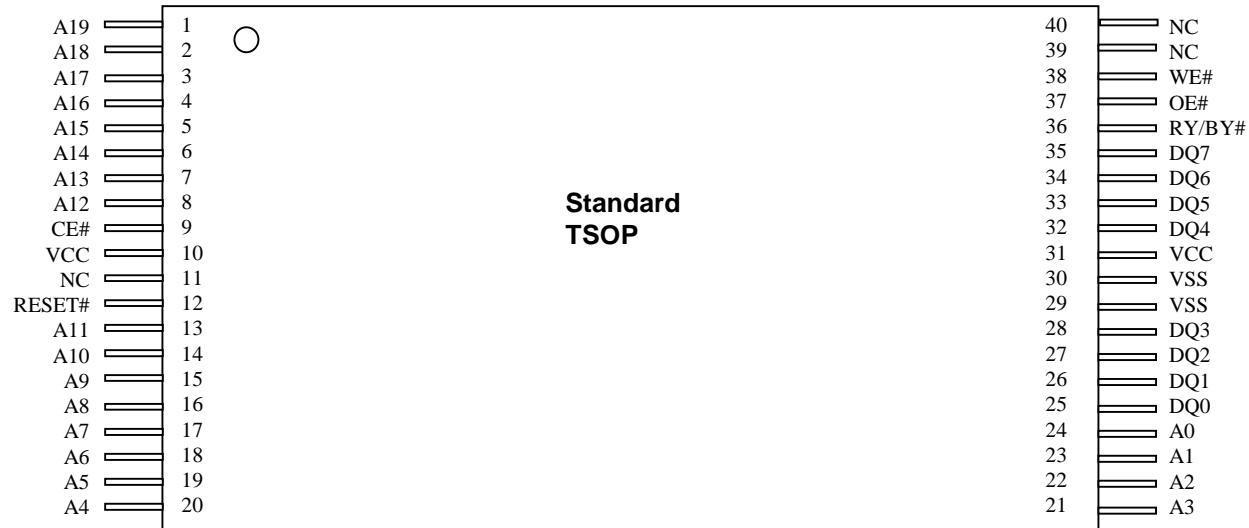
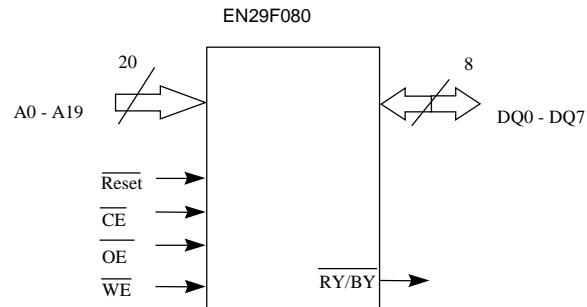


EN29F080

8 Megabit (1024K x 8-bit) Flash Memory


FEATURES

- 5.0V \pm 10%, single power supply operation
- Minimizes system level power requirements
- Manufactured on 0.35 μ m process technology
- High performance
 - Access times as fast as 45 ns
- Low power consumption
 - 25 mA typical active read current
 - 30 mA typical program/erase current
 - 1 μ A typical standby current (standard access time to active mode)
- Flexible Sector Architecture:
 - 16 uniform sectors of 64Kbytes each
 - Supports full chip erase
 - Individual sector erase supported
 - Group sector protection:
Hardware method of locking of sector groups to prevent any program or erase operations within that sector group
Additionally, temporary Sector Group
Unprotect allows code changes in previously locked sectors
- High performance program/erase speed
 - Byte program time: 10 μ s typical
 - Sector erase time: 500ms typical
 - Chip erase time: 16s typical
- Low Standby Current
 - 1 μ A CMOS standby current-typical
 - 1mA TTL standby current
- Low Power Active Current
 - 30mA active read current
 - 30mA program/erase current
- JEDEC Standard program and erase commands
- JEDEC standard DATA polling and toggle bits feature
- 1,000,000 minimum program/erase cycles
- Sector Unprotect Mode
- Embedded Erase and Program Algorithms
- Erase Suspend / Resume modes:
Read and program another Sector during Erase Suspend Mode
- 0.35 μ m double-metal double-poly triple-well CMOS Flash Technology
- Latch-Up \geq 200mA
- Low Vcc write inhibit \leq 3.2V
- 1,000K endurance cycle
- Ready/Busy# output (RY/BY#)
 - Provides a hardware method for detecting program or erase cycle completion.
- Hardware reset pin (Reset#)
 - Resets internal state machine to read mode


GENERAL DESCRIPTION

The EN29F080 is a 8-Megabit, electrically erasable, read/write non-volatile flash memory. Organized into 1024K words with 8 bits per word, the 8M of memory is arranged in eight uniform sectors of 64Kbytes each. Any byte can be programmed typically in 10 μ s. The EN29F080 features 5.0V voltage read and write operation, with access times as fast as 45ns to eliminate the need for WAIT states in high-performance microprocessor systems.

The EN29F080 has separate Output Enable (OE), Chip Enable (CE), and Write Enable (WE) controls, which eliminate bus contention issues. This device is designed to allow either single (or multiple) Sector or full chip erase operation, where each Sector can be individually protected against program/erase operations or temporarily unprotected to erase or program. The device can sustain a minimum of 1,000K program/erase cycles on each Sector.

CONNECTION DIAGRAMS

TABLE 1. PIN DESCRIPTION

Pin Name	Function
A0-A19	Addresses
DQ0-DQ7	Data Inputs/Outputs
<u>C E</u>	Chip Enable
<u>O E</u>	Output Enable
<u>R</u> eset	Hardware Reset Pin
<u>R</u> Y/ <u>B</u> Y	Ready/Busy Output
<u>W</u> E	Write Enable
Vcc	Supply Voltage (5V ± 10%)
Vss	Ground
NC	Internally connected pin

