PRELIMINARY DATA SHEET

ECG012

BROADBAND HIGH OIP3 AMPLIFIER

DC - 2500 MHz

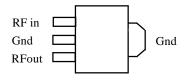
Excellence in Communications

Features

- DC to 2500 MHz
- 35 dBm Typical OIP3 at 2400 MHz
- Highly Reliable InGaP HBT
- 20.0 dBm Typical P1dB at 2400 MHz
- 5.1 dB Typical Noise Figure at 900 MHz
- Excellent Stability
- +3 Volt Operation

Package Available

(-B) SOT-89


Description

The ECG012 is a high reliability, high OIP3 amplifier in a low cost SOT-89 package, optimized for the commercial communications market. The device is manufactured using advanced Indium Gallium Phosphide Heterojunction Bipolar Transistor (InGaP HBT) technology. The amplifier can be matched to achieve low VSWR and high OIP3 over the DC to 2500 MHz range. Typical OIP3 at 1900 MHz is +35 dBm. The ECG012 operates from a single 3 volt power supply.

Applications

- Multi-carrier Systems
- High Linearity Amplifiers
- Bluetooth, Wireless LAN
- 2400 MHz, ISM Band

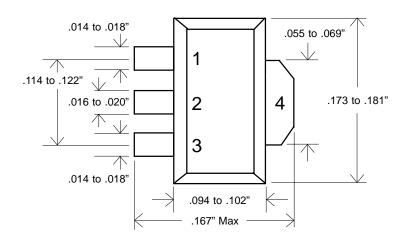
Package

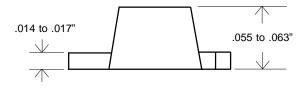
SOT-89 (Top View)

Electrical Specifications

Test Conditions: Ta = 25°C, V = 3.0 V

SYMBOL	PARAMETER		LIMITS		UNIT	TEST CONDITION	
	FARAIVETER		MIN.	TYP.	MAX.	MAX.	TEST CONDITION
F	Frequency		DC		2500	MHz	
G	Gain (Small Signal)	f = 900 MHz f = 1900 MHz f = 2400 MHz		14.0 12.5 10.0		dB	
P _{1dB}	Output Power @ 1 dB Compression	f = 900 MHz f = 1900 MHz f = 2400 MHz		20.0		dBm	
OIP3	Output Third Order Intercept	f = 900 MHz f = 1900 MHz f = 2400 MHz		35 36 35		dBm	Note 1
RL _{IN}	Input Return Loss, 50 Ohm	900 to 2400 MHz		15.0		dB	
RL _{OUT}	Output Return Loss, 50 Ohm	900 to 2400 MHz		10.0		dB	
NF	Noise Figure	f = 900 MHz f = 1900 MHz		5.1 5.9		dB	
Ic	Supply Current			100		mA	
	Output Mismatch without Spurs			10:1			
Note 1: Oll	P3 = Pout (by power meter, total 2-t	tone power) + (IM3	(dBc)) / 2 -	3 dB		1	•




DC - 2500 MHz

Absolute Maximum Ratings

Device Current	220	mA
RF Power Input	12	dBm
Operating Temperature	-40 to +85	°C
Storage Temperature	-65 to +150	°C
Junction Temperature	200	°C

Package Outline

Pin Definitions

Pin #	Pin	Definition
1	RFin	This pin has a non-zero DC potential, requiring a DC blocking capacitor. Input matching is required to achieve a low VSWR.
2, 4	Gnd	The two ground connections should be directly connected together to the ground plane on the PCB. The ground connection also serves as a heatsink.
3		DC bias is applied to this pin through a RF choke. A bypass capacitor (1.0 micro farad) on the DC side of the choke is recommended for low frequency modulation signal.