Chip Monolithic Ceramic Capacitors

High Frequency Type

SMD Type

■ Features (ERA Series)

- Negligible inductance is achieved by its monolithic structure so the series can be used at frequencies above 1GHz
- 2. Nickel barriered terminations of ERA series improve solderability and decrease solder leaching.
- ERA11A/21A series are designed for both flow and reflow soldering and ERA32 series are designed for reflow soldering.

Part Number		Dimen	sions (mm)		
Part Number	L	W	T max.	е	g min.
ERA11A	1.25 +0.5	1.0 +0.5	1.0±0.2	0.15 min.	0.3
ERA21A ERA21B	2.0 +0.5	1.25 ^{+0.5} _{-0.3}	1.0±0.2 1.25±0.2	0.2 min.	0.5
ERA32X	3.2 ^{+0.6} _{-0.4}	2.5 ^{+0.5} _{-0.3}	1.7±0.2	0.3 min.	0.5

■ Applications

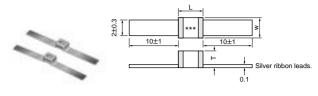
High frequency and high power circuits

Part Number				ER.	A11							ER	A21				ERA32							
LxW				1.25	x1.00							2.00	< 1.25							3.20	(2.50			
тс		C0G (5C)			CH (6C)		CJ (7C)	CK (8C)		C0G (5C)			CH (6C)		CJ (7C)	CK (8C)		C0G (5C)			CH (6C)		CJ (7C)	CK (8C)
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)
Capacitance (Ca	pacit	ance	part r	numb	ering	code)	and	T (mm	n) Dim	ensio	n (T [Dimen	sion p	oart n	umbe	ring c	ode)							
0.50pF (R50)	1.00 (A)							1.20 (A)	1.00 (A)							1.00 (A)	1.70 (X)							1.70 (X)
0.6pF (R60)	1.00 (A)								1.00 (A)								1.70 (X)							
0.7pF (R70)	1.00 (A)								1.00 (A)								1.70 (X)							
0.75pF (R75)								1.20 (A)								1.00 (A)								1.70 (X)
0.8pF (R80)	1.00 (A)								1.00 (A)								1.70 (X)							
0.9pF (R90)	1.00 (A)								1.00 (A)								1.70 (X)							
1.0pF (1R0)	1.00 (A)							1.20 (A)	1.00 (A)							1.00 (A)	1.70 (X)							1.70 (X)
1.1pF (1R1)	1.00 (A)								1.00 (A)								1.70 (X)							
1.2pF (1R2)	1.00 (A)								1.00 (A)								1.70 (X)							
1.3pF (1R3)	1.00 (A)								1.00 (A)								1.70 (X)							
1.4pF (1R4)	1.00 (A)								1.00 (A)								1.70 (X)							
1.5pF (1R5)	1.00 (A)							1.20 (A)	1.00 (A)							1.00 (A)	1.70 (X)							1.70 (X)
1.6pF (1R6)	1.00 (A)								1.00 (A)								1.70 (X)							
1.7pF (1R7)	1.00 (A)								1.00 (A)								1.70 (X)							
1.8pF (1R8)	1.00 (A)								1.00 (A)								1.70 (X)							