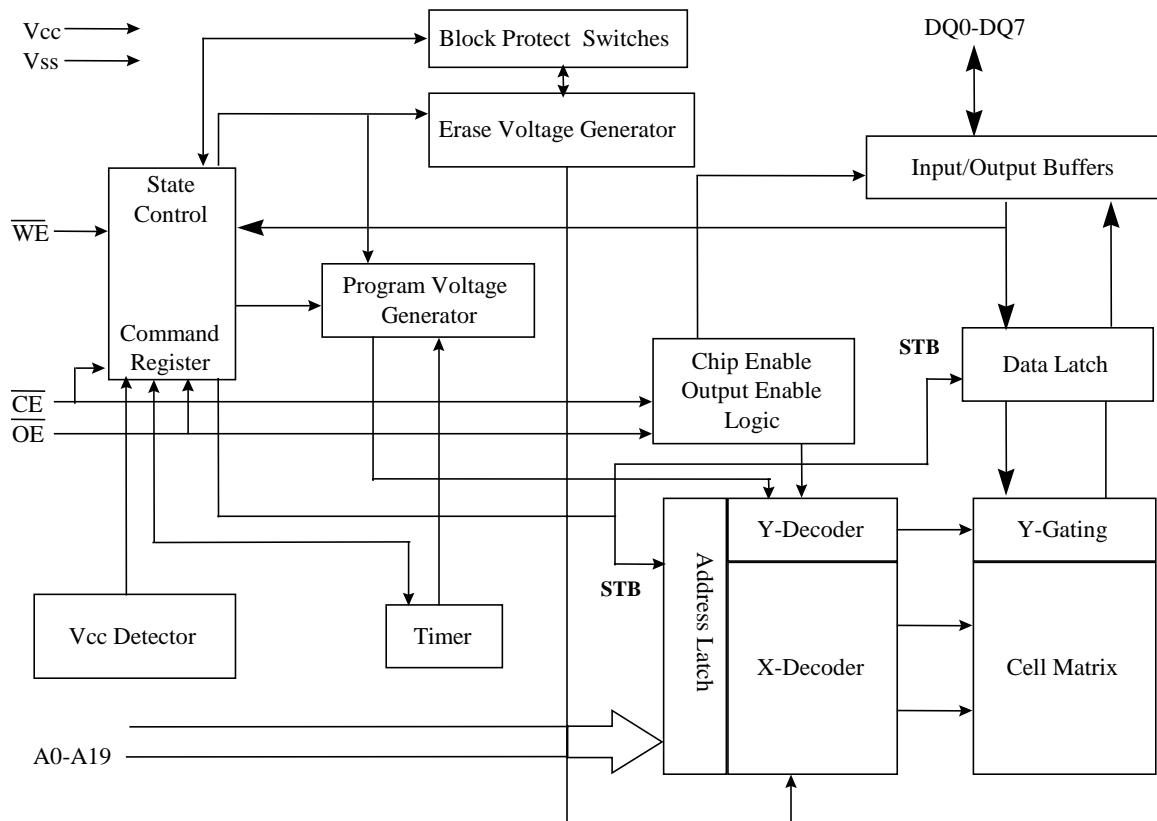

FIGURE 1. LOGIC DIAGRAM

TABLE 2. SECTOR ARCHITECTURE

Sector	ADDRESSES	SIZE (Kbytes)	A19	A18	A17	A16
15	F0000h - FFFFFh	64	1	1	1	1
14	E0000h - EFFFFh	64	1	1	1	0
13	D0000h - DFFFFh	64	1	1	0	1
12	C0000h - CFFFFh	64	1	1	0	0
11	B0000h - BFFFFh	64	1	0	1	1
10	A0000h - AFFFFh	64	1	0	1	0
9	90000h - 9FFFFh	64	1	0	0	1
8	80000h - 8FFFFh	64	1	0	0	0
7	70000h - 7FFFFh	64	0	1	1	1
6	60000h - 6FFFFh	64	0	1	1	0
5	50000h – 5FFFFh	64	0	1	0	1
4	40000h – 4FFFFh	64	0	1	0	0
3	30000h – 3FFFFh	64	0	0	1	1
2	20000h - 2FFFFh	64	0	0	1	0
1	10000h - 1FFFFh	64	0	0	0	1
0	00000h - 0FFFFh	64	0	0	0	0

PRODUCT SELECTOR GUIDE

Product Number		EN29F080			
Speed Option	Vcc=5.0V ± 5%	-45			
	Vcc=5.0V ± 10%		-55	-70	-90
Max Access Time, ns (t _{acc})		45	55	70	90
Max CE# Access, ns (t _{ce})		45	55	70	90
Max OE# Access, ns (t _{oe})		25	30	30	35

BLOCK DIAGRAM

TABLE 3. OPERATING MODES**8M FLASH USER MODE TABLE**

	CE	WE	OE	A9	A8	A6	A1	A0	Ax/y	DQ(0-7)
USER MODE										
STANDBY	H	X	X	X	X	X	X	X	X	HI-Z
READ	L	H	L	A9	A8	A6	A1	A0	Ax/y	DQ(0-7)
OUTPUT DISABLE	L	H	H	A9	A8	A6	A1	A0	Ax/y	HI-Z
READ MANUFACTURE ID	L	H	L	VID	L/H	L	L	L	X	MANUFACTURE ID
READ DEVICE ID	L	H	L	VID	L/H	L	L	H	X	DEVICE ID(T/B)
VERIFY SECTOR PROTECT	L	H	L	VID	X	L	H	L	X	CODE
ENABLE SECTOR PROTECT	L	L	VID	VID	X	L	X	X	X	X
SECTOR UNPROTECT	L	L	VID	VID	X	H	H	L	X	X
WRITE	L	L	H	A9	A8	A6	A1	A0	Ax/y	DIN(0-7)
TEMPORARY SECTOR UNPROTECT	X	X	X	X	X	X	X	X	X	X

NOTES:1) L = V_{IL} , H = V_{IH} , $V_{ID} = 12.0V \pm 0.5V$ 2) X = Either V_{IH} or V_{IL} **TABLE 4. DEVICE IDENTIFICATION****8M FLASH MANUFACTURER/DEVICE ID TABLE**

	A8	A6	A1	A0	DQ(7-0) HEX
READ CONTINUATION MANUFACTURER ID	L	L	L	L	MANUFACTURER ID 7F
READ MANUFACTURER ID	H	L	L	L	MANUFACTURER ID 1C
READ CONTINUATION DEVICE ID	L	L	L	H	DEVICE ID 7F
READ DEVICE ID	H	L	L	H	DEVICE ID 08

USER MODE DEFINITIONS

Standby Mode

The EN29F080 has a CMOS-compatible standby mode, which reduces the current to $< 1\mu\text{A}$ (typical). It is placed in CMOS-compatible standby when the $\overline{\text{CE}}$ pin is at $V_{\text{CC}} \pm 0.5$. The device also has a TTL-compatible standby mode, which reduces the maximum V_{CC} current to $< 1\text{mA}$. It is placed in TTL-compatible standby when the $\overline{\text{CE}}$ pin is at V_{IH} . When in standby modes, the outputs are in a high-impedance state independent of the $\overline{\text{OE}}$ input.

