DRIVER AMPLIFIER

500-3000 MHz

Features

- Single 3.5 to 5.0 Vdc Operation
- High Linearity for Digital Modulation Systems
- Power-down Capability
- Class A Operation

Applications

■ CDMA

■ Cellular

■ GSM

■ ISM

■ PCS

WLL

■ TDMA

■ Spread Spectrum

■ Portable Battery-powered Equipment

Description

The EC-1017 is a high-performance, internally matched, broadband driver amplifier optimized for commercial mobile communications. Utilizing advanced Gallium Arsenide heterojunction bipolar transistor technology (GaAs HBT), the amplifier features good linearity. The EC-1017 operates from a single 3.5 to 5.0 volt supply, and is available in a low-cost, surfacemountable plastic SOIC-8 slug package.

Electrical Specifications

Test Conditions: Ta = 25° C, V_{cc} = +3.5 V, V_{pn} (power-down voltage) = +3.5 V, F = 1900 MHz

SYMBOL	PARAMETER	LIMITS			UNIT	TEST CONDITION
		MIN.	TYP.	MAX.	UNIT	TEST CONDITION
F	Frequency	500		3000	MHz	
G	Small Signal Gain (P _{in} = 0 dBm)	8.5	9	11	dB	NOTE 1
P _{sat}	Saturated Output Power		17		dBm	NOTE 1
OIP3	Third Order Output Intercept Point	24	28		dBm	NOTE 2
NF	Noise Figure		5		dB	
IRL	Input Return Loss		-7.5		dB	
ORL	Output Return Loss		-12		dB	
I _{cc}	Supply Current	50	55	70	mA	
I _{CCPD}	Supply Current, Power-down Mode		0.5		μА	NOTE 3
V _{CC}	Supply Voltage	3.5		5.0	Vdc	
NOTE 4. Using Application Schometic						

NOTE 1: Using Application Schematic

NOTE 2: P_{IN} per tone = -8 dBm, F_1 = 1900 MHz, F_2 = 1901 MHz

NOTE 3: $V_{CC} = 3.5 \text{ V}, V_{PD} = 0.0 \text{ V}$

500-3000 MHz

Package

SOIC-8 Slug (Top View)

Pin Definitions

PIN	FUNCTION	DEFINITION
1	PD	Power down pin and voltage reference pin for normal operation. The voltage
		applied to this pin should be 3.0 VDC but should not exceed 3.5 VDC. Zero (0)
		VDC on this pin turns the device OFF (approx. 0.5 μA). See Figure 1 for transfer
		characteristics.
2, 3	RF in	RF input pins. These are generally connected together to reduce package
		parasitic inductance and to get a higher frequency response. These pins require
		an external DC block capacitor (see schematic) to prevent loading the internal
		DC bias condition which would severly affect the RF performance.
4, 5, 8	Gnd	Ground connection pins. It is suggested to individually connect these pins
		directly to slug ground connection. This is to keep a low ground inductance and
		maintain high frequency performance.
	RF out	RF output pins. The open collector output requires a DC supply through a small
		inductor and a DC blocking capacitor (see schematic) that also provide some
6, 7		impedance matching. For narrow band applications, C3 can be optimized for best
		match. The supply side of the inductor should be RF bypassed to ground through
		an appropriate value capacitor for the frequency band of interest.
Slug		Primary ground connection as well as for thermal management. This must be
	Gnd	directly connected to the RF ground plane for the best high frequency
		performance and the lowest operating temperature.

Absolute Maximum Ratings

PARAMETER	RATING	UNIT
Supply Voltage	7	Volts
Power-down Voltage	6	Volts
RF Power Input	+15	dBm
Storage Temperature	-65 to +150	°C
Ambient Operating Temperature	-40 to +85	°C

Note: Exceeding any of the absolute maximum ratings may cause permanent damage to the device.

www.eiccorp.com

Evaluation Board Application Schematic

Evaluation Board Materials 500 - 3000 MHz

QTY. DESCRIPTION		VALUE	DESIGNATORS	
1	Inductor (0805)	15nH	L1	
2	Capacitor(0603)	100pF	C2, C3	
2	Capacitor(0603)	1nF	C1, C4	
2	SMA Connector	-	J1, J2	
1	.156" Center Header	-	J3	
1	Driver Amplifier	-	U1	

Evaluation Board Layout

Typical Characteristics (using EIC's EV-1017 Evaluation Board over an average performance of 20 devices)

Figure 2 Figure 1

Figure 4 Figure 3

Figure 5

Figure 6

Figure 7

Figure 8

Package Outline

EiC Corp. reserves the right to change specifications without notice. Copyright ©1998 EiC Corp. All rights reserved. All EiC Corp. product names are trademarks