Capacitance (Cap	200 (2D) Dacit 1.00 (A)			200	CH (6C)		CJ	СК				2.00	< 1.25							3.20	(2.50 CH		CJ	
Rated Volt. Capacitance (Cap	(2D) pacita 1.00 (A) 1.00	(5C) 100 (2A)	(1H)	200 (2D)	(6C)		CJ	СК		2.00x1.25							СП		CI					
Capacitance (Cap	(2D) pacita 1.00 (A) 1.00	(2A)	(1H)	200 (2D)			(7C)	(8C)		C0G (5C)			CH (6C)		CJ (7C)	CK (8C)		C0G (5C)			(6C)		(7C)	(8C)
1.9pF	1.00 (A) 1.00	ance	nart r	(20)	100 (2A)	50 (1H)	200 (2D)	200 (2D)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)
	(A)		parti	numbe	ering	code)	and ⁻	Γ (mm		ensio	n (T E	Dimen	sion p	oart n	umbe	ring c			I	I				
									1.00 (A)								1.70 (X)							
(2R0)								1.20 (A)	1.00 (A)							1.00 (A)	1.70 (X)							1.70 (X)
	1.00 (A)								1.00 (A)								1.70 (X)							
	1.00 (A)								1.00 (A)								1.70 (X)							
	1.00 (A)								1.00 (A)								1.70 (X)							
	1.00 (A)								1.00 (A)								1.70 (X)							
	1.00 (A)						1.20 (A)		1.00 (A)						1.00 (A)		1.70 (X)						1.70 (X)	
	1.00 (A)								1.00 (A)								1.70 (X)							
	1.00 (A)								1.00 (A)								1.70 (X)							
	1.00 (A)								1.00 (A)								1.70 (X)							
4.0pF (4R0)				1.00 (A)								1.00 (A)								1.70 (X)				
	1.00 (A)								1.00 (A)								1.70 (X)							
	1.00 (A)								1.00 (A)								1.70 (X)							
5.0pF (5R0)				1.00 (A)								1.00 (A)								1.70 (X)				
	1.00 (A)								1.00 (A)								1.70 (X)							
5.6pF	1.00 (A)								1.00 (A)								1.70 (X)							
6.0pF (6R0)				1.00 (A)								1.00 (A)								1.70 (X)				
6.2pF	1.00 (A)								1.00 (A)								1.70 (X)							
6.8pF	1.00 (A)								1.00 (A)								1.70 (X)							
7.0pF (7R0)	. ,			1.20 (A)								1.00 (A)					. ,			1.70 (X)				
7.5pF	1.00 (A)			. ,					1.00 (A)								1.70 (X)			. ,				
8.0pF (8R0)	. ,			1.20 (A)					. ,			1.00 (A)					. ,			1.70 (X)				
8.2pF	1.00 (A)			. ,					1.00 (A)			, ,					1.70 (X)			. ,				
9.0pF (9R0)	. /			1.20 (A)	1.00 (A)				. ,			1.25 (B)					. ,			1.70 (X)				
9.1pF	1.00 (A)			(**)	(- 4)				1.25 (B)			\ <u>-</u> /					1.70 (X)			()				
10pF	1.00 (A)			1.00 (A)	1.00 (A)				1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				

Continued from Part Number	the pre	ecedin	g page		A11				ERA21										A 2 2					
L x W					x1.00								x1.25								A32 x2.50			
TC		C0G (5C)		1.23	CH (6C)		CJ (7C)	CK (8C)		C0G (5C)		2.00	CH (6C)		CJ (7C)	CK (8C)		C0G (5C)		3.20	CH (6C)		CJ (7C)	CK (8C)
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)
Capacitance (Ca	pacit	ance	part r	numbe	ering	code)	and ⁻	Γ (mm	n) Dim	ensio	n (T E	imen	sion p	part n	umbe	ring o	ode)							
11pF (110)	1.00 (A)			1.00 (A)	1.00 (A)				1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
12pF (120)	1.00 (A)			1.00 (A)	1.00 (A)				1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
13pF (130)	1.00 (A)			1.00 (A)	1.00 (A)				1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
15pF (150)		1.00 (A)			1.00 (A)				1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
16pF (160)		1.00 (A)			1.00 (A)	1.00 (A)			1.25 (B)			1.25 (B)					1.00 (X)			1.70 (X)				
18pF (180)		1.00 (A)			1.00 (A)	1.00 (A)			1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
20pF (200)		1.00 (A)			1.00 (A)	1.00 (A)			1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
22pF (220)		1.00 (A)			1.00 (A)	1.00 (A)			1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
24pF (240)			1.00 (A)			1.00 (A)			1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
27pF (270)			1.00 (A)			1.00 (A)			1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
30pF (300)			1.00 (A)			1.00 (A)			1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
33pF (330)			1.00 (A)			1.00 (A)			1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
36pF (360)			1.00 (A)			1.00 (A)			1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
39pF (390)			1.00 (A)			1.00 (A)			1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
43pF (430)			1.00 (A)			1.00 (A)			1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
47pF (470)			1.00 (A)			1.00 (A)			1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
51pF (510)			1.00 (A)			1.00 (A)			1.25 (B)			1.25 (B)					1.70 (X)			1.70 (X)				
56pF (560)										1.25 (B)			1.25 (B)				1.70 (X)			1.70 (X)				
62pF (620)										1.25 (B)			1.25 (B)				1.70 (X)			1.70 (X)				
68pF (680)										1.25 (B)			1.25 (B)				1.70 (X)			1.70 (X)				
75pF (750)										1.25 (B)			1.25 (B)				1.70 (X)			1.70 (X)				
82pF (820)										1.25 (B)			1.25 (B)				1.70 (X)			1.70 (X)				
91pF (910)										1.25 (B)			1.25 (B)				1.70 (X)			1.70 (X)				
100pF (101)											1.00 (A)			1.00 (A)			1.70 (X)			1.70 (X)				
110pF (111)											1.25 (B)			1.25 (B)			1.70 (X)			1.70 (X)				
120pF (121)											1.25 (B)			1.25 (B)			1.70 (X)			1.70 (X)				