Read Mode

The device is automatically set to reading array data after device power-up. No commands are required to retrieve data. The device is also ready to read array data after completing an Embedded Program or Embedded Erase algorithm.

After the device accepts an Erase Suspend command, the device enters the Erase Suspend mode. The system can read array data using the standard read timings, except that if it reads at an address within erase-suspended sectors, the device outputs status data. After completing a programming operation in the Erase Suspend mode, the system may once again read array data with the same exception. See "Erase Suspend/Erase Resume Commands" for more additional information.

The system must issue the reset command to re-enable the device for reading array data if DQ5 goes high, or while in the autoselect mode. See the "Reset Command" additional details.

Output Disable Mode

When the $\overline{\text{OE}}$ pin is at a logic high level (V_{IH}), the output from the EN29F080 is disabled. The output pins are placed in a high impedance state.

Auto Select Identification Mode

The autoselect mode provides manufacturer and device identification, and sector protection verification, through identifier codes output on DQ7–DQ0. This mode is primarily intended for programming equipment to automatically match a device to be programmed with its corresponding programming algorithm. However, the autoselect codes can also be accessed in-system through the command register.

When using programming equipment, the autoselect mode requires V_{ID} (11.5 V to 12.5 V) on address pin A9. Address pins A6, A1, and A0 must be as shown in Autoselect Codes (High Voltage Method) table. In addition, when verifying sector protection, the sector address must appear on the appropriate highest order address bits. Refer to the corresponding Sector Address Tables. The Command Definitions table shows the remaining address bits that are don't-care. When all necessary bits have been set as required, the programming equipment may then read the corresponding identifier code on DQ7–DQ0.

To access the autoselect codes in-system; the host system can issue the autoselect command via the command register, as shown in the Command Definitions table. This method does not require V_{ID} . See "Command Definitions" for details on using the autoselect mode.

Write Mode

Programming is a four-bus-cycle operation. The program command sequence is initiated by writing two unlock write cycles, followed by the program set-up command. The program address and data are written

next, which in turn initiate the Embedded Program algorithm. The system is not required to provide further controls or timings. The device automatically provides internally generated program pulses and verifies the programmed cell margin. The Command Definitions in Table 5 show the address and data requirements for the byte program command sequence.

When the Embedded Program algorithm is complete, the device then returns to reading array data and addresses are no longer latched. The system can determine the status of the program operation by using DQ7 or DQ6. See "Write Operation Status" for information on these status bits.

Any commands written to the device during the Embedded Program Algorithm are ignored.

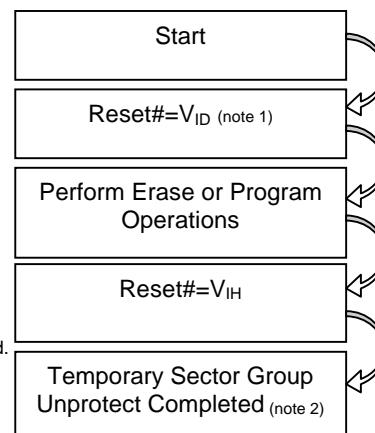
Programming is allowed in any sequence and across sector boundaries. **A bit cannot be programmed from a "0" back to a "1".** Attempting to do so may halt the operation and set DQ5 to "1", or cause the Data# Polling algorithm to indicate the operation was successful. However, a succeeding read will show that the data is still "0". Only erase operations can convert a "0" to a "1".

Sector Group Protection/Unprotection

The hardware sector protection feature disables both program and erase operations in any sector. Each group consists of two adjacent sectors. The Sector Group Addresses table shows how the sectors are grouped, and the address range that each sector group contains. The hardware sector group unprotection feature re-enables both program and erase operations in previously protected sector groups.

Sector Group Addresses

Sector Group	A19	A18	A17	Sectors
SGA0	0	0	0	SA0-SA1
SGA1	0	0	1	SA2-SA3
SGA2	0	1	0	SA4-SA5
SGA3	0	1	1	SA6-SA7
SGA4	1	0	0	SA8-SA9
SGA5	1	0	1	SA10-SA11
SGA6	1	1	0	SA12-SA13
SGA7	1	1	1	SA14-SA15


Sector protection/unprotection must be implemented using programming equipment. The procedure requires a high voltage (VID) on address pin A9 and the control pins. Details on this method are provided in a supplement, which can be obtained by contacting a representative of Eon Silicon Devices, Inc.

Temporary Sector Group Unprotect

This feature allows temporary unprotection of previously protected sector groups to change data while in-system. The Sector Group Unprotect mode is activated by setting the RESET# pin to V_{ID} (11.5 V to 12.5 V). During this mode, formerly protected sector groups can be programmed or erased by simply selecting the sector group addresses. Once V_{ID} is removed from the RESET# pin, all the previously protected sector groups are protected again. See accompanying figure and timing diagrams for more details.

Notes:

1. All protected sector groups unprotected.
2. Previously protected sector groups protected again.
3. V_{IH} = Logic High

Hardware Data protection

The command sequence requirement of unlock cycles for programming or erasing provides data protection against inadvertent writes as seen in the Command Definitions table. Additionally, the following hardware data protection measures prevent accidental erasure or programming, which might otherwise be caused by false system level signals during Vcc power up and power down transitions, or from system noise.

Low V_{CC} Write Inhibit

When V_{CC} is less than V_{LKO}, the device does not accept any write cycles. This protects data during V_{CC} power up and power down. The command register and all internal program/erase circuits are disabled, and the device resets. Subsequent writes are ignored until V_{CC} is greater than V_{LKO}. The system must provide the proper signals to the control pins to prevent unintentional writes when V_{CC} is greater than V_{LKO}.

Write Pulse “Glitch” protection

Noise pulses of less than 5 ns (typical) on \overline{OE} , \overline{CE} or \overline{WE} do not initiate a write cycle.

Logical Inhibit

Write cycles are inhibited by holding any one of $\overline{OE} = VIL$, $\overline{CE} = VIH$, or $\overline{WE} = VIH$. To initiate a write cycle, and must be a logical zero while \overline{OE} is a logical one.

COMMAND DEFINITIONS

The operations of the EN29F080 are selected by one or more commands written into the command register to perform Read/Reset Memory, Read ID, Read Sector Protection, Program, Sector Erase, Chip Erase, Erase Suspend and Erase Resume. Commands are made up of data sequences written at specific addresses via the command register. The sequences for the specified operation are defined in the Command Definitions table (Table 5). Incorrect addresses, incorrect data values or improper sequences will reset the device to Read Mode.

