	^t LZCE	3		4		4		4		ns	4, 7
Chip disable to output in High-Z	^t HZCE		5		6		7		8	ns	4, 6, 7
Output Enable access time	^t AOE		5		6		7		8	ns	
Output Enable to output in Low-Z	^t LZOE	0		0		0		0		ns	
Output Enable to output in High-Z	^t HZOE		5		6		7		8	ns	4, 6
Chip Enable to power-up time	^t PU	0		0		0		0		ns	4
Chip disable to power-down time	^t PD		10		12		15		20	ns	4
WRITE Cycle											
WRITE cycle time	^t WC	10		12		15		20		ns	
Chip Enable to end of write	^t CW	8		8		9		10		ns	
Address valid to end of write, with OE# HIGH	^t AW	8		8		9		10		ns	
Address setup time	^t AS	0		0		0		0		ns	
Address hold from end of write	^t AH	0		0		0		0		ns	
WRITE pulse width	^t WP2	10		10		11		12		ns	
WRITE pulse width, with OE# HIG H	^t WP1	8		8		9		10		ns	
Data setup time	^t DS	6		6		7		8		ns	
Data hold time	^t DH	0		0		0		0		ns	
Write disable to output in Low-Z	^t LZWE	3		4		5		5		ns	4, 7
Write Enable to output in High-Z	^t HZWE		5		6		7		8	ns	4, 6, 7

GVT72024A8 TRADITIONAL PINOUT 128K X 8 SRAM


AC TEST CONDITIONS

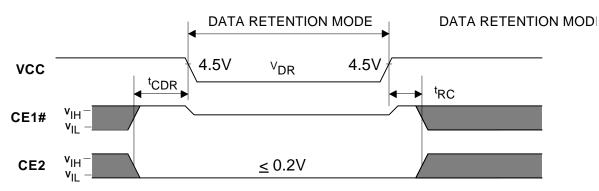
Input pulse levels	0V to 3.0V
Input rise and fall times	1.5ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

OUTPUT LOADS

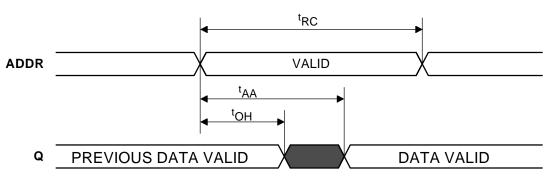
Fig. 1 OUTPUT LOAD EQUIVALENT

Fig. 2 OUTPUT LOAD EQUIVALENT

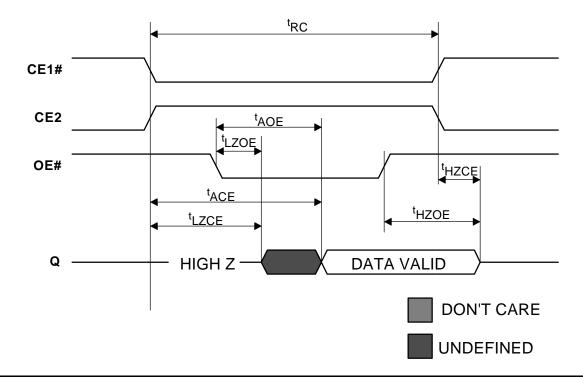
- NOTES
- 1. All voltages referenced to VSS (GND).
- 2. Overshoot: $V_{IH} \le +7.0V$ for $t \le {}^{t}RC/2$. Undershoot: $V_{IL} \le -2.0V$ for $t \le {}^{t}RC/2$
- 3. I_{cc} is given with no output current. I_{cc} increases with greater output loading and faster cycle times
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- 6. Output loading is specified with $C_L=5pF$ as in Fig. 2. Transition is measured $\pm 500mV$ from steady state voltage.
- At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE and ^tHZWE is less than ^tLZWE.

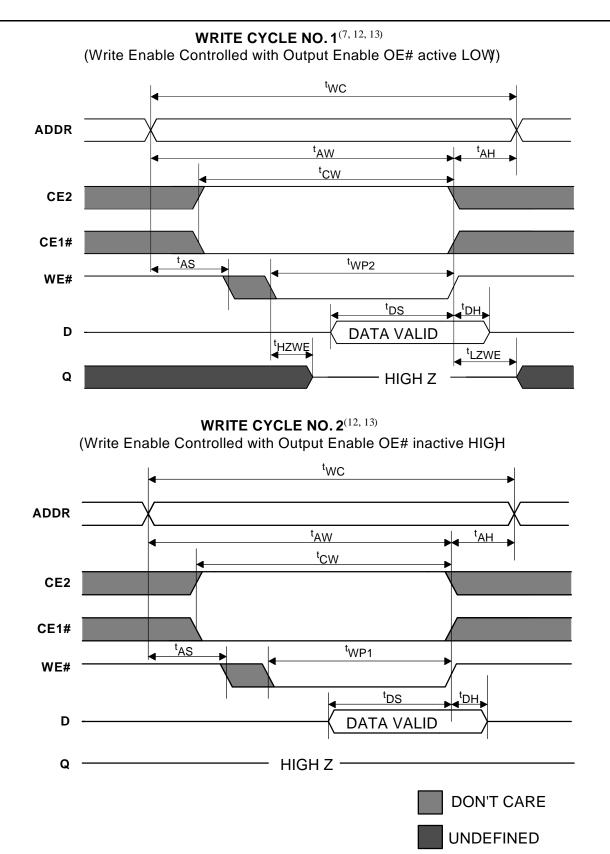

- 8. WE# is HIGH for READ cycle.
- 9. Device is continuously selected. Chip enable and output enables are held in their active state.
- 10. Address valid prior to, or coincident with, latest occurring chip enable.
- 11. t_{RC} = Read Cycle Time.
- 12. Chip Enable and Write Enable can initiate and terminate a WRITE cycle.
- 13. Capacitance derating applies to capacitance different from the load capacitance shown in Fig. 1.
- 14. Typical values are measured at 5V, 25°C and 20ns cycle time.

DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)


DESCRIPTION	CONDITIONS		SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Vcc for Retention Data			Vdr	2			V	
Data Retention Current	CE1# \geq VCC -0.2 or CE2 \leq VSS +0.2; all other inputs \leq VSS +0.2 or \geq VCC -0.2; all inputs static; f= 0	Vcc = 2V	ICCDR		2	400	uA	13
		Vcc = 3V	Iccdr		3	600	uA	13
Chip Deselect to Data Retention Time			tcdr	0			ns	4
Operation Recovery Time			tr	trc			ns	4, 11

GVT72024A8 TRADITIONAL PINOUT 128K X 8 SRAM

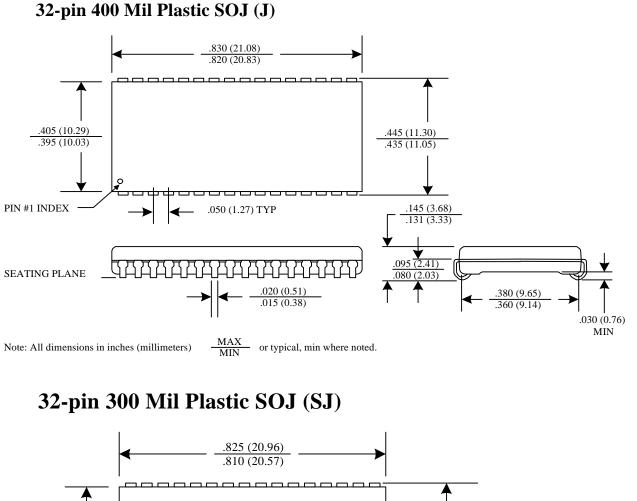

LOW VCC DATA RETENTION WAVEFORM

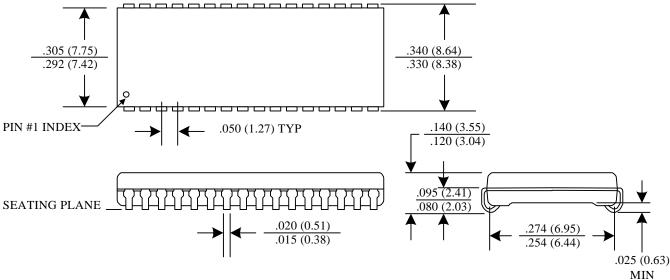

READ CYCLE NO. 1^(8, 9)

READ CYCLE NO. 2^(7, 8, 10, 12)

GVT72024A8 TRADITIONAL PINOUT 128K X 8 SRAM

GVT72024A8 TRADITIONAL PINOUT 128K X 8 SRAM

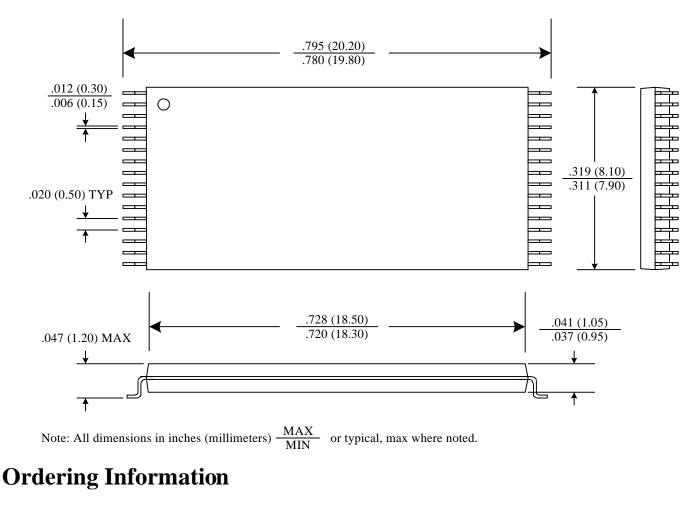

WRITE CYCLE NO. 3^(12, 13) (Chip Enable Controlled)

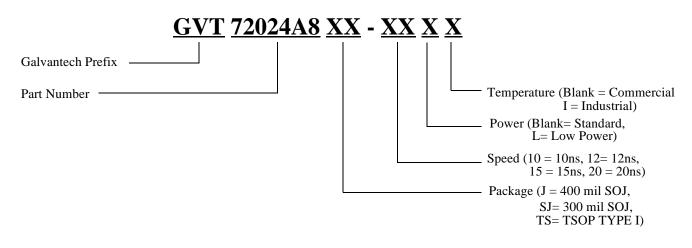


DON'T CARE

GVT72024A8 TRADITIONAL PINOUT 128K X 8 SRAM

Package Dimensions




Note: All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical, min where noted.

GVT72024A8 TRADITIONAL PINOUT 128K X 8 SRAM

Package Dimensions (continued)

32-pin Plastic TSOP (TS)