Part Number				ER	A11							ER	A21							ER	A32			
LxW				1.25	x1.00							2.00	x1.25							3.20	x2.50			
тс		C0G (5C)			CH (6C)		CJ (7C)	CK (8C)		C0G (5C)			CH (6C)		CJ (7C)	CK (8C)		C0G (5C)			CH (6C)		CJ (7C)	CK (8C
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	20 (2 E
Capacitance (Ca	pacit	ance	part r	numbe	ering	code)	and ⁻	Γ (mm	n) Dim	ensio	n (T E	Dimen	sion	part n	umbe	ring c	ode)							
130pF (131)											1.25 (B)			1.25 (B)			1.70 (X)			1.70 (X)				
150pF (151)											1.25 (B)			1.25 (B)			1.70 (X)			1.70 (X)				
160pF (161)											1.25 (B)			1.25 (B)			1.70 (X)			1.70 (X)				
180pF (181)																		1.70 (X)			1.70 (X)			
200pF (201)																		1.70 (X)			1.70 (X)			
220pF (221)																		1.70 (X)			1.70 (X)			
240pF (241)																		1.70 (X)			1.70 (X)			
270pF (271)																		1.70 (X)			1.70 (X)			
300pF (301)																		1.70 (X)			1.70 (X)			
330pF (331)																		1.70 (X)			1.70 (X)			
360pF (361)																		1.70 (X)			1.70 (X)			
390pF (391)																		1.70 (X)			1.70 (X)			
430pF (431)																		1.70 (X)			1.70 (X)			
470pF (471)																		1.70 (X)			1.70 (X)			
510pF (511)																		1.70 (X)			1.70 (X)			
560pF (561)																		, ,	1.70 (X)		. ,	1.70 (X)		
620pF (621)																			1.70 (X)			1.70 (X)		
680pF (681)																			1.70 (X)			1.70 (X)		
750pF (751)																			1.70 (X)			1.70 (X)		
820pF (821)																			1.70 (X)			1.70 (X)		
910pF (911)																			1.70 (X)			1.70 (X)		
1000pF (102)																			1.70 (X)			1.70 (X)		


The part numbering code is shown in $\ (\).$

Dimensions are shown in mm and Rated Voltage in Vdc.

Ribbon Terminal

■ Features (ERD Series)

- 1. Negligible inductance is achieved by its monolithic structure so the series can be used at frequencies above 1GHz.
- 2. ERD Series capacitors withstand at high temperatures because ribbon leads are attached with silver paste.
- 3. ERD Series capacitors are easily soldered and are especially well suited in applications where only a soldering iron can be used.

*** : Capacitance Code

Part Number		Dimensions (mm)	
Part Number	L max.	W max.	T max.
ERD32D	4.0	3.0	2.3

■ Application

High frequency and high power circuits

Part Number				EF	D32			'
LxW				4.00	x3.00			
тс		C0G (5C)			CH (6C)		CJ (7C)	CK (8C)
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)
Capacitance (Cap	pacitance part r	numbering code)	and T (mm) Din	nension (T Dime	nsion part numb	ering code)		
0.50pF(R50)	2.30(D)							2.30(D)
0.6pF(R60)	2.30(D)							
0.7pF(R70)	2.30(D)							
0.75pF(R75)								2.30(D)
0.8pF(R80)	2.30(D)							
0.9pF(R90)	2.30(D)							
1.0pF(1R0)	2.30(D)							2.30(D)
1.1pF(1R1)	2.30(D)							
1.2pF(1R2)	2.30(D)							
1.3pF(1R3)	2.30(D)							
1.4pF(1R4)	2.30(D)							
1.5pF(1R5)	2.30(D)							2.30(D)
1.6pF(1R6)	2.30(D)							
1.7pF(1R7)	2.30(D)							
1.8pF(1R8)	2.30(D)							
1.9pF(1R9)	2.30(D)							
2.0pF(2R0)	2.30(D)							2.30(D)
2.1pF(2R1)	2.30(D)							
2.2pF(2R2)	2.30(D)							
2.4pF(2R4)	2.30(D)							
2.7pF(2R7)	2.30(D)							
3.0pF(3R0)	2.30(D)						2.30(D)	
3.3pF(3R3)	2.30(D)							
3.6pF(3R6)	2.30(D)							
3.9pF(3R9)	2.30(D)							
4.0pF(4R0)				2.30(D)				
4.3pF(4R3)	2.30(D)							
4.7pF(4R7)	2.30(D)							
5.0pF(5R0)	. ,			2.30(D)				
5.1pF(5R1)	2.30(D)							
5.6pF(5R6)	2.30(D)							
6.0pF(6R0)	. ,			2.30(D)				
6.2pF(6R2)	2.30(D)							
6.8pF(6R8)	2.30(D)							
7.0pF(7R0)	. ,			2.30(D)				