Table 5. EN29F080 Command Definitions

Command Sequence Read/Reset	Cycles	1 st Write Cycle		2 nd Write Cycle		3 rd Write Cycle		4 th Write Cycle		5 th Write Cycle		6 th Write Cycle	
		Addr	Data	Addr	Data	Addr	Data	Addr	Data	Addr	Data	Addr	Data
		Reset	1	XXXh	F0h								
Read	4	RA	RD										
AutoSelect Manufacturer ID	4	555h	AAh	2AAh	55h	555h	90h	X100h	1c				
AutoSelect Device ID	4	555h	AAh	2AAh	55h	555h	90h	X101h	08				
AutoSelect Sector Protect Verify	4	555h	AAh	2AAh	55h	555h	90h	BA & 02h	00h/01h				
Byte Program	4	555h	AAh	2AAh	55h	555h	A0h	PA	PD				
Chip Erase	6	555h	AAh	2AAh	55h	555h	80h	555h	AAh	2AAh	55h	555h	10h
Sector Erase	6	555h	AAh	2AAh	55h	555h	80h	555h	AAh	2AAh	55h	BA	30h
Sector Erase Suspend	1	xxxh	B0h										
Sector Erase Resume	1	xxxh	30h										

RA = Read Address: address of the memory location to be read

RD = Read Data: data read from location RA during Read operation

PA = Program Address: address of the memory location to be programmed

PD = Program Data: data to be programmed at location PA

BA = Sector Address: address of the Sector to be erased or verified. Address bits A17-A13 uniquely select any Sector.

Reading Array Data

The device is automatically set to reading array data after power up. No commands are required to retrieve data. The device is also ready to read array data after completing an Embedded Program or Embedded Erase algorithm.

Following an Erase Suspend command, Erase Suspend mode is entered. The system can read array data using the standard read timings, with the only difference in that if it reads at an address within erase

suspended sectors, the device outputs status data. After completing a programming operation in the Erase Suspend mode, the system may once again read array data with the same exception.

The Reset command must be issued to re-enable the device for reading array data if DQ5 goes high, or while in the autoselect mode. See next section for details on Reset.

Reset Command

Writing the reset command to the device resets the device to reading array data. Address bits are don't-care for this command.

The reset command may be written between the sequence cycles in an erase command sequence before erasing begins. This resets the device to reading array data. Once erasure begins, however, the device ignores reset commands until the operation is complete. The reset command may be written between the sequence cycles in a program command sequence before programming begins. This resets the device to reading array data (also applies to programming in Erase Suspend mode). Once programming begins, however, the device ignores reset commands until the operation is complete.

The reset command may be written between the sequence cycles in an autoselect command sequence. Once in the autoselect mode, the reset command must be written to return to reading array data (also applies to autoselect during Erase Suspend).

If DQ5 goes high during a program or erase operation, writing the reset command returns the device to reading array data (also applies during Erase Suspend).

Autoselect Command Sequence

The autoselect command sequence allows the host system to access the manufacturer and devices codes, and determine whether or not a sector is protected. The Command Definitions table shows the address and data requirements. This is an alternative method which is intended for PROM programmers and requires V_{ID} on address bit A9.

Two unlock cycles followed by the autoselect command initiate the autoselect command sequence. Autoselect mode is then entered and the system may read at any address any number of times, without needing another command sequence.

The system must write the reset command to exit the autoselect mode and return to reading array data.

Byte Programming Command

Programming the EN29F080 is performed on a byte-by-byte basis using a four bus-cycle operation (two unlock write cycles followed by the Program Setup command and Program Data Write cycle). When the program command is executed, no additional CPU controls or timings are necessary. An internal timer terminates the program operation automatically. Address is latched on the falling edge of \overline{CE} or \overline{WE} , whichever is last; data is latched on the rising edge of \overline{CE} or \overline{WE} , whichever is first. The program operation is completed when EN29F080 returns the equivalent data to the programmed location.

Programming status may be checked by sampling data on DQ7 (DATA polling) or on DQ6 (toggle bit). Changing data from 0 to 1 requires an erase operation. When programming time limit is exceeded, DQ5 will produce a logical "1" and a Reset command can return the device to Read mode.

Chip Erase Command

Chip erase is a six-bus-cycle operation. The chip erase command sequence is initiated by writing two unlock cycles, followed by a set-up command. Two additional unlock write cycles are then followed by the chip erase command, which in turn invokes the Embedded Erase algorithm. The device does not require the system to preprogram prior to erase. The Embedded Erase algorithm automatically preprograms and

verifies the entire memory for an all zero data pattern prior to electrical erase. The system is not required to provide any controls or timings during these operations. The Command Definitions table shows the address and data requirements for the chip erase command sequence.

Any commands written to the chip during the Embedded Erase algorithm are ignored.

The system can determine the status of the erase operation by using DQ7, DQ6, or DQ2. See "Write Operation Status" for information on these status bits. When the Embedded Erase algorithm is complete, the device returns to reading array data and addresses are no longer latched.

Flowchart 4 illustrates the algorithm for the erase operation. See the Erase/Program Operations tables in "AC Characteristics" for parameters, and to the Chip/Sector Erase Operation Timings for timing waveforms.

Sector Erase Command Sequence

Sector erase is a six bus cycle operation. The sector erase command sequence is initiated by writing two un-lock cycles, followed by a set-up command. Two additional unlock write cycles are then followed by the address of the sector to be erased, and the sector erase command. The Command Definitions table shows the address and data requirements for the sector erase command sequence.

Once the sector erase operation has begun, only the Erase Suspend command is valid. All other commands are ignored.

When the Embedded Erase algorithm is complete, the device returns to reading array data and addresses are no longer latched. The system can determine the status of the erase operation by using DQ7, DQ6, or DQ2. Refer to "Write Operation Status" for information on these status bits. Flowchart 4 illustrates the algorithm for the erase operation. Refer to the Erase/Program Operations tables in the "AC Characteristics" section for parameters, and to the Sector Erase Operations Timing diagram for timing waveforms.

Erase Suspend / Resume Command

The Erase Suspend command allows the system to interrupt a sector erase operation and then read data from, or program data to, any sector not selected for erasure. This command is valid only during the sector erase operation. The Erase Suspend command is ignored if written during the chip erase operation or Embedded Program algorithm. Writing the Erase Suspend command during the Sector Erase time-out immediately terminates the time-out period and suspends the erase operation. Addresses are don't-cares when writing the Erase Suspend command.

When the Erase Suspend command is written during a sector erase operation, the device requires a maximum of 20 μ s to suspend the erase operation. However, when the Erase Suspend command is written during the sector erase time-out, the device immediately terminates the time-out period and suspends the erase operation.

After the erase operation has been suspended, the system can read array data from or program data to any sector not selected for erasure. (The device "erase suspends" all sectors selected for erasure.) Normal read and write timings and command definitions apply. Reading at any address within erase-suspended sectors produces status data on DQ7–DQ0. The system can use DQ7, or DQ6 and DQ2 together, to determine if a sector is actively erasing or is erase-suspended. See "Write Operation Status" for information on these status bits.

After an erase-suspended program operation is complete, the system can once again read array data within non-suspended sectors. The system can determine the status of the program operation using the DQ7 or DQ6 status bits, just as in the standard program operation. See "Write Operation Status" for more information. The system may also write the autoselect command sequence when the device is in the Erase Suspend mode. The device allows reading autoselect codes even at addresses within erasing sectors, since the codes are not stored in the memory array. When the device exits the autoselect mode,

the device reverts to the Erase Suspend mode, and is ready for another valid operation. See "Autoselect Command Sequence" for more information.

The system must write the Erase Resume command (address bits are don't-care) to exit the erase suspend mode and continue the sector erase operation. Further writes of the Resume command are ignored. Another Erase Suspend command can be written after the device has resumed erasing.

WRITE OPERATION STATUS

DQ7

DATA Polling

The EN29F080 provides DATA Polling on DQ7 to indicate to the host system the status of the embedded operations. The DATA Polling feature is active during the Byte Programming, Block Erase, Chip Erase, Erase Suspend and block erase time-out window. (See Table 6)

When the Byte Programming is in progress, an attempt to read the device will produce the complement of the data last written to DQ7. Upon the completion of the Byte Programming, an attempt to read the device will produce the true data last written to DQ7. For the Byte Programming, DATA polling is valid after the rising edge of the fourth WE or CE pulse in the four-cycle sequence.

When the embedded Erase is in progress, an attempt to read the device will produce a "0" at the DQ7 output. Upon the completion of the embedded Erase, the device will produce the "1" at the DQ7 output during the read. For Chip Erase, the DATA polling is valid after the rising edge of the sixth WE or CE pulse in the six-cycle sequence. For Block Erase, DATA polling is valid after the last rising edge of the block erase WE or CE pulse.

DATA Polling must be performed at any address within a block that is being programmed or erased and not a protected block. Otherwise, DATA polling may give an inaccurate result if the address used is in a protected block.

Just prior to the completion of the embedded operations, DQ7 may change asynchronously when the output enable (OE) is low. This means that the device is driving status information on DQ7 at one instant of time and valid data at the next instant of time. Depending on when the system samples the DQ7 output, it may read the status of valid data. Even if the device has completed the embedded operations and DQ7 has a valid data, the data output on DQ0-DQ6 may be still invalid. The valid data on DQ0-DQ7 will be read on the subsequent read attempts.

The flowchart for DATA Polling (DQ7) is shown on Flowchart 5. The DATA Polling (DQ7) timing diagram is shown in Figure 8.

RY/BY: Ready/Busy

The RY/BY is a dedicated, open-drain output pin that indicates whether an Embedded Algorithm is in progress or complete. The RY/BY status is valid after the rising edge of the final WE pulse in the command sequence. Since RY/BY is an open-drain output, several RY/BY pins can be tied together in parallel with a pull-up resistor to Vcc.

In the output is low, signifying Busy, the device is actively erasing or programming. This includes programming in the Erase Suspend mode. If the output is high, signifying the Ready, the device is ready to read array data (including during the Erase Suspend mode), or is in the standby mode.

DQ6 Toggle Bit

The EN29F080 provides a “Toggle Bit” on DQ6 to indicate to the host system the status of the embedded programming and erase operations. (See Table 6)

During an embedded Program or Erase operation, successive attempts to read data from the device at any address (by toggling \overline{OE} or \overline{CE}) will result in DQ6 toggling between “zero” and “one”. Once the embedded Program or Erase operation is complete, DQ6 will stop toggling and valid data will be read on the next successive attempts. During Byte Programming, the Toggle Bit is valid after the rising edge of the fourth \overline{WE} pulse in the four-cycle sequence. For Chip Erase, the Toggle Bit is valid after the rising edge of the sixth-cycle sequence. For Block Erase, the Toggle Bit is valid after the last rising edge of the Block Erase \overline{WE} pulse. The Toggle Bit is also active during the block erase timeout window.

In Byte Programming, if the block being written to is protected, DQ6 will toggle for about 2 μ s, then stop toggling without the data in the block having changed. In Block Erase or Chip Erase, if all selected blocks are protected, DQ6 will toggle for about 100 μ s. The chip will then return to the read mode without changing data in all protected blocks.

Toggling either \overline{CE} or \overline{OE} will cause DQ6 to toggle.

The flowchart for the Toggle Bit (DQ6) is shown in Flowchart 6. The Toggle Bit timing diagram is shown in Figure 9.

DQ5 Exceeded Timing Limits

DQ5 indicates whether the program or erase time has exceeded a specified internal pulse count limit. Under these conditions DQ5 produces a “1.” This is a failure condition that indicates the program or erase cycle was not successfully completed.

The DQ5 failure condition may appear if the system tries to program a “1” to a location that is previously programmed to “0.” **Only an erase operation can change a “0” back to a “1.”** Under this condition, the device halts the operation, and when the operation has exceeded the timing limits, DQ5 produces a “1.” Under both these conditions, the system must issue the reset command to return the device to reading array data.

DQ3 Sector Erase Timer

After writing a sector erase command sequence, the output on DQ3 can be used to determine whether or not an erase operation has begun. (The sector erase timer does not apply to the chip erase command.) When sector erase starts, DQ3 switches from “0” to “1.”

DQ2 Erase Toggle Bit

The “Toggle Bit” on DQ2, when used with DQ6, indicates whether a particular sector is actively erasing (that is, the Embedded Erase algorithm is in progress), or whether that sector is erase-suspended. Toggle Bit II is valid after the rising edge of the final $WE\#$ pulse in the command sequence. DQ2 toggles when the system reads at addresses within those sectors that have been selected for erasure. (The system may use either $OE\#$ or $CE\#$ to control the read cycles.) But DQ2 cannot distinguish whether the sector is actively erasing or is erase-suspended. DQ6, by comparison, indicates whether the device is actively erasing, or is in Erase Suspend, but cannot distinguish which sectors are selected for era-sure. Thus, both status bits are required for sector and mode information. Refer to Table 5 to compare outputs for DQ2 and DQ6.