Part Number L x W					D32 x3.00			
TC		ÇOG		4.00	СН		CJ	CK
		(5C)			(6C)		(7C)	(8C)
Rated Volt.	200 (2D)	100 (2A)	50 (1H)	200 (2D)	100 (2A)	50 (1H)	200 (2D)	200 (2D)
-	pacitance part n	umbering code)	and T (mm) Dim	ension (T Dimer	sion part numbe	ering code)		I
7.5pF(7R5)	2.30 (D)							
8.0pF(8R0)				2.30(D)				
8.2pF(8R2)	2.30(D)							
9.0pF(9R0)				2.30(D)				
9.1pF(9R1)	2.30(D)							
10pF(100)	2.30(D)			2.30(D)				
11pF(110)	2.30(D)			2.30(D)				
12pF(120)	2.30(D)			2.30(D)				
13pF(130)	2.30(D)			2.30(D)				
15pF(150)	2.30(D)			2.30(D)				
16pF(160)	2.30(D)			2.30(D)				
18pF(180)	2.30(D)			2.30(D)				
20pF(200)	2.30 (D)			2.30(D)				
22pF(220)	2.30(D)			2.30(D)				
24pF(240)	2.30(D)			2.30(D)				
27pF(270)	2.30(D)			2.30(D)				
30pF(300)	2.30(D)			2.30(D)				
33pF(330)	2.30(D)			2.30(D)				
36pF(360)	2.30(D)			2.30(D)				
39pF(390)	2.30(D)			2.30(D)				
43pF(430)	2.30(D)			2.30(D)				
47pF(470)	2.30(D)			2.30(D)				
51pF(510)	2.30(D)			2.30(D)				
56pF(560)	2.30(D)			2.30(D)				
62pF(620)	2.30(D)			2.30(D)				
68pF(680)	2.30(D)			2.30(D)				
75pF(750)	2.30(D)			2.30(D)				
82pF(820)	2.30 (D)			2.30(D)				
91pF(910)	2.30 (D)			2.30(D)				
100pF(101)	2.30 (D)			2.30(D)				
110pF(111)	2.30 (D)			2.30(D)				
120pF(121)	2.30(D)			2.30(D)				
130pF(131)	2.30(D)			2.30(D)				
150pF(151)	2.30(D)			2.30(D)				
160pF(161)	2.30(D)			2.30(D)				
180pF(181)		2.30(D)			2.30(D)			
200pF(201)		2.30(D)			2.30(D)			
220pF(221)		2.30(D)			2.30(D)			
240pF(241)		2.30(D)			2.30(D)			
270pF(271)		2.30(D)			2.30(D)			
300pF(301)		2.30(D)			2.30(D)			
330pF(331)		2.30(D)			2.30(D)			
360pF(361)		2.30(D)			2.30(D)			
390pF(391)		2.30(D)			2.30(D)			
430pF(431)		2.30(D)			2.30(D)			
470pF(471)		2.30(D)			2.30(D)			
510pF(511)		2.30(D)			2.30(D)			
560pF(561)			2.30(D)			2.30(D)		
620pF(621)			2.30(D)			2.30(D)		
680pF(681)			2.30(D)			2.30(D)		
750pF(751)			2.30(D)			2.30(D)		
820pF(821)			2.30(D)			2.30(D)	_	