Flowchart 6 shows the toggle bit algorithm, and the section “DQ2: Toggle Bit” explains the algorithm. See also the “DQ6: Toggle Bit I” subsection. Refer to the Toggle Bit Timings figure for the toggle bit timing diagram. The DQ2 vs. DQ6 figure shows the differences between DQ2 and DQ6 in graphical form.

Reading Toggle Bits DQ6/DQ2

Refer to Flowchart 6 for the following discussion. Whenever the system initially begins reading toggle bit status, it must read DQ7–DQ0 at least twice in a row to determine whether a toggle bit is toggling.

Typically, a system would note and store the value of the toggle bit after the first read. After the second read, the system would compare the new value of the toggle bit with the first. If the toggle bit is not toggling, the device has completed the program or erase operation. The system can read array data on DQ7–DQ0 on the following read cycle.

However, if after the initial two read cycles, the system determines that the toggle bit is still toggling, the system also should note whether the value of DQ5 is high (see the section on DQ5). If it is, the system should then determine again whether the toggle bit is toggling, since the toggle bit may have stopped toggling just as DQ5 went high. If the toggle bit is no longer toggling, the device has successfully completed the program or erase operation. If it is still toggling, the device did not complete the operation successfully, and the system must write the reset command to return to reading array data.

The remaining scenario is that the system initially determines that the toggle bit is toggling and DQ5 has not gone high. The system may continue to monitor the toggle bit and DQ5 through successive read cycles, determining the status as described in the previous paragraph. Alternatively, it may choose to perform other system tasks. In this case, the system must start at the beginning of the algorithm when it returns to determine the status of the operation (top of Flowchart 6).

Write Operation Status

Operation		DQ7	DQ6	DQ5	DQ3	DQ2	RY/BY #
Standard Mode	Embedded Program Algorithm	DQ7#	Toggle	0	N/A	No toggle	0
	Embedded Erase Algorithm	0	Toggle	0	1	Toggle	0
Erase Suspend Mode	Reading within Erase Suspended Sector	1	No Toggle	0	N/A	Toggle	1
	Reading within Non-Erase Suspended Sector	Data	Data	Data	Data	Data	1
	Erase-Suspend Program	DQ7#	Toggle	0	N/A	N/A	0

Table 6. Status Register Bits

DQ	Name	Logic Level	Definition
7	DATA POLLING	'1'	Erase Complete or erase Sector in Erase suspend
		'0'	Erase On-Going
		DQ7	Program Complete or data of non-erase Sector during Erase Suspend
		DQ7	Program On-Going
6	TOGGLE BIT	'-1-0-1-0-1-0-1-'	Erase or Program On-going
		DQ6	Read during Erase Suspend
		'-1-1-1-1-1-1-1-'	Erase Complete
5	ERROR BIT	'1'	Program or Erase Error
		'0'	Program or Erase On-going
3	ERASE TIME BIT	'1'	Erase operation start
		'0'	Erase timeout period on-going
2	TOGGLE BIT	'-1-0-1-0-1-0-1-'	Chip Erase, Erase or Erase suspend on currently addressed Sector. (When DQ5=1, Erase Error due to currently addressed Sector. Program during Erase Suspend on- going at current address)
		DQ2	Erase Suspend read on non Erase Suspend Sector

Notes:

DQ7 DATA Polling: indicates the P/E C status check during Program or Erase, and on completion before checking bits DQ5 for Program or Erase Success.

DQ6 Toggle Bit: remains at constant level when P/E C operations are complete or erase suspend is acknowledged. Successive reads output complementary data on DQ6 while programming or Erase operation are on-going.

DQ5 Error Bit: set to "1" if failure in programming or erase

DQ3 P/E C Erase Time Bit: Operation has started. Only possible command is Erase suspend (ES).

DQ2 Toggle Bit: indicates the Erase status and allows identification of the erased Sector.

DATA PROTECTION

Power-up Write Inhibit

During power-up, the device automatically resets to READ mode and locks out write cycles. Even with $\overline{CE} = V_{IL}$, $\overline{WE} = V_{IL}$ and $\overline{OE} = V_{IH}$, the device will not accept commands on the rising edge of \overline{WE} .

Low V_{CC} Write Inhibit

During V_{CC} power-up or power-down, the EN29F080 locks out write cycles to protect against any unintentional writes. If $V_{CC} < V_{LOK}$, the command register is disabled and all internal program or erase circuits are disabled. Under this condition, the device will reset to the READ mode. Subsequent writes will be ignored until $V_{CC} > V_{LKO}$.

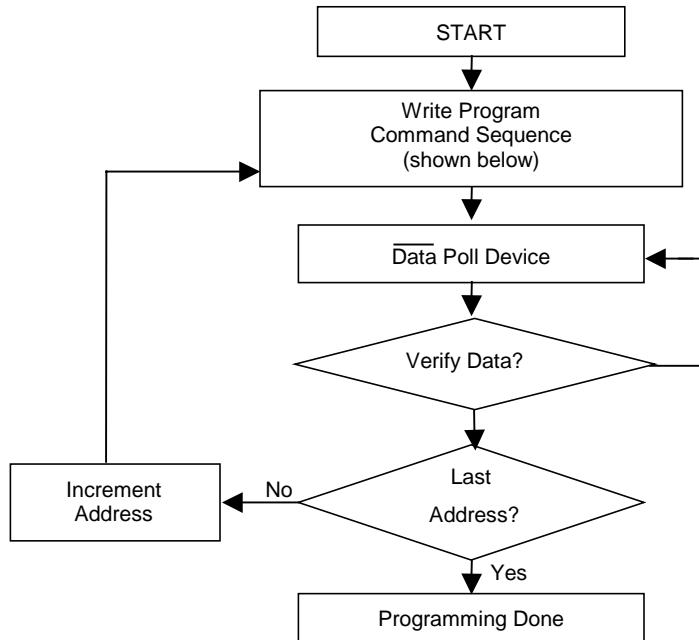
Write “Noise” Pulse Protection

Noise pulses less than 5ns on \overline{OE} , \overline{CE} or \overline{WE} will neither initiate a write cycle nor change the command register.