Part Number				ER	D32				
LxW				4.00	κ3.00				
тс		C0G (5C)			CH (6C)		CJ (7C)	CK (8C)	
Rated Volt.	200 100 50 200 100 (2A) (1H) (2D) (2A)					50 (1H)	200 (2D)	200 (2D)	
Capacitance (Ca	pacitance part numbering code) and T (mm) Dimension (T Dimension part numbering code)								
910pF(911)			2.30(D)			2.30(D)			
1000pF(102)			2.30(D)			2.30(D)			

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Specifications and Test Methods

No.	Ite	em	Specifications	Test Method
1	Operating Temperati	ure Range	-55℃ to +125℃	
2	Rated Vo	ltage	See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p-p} or V ^{o-p} , whichever is larger, should be maintained within the rated voltage range.
3	Appearar	nce	No defects or abnormalities	Visual inspection
4	Dimensio	ns	Within the specified dimension	Using calipers
5	Dielectric	Strength	No defects or abnormalities	No failure should be observed when 300% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.
6	Insulation (I.R.)	Resistance	10,000MΩ min.	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 25°C and standard humidity and within 2 minutes of charging.
7	Capacita	nce	Within the specified tolerance	The capacitance/Q should be measured at 25℃ at the frequen-
8	Q		C≦ 220pF: Q≧10,000 220pF <c≦ 470pf:="" 5,000<br="" q≥="">470pF<c≦1,000pf: 3,000<br="" q≥="">C: Nominal Capacitance (pF)</c≦1,000pf:></c≦>	cy and voltage shown in the table. Item Char. C0G (1,000pF and below) Frequency 1±0.1MHz Voltage 0.5 to 5Vr.m.s.
		Capacitance Variation Rate	Within the specified tolerance (Table A-6)	The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5, the capacitance should be within the specified tolerance for the tempera-
		Temperature Coefficient	Within the specified tolerance (Table A-6)	ture coefficient and capacitance change as Table A. The capacitance drift is calculated by dividing the differences
9	Capacitance Temperature Characteristics	Capacitance Drift	Within ±0.2% or ±0.05pF (Whichever is larger)	between the maximum and minimum measured values in steps 1, 3 and 5 by the capacitance value in step 3. The capacitance change should be measured after 5 min. at each specified temperature stage. Step Temperature(°C) 1 25±2 2 -55±3 3 25±2 4 125±3 5 25±2
10	Terminal	Adhesive Strength of Termination (for chip type)	No removal of the terminations or other defects should occur.	Solder the capacitor to the test jig (alumina substrate) shown in Fig.1 using solder containing 2.5% silver. The soldering should be done either with an iron or in furnace and be conducted with care so the soldering is uniform and free of defects such as heat shock. Then apply a 10N* force in the direction of the arrow. *5N (ERA11)
	Strength	Tensile Strength (for micro- strip type)	Capacitor should not be broken or damaged.	The capacitor body is fixed and a load is applied gradually in the axial direction until its value reaches 5N.
		(for micro- strip type) Bending Strength of	Lead wire should not be cut or broken.	Position the main body of the capacitor so the lead wire terminal is perpendicular, and load 2.5N to the lead wire terminal. Bend the main body by 90 degrees, bend back to original position, bend 90 degrees in the reverse direction, and then bend back to original position.

Continued on the following page.

Specifications and Test Methods

Continued from the preceding page

\overline{A}	Continued from	n the prec	eding page.		
No.	. Item	1	S	pecifications	Test Method
		Appearance Capacitance	No defects or abnormalitie Within the specified tolera		Solder the capacitor to the test jig (alumina substrate) shown in Fig. 2 using solder containing 2.5% silver. The soldering should be done either with an iron or using the reflow method and should be conducted with care so the soldering is uniform and free of defects such as heat shock. The capacitor should be subjected to
11	Vibration Resistance	Ω	Satisfies the initial value. C≦ 220pF : Q≧1 220pF < C≦ 470pF : Q≥ 470pF < C≦1,000pF : Q≥ C : Nominal Capacitance	5,000 3,000	a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours). Solder resist Ag/Pd Alumina substrate
					Immerse the capacitor in a solution of ethanol (JIS-K-8101) and
12	Solderabilit Termination	•	75% of the terminations are ly.	e to be soldered evenly and continuous-	rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating immerse in solder containing 2.5% silver for 5±0.5 seconds at 230±5°C. The dipping depth for microstrip type capacitors is up to 1 mm from the root of the terminal.
			The measured and obser specifications in the follow	ved characteristics should satisfy the ring table. Specifications	Preheat according to the conditions listed in the table below. Immerse in solder containing 2.5% silver for 3±0.5 seconds at
10	Resistance		Appearance Capacitance	No marked defect Within ±2.5% or ±0.25pF (Whichever is larger)	270±5°C. Set at room temperature for 24±2 hours, then measure. The dipping depth for microstrip type capacitors is up to
13	to Soldering	g Heat	Q 220p	(Whichever is larger) C≦ 220pF : Q≥10,000	2mm from the root of the terminal. Chip Size Preheat Condition
		o Soldering Heat		220pF <c≤ 470pf="" 5,000<br="" :="" q≥="">470pF<c≤1,000pf 3,000<="" :="" q≥="" td=""><td>2.0×1.25mm max. 1minute at 120 to 150°C 3.2×2.5mm Each 1 minute at 100 to 120°C and then 170 to 200°C</td></c≤1,000pf></c≤>	2.0×1.25mm max. 1minute at 120 to 150°C 3.2×2.5mm Each 1 minute at 100 to 120°C and then 170 to 200°C
			Dielectric Strength	No failure C : Nominal Capacitance (pF)	5.27.2.511111 East 1 11111111 East 1 10 to 120 3 and their 110 to 2003
			The measured and obser specifications in the follow	ved characteristics should satisfy the ving table.	
			Item	Specifications	Fix the capacitor to the supporting jig in the same manner and
			Appearance Capacitance	No marked defect Within ±5% or ±0.5pF	under the same conditions as (11). Perform the five cycles according to the four heat treatments listed in the following table.
	Temperatur	re	Change	(Whichever is larger)	Let sit for 24±2 hours at room temperature, then measure.
14	Cycle		_	C≥30pF : Q≥350	Step 1 2 3 4
			Q	10pF≦C<30pF : Q≥275+ ½ C C<10pF : Q≥200+10C	Temp.(°C) -55^{+0}_{-3} RoomTemp. 125^{+3}_{-0} RoomTemp.
			I.R.	1,000MΩ min.	Time(min.) 30±3 2 to 3 30±3 2 to 3
			Dielectric Strength	No failure	
				C : Nominal Capacitance (pF)	Apply the 24-hour heat (-10 to +65°C) and humidity (80 to 98%) treatment shown below, 10 consecutive times. Remove, let sit for 24±2 hours at room temperature, and measure.
			The measured and obser specifications in the follow	ved characteristics should satisfy the ving table.	Humidity Humidity 80–98% Humidity 80–98% 90–98% Humidity 90–98% Humidity 90–98% Humidity 90–98% Humidity 90–98% 90–98% Humidity 90–98% 90–98% 90–98% Humidity 90–98% 90–98
			Item	Specifications	60 55
			Appearance	No marked defect	50 45
15	Lluma! alita		Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)	
15	Humidity			C≧30pF : Q≧350 10pF≦C<30pF : Q≥275+ ½ C	8 40 35 30 30 30 40 20 +10 c
			Q	10pr≦C<30pr : Q≥275+ 2 C C<10pF : Q≥200+10C	\$\frac{25}{20}\$ \tag{+10}{\tag{c}}\$ \tag{-2} \tag{-2}
			I.R.	1,000MΩ min.	10 Initial measurement
				C : Nominal Capacitance (pF)	Applied voltage 50Vdc
					One cycle 24 hours
					0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2021 22 23 24 — Hours
					nouis

muRata

Continued on the following page.

Specifications and Test Methods

Continued from the preceding page.

No.	Item	S	pecifications	Test Method
16	High Temperature Load	The measured and obse specifications in the follow Item Appearance Capacitance Change	rved characteristics should satisfy the ving table. Specifications No marked defect Within ±3% or ±0.3pF (Whichever is larger) C≧30pF : Q≥350 10pF≤C<30pF : Q≥275+ ½ C	Apply 200% of the rated voltage for 1,000±12 hours at 125±3°C. Remove and let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.
		I.R.	C<10pF : Q≥200+10C 1,000MΩ min. C : Nominal Capacitance (pF)	

Table A

Char. Code	Temperature Coefficient (ppm/°C) Note 1	Capacitance Change from 25℃ Value (%)					
		-55°C		−30°C		-10℃	
		Max.	Min.	Max.	Min.	Max.	Min.
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11

Note 1 : Nominal values denote the temperature coefficient within a range of 25 to 125°C.