Logical Inhibit

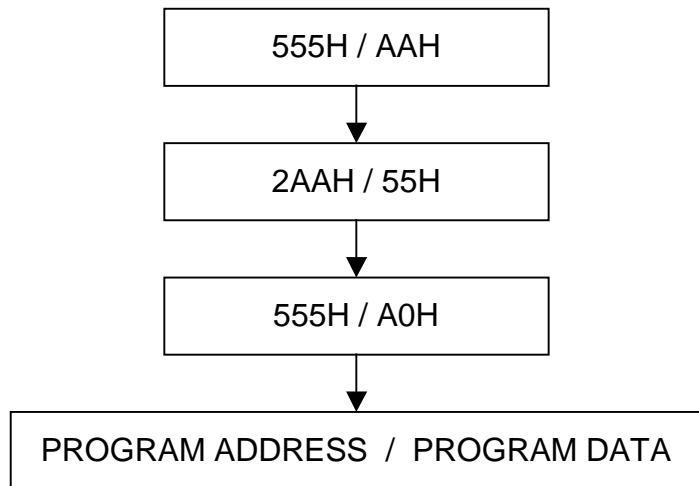
If $\overline{OE} = V_{IL}$ or $\overline{CE} = V_{IH}$, or $\overline{WE} = V_{IH}$, writing is inhibited. To initiate a write cycle, \overline{CE} and \overline{WE} must be a logical “zero” and \overline{OE} must be a logical “one”.

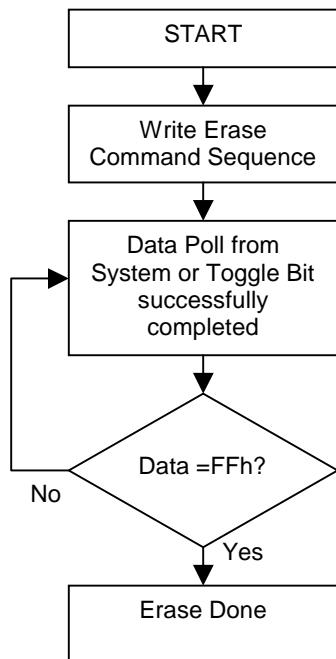
Sector Protection


When the device is shipped, all Sectors are unprotected. Each Sector can be separately protected against data changes. Using hardware protection circuitry enabled at user's site with external programming equipment, both program and erase operations may be disabled for any specified Sector or combination of Sectors. Verification of write protection for a specific Sector can be achieved with an Auto Select ID read command at location 02h where the address bits A17 - A13 select the defined Sector (see Table 5). A logical “1” at DQ0 means a protected Sector and a logical “0” means an unprotected Sector.

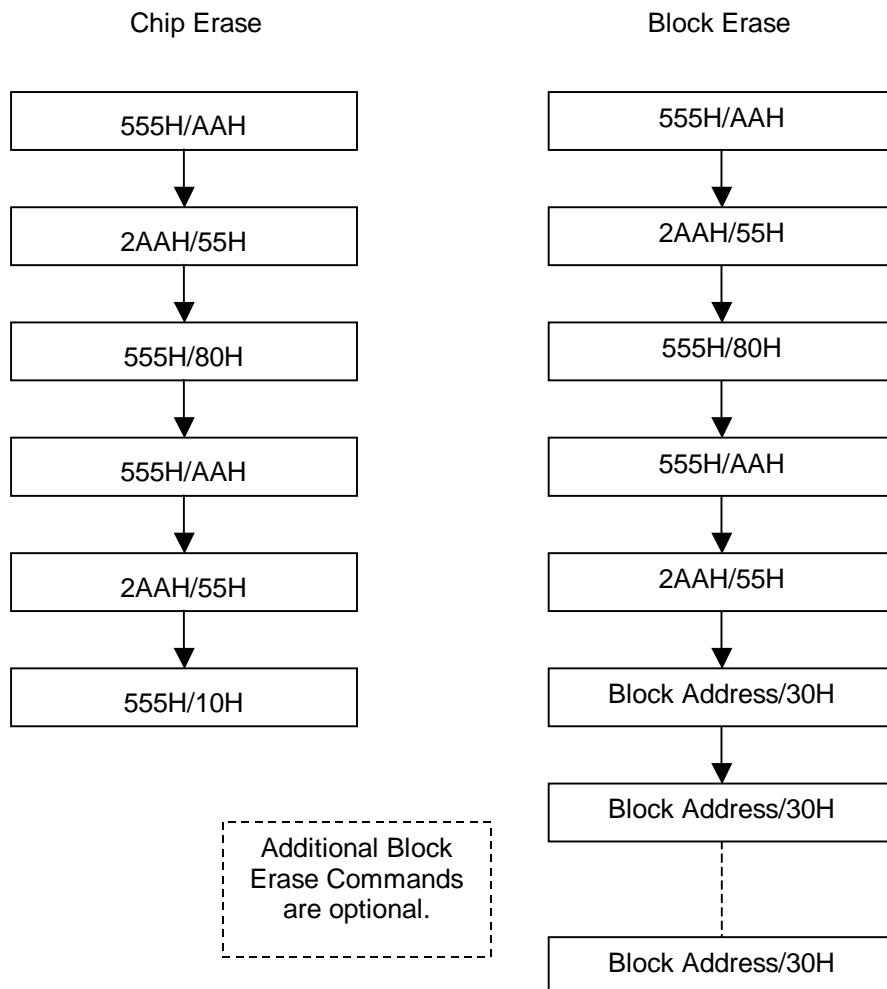
Sector Unprotect

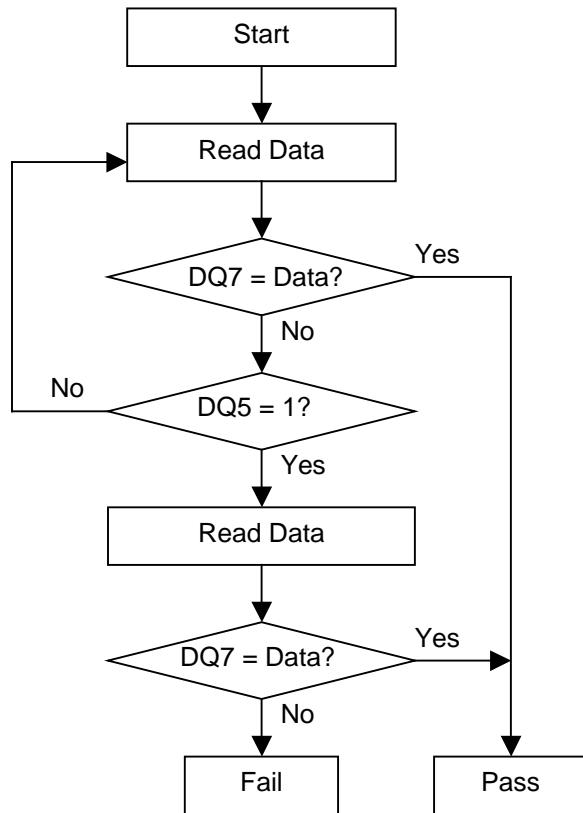
The Sector Unprotect disables Sector protection in all Sectors in one operation to implement code changes. It is selected by $\overline{CE} = L$, $\overline{OE} = A9 = V_{ID}$ and $A6 = A1 = 1$ with $A0 = 0$. Driving \overline{WE} low will initiate the Sector Unprotect. To verify the Sector Unprotect is the same as to verify Sector Protect where a logical “0” at DQ0 means an unprotected Sector for the selected Sector address.


EMBEDDED ALGORITHMS

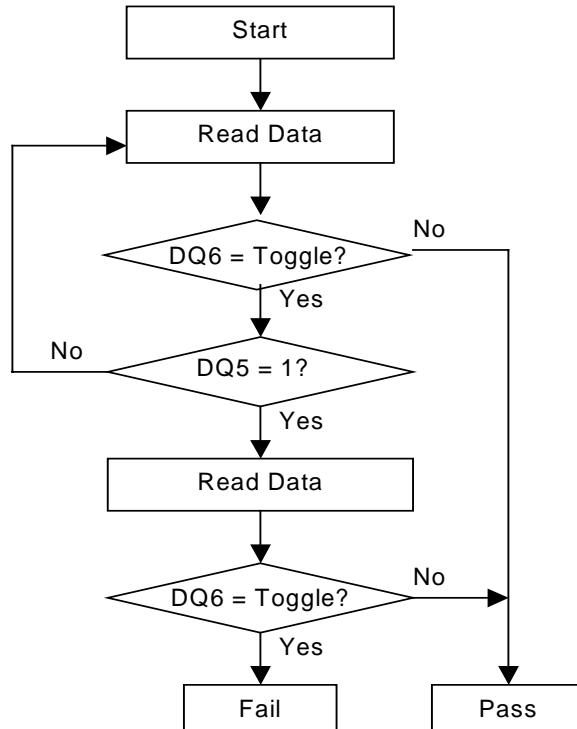

Flowchart 1. Embedded Program

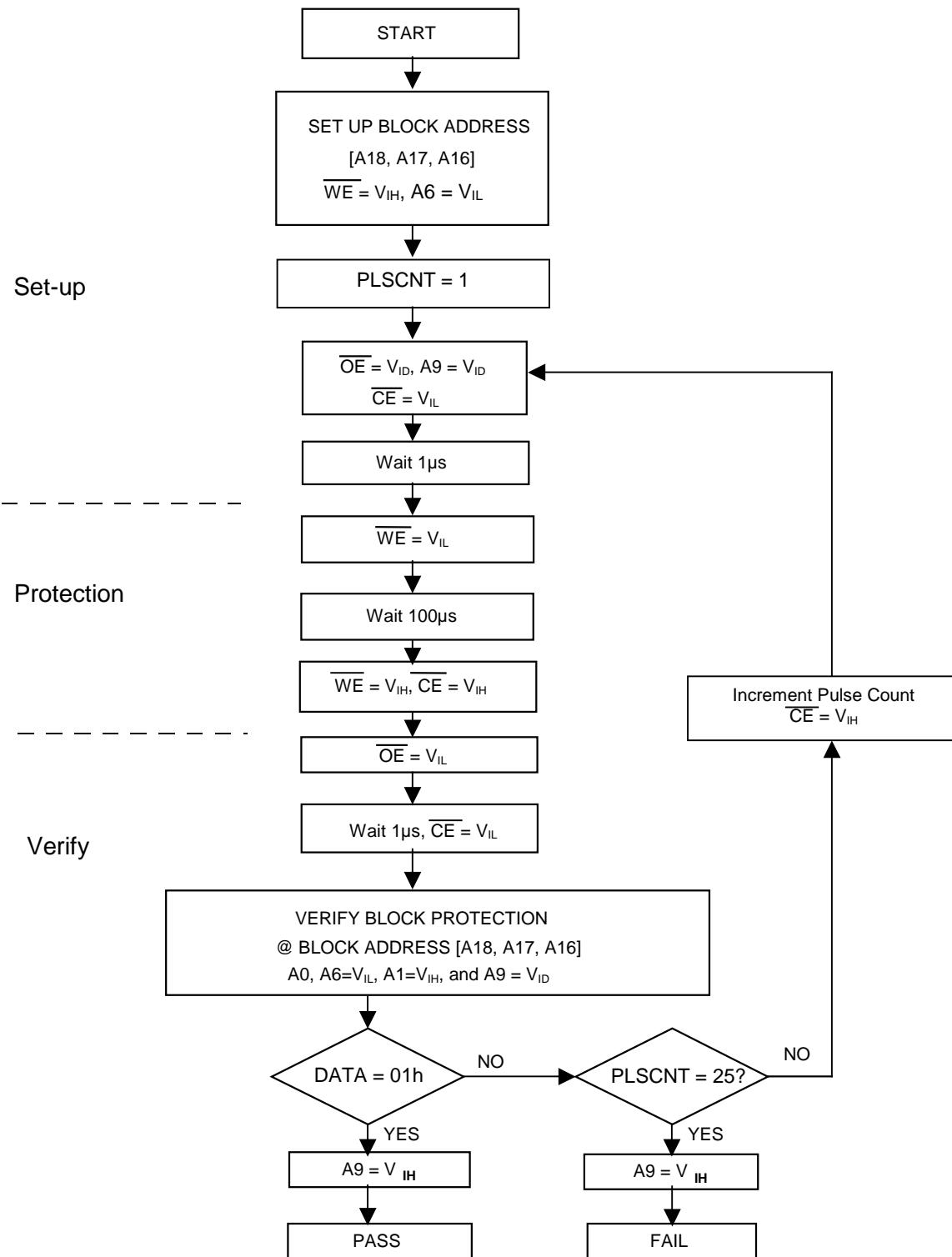
Flowchart 2. Embedded Program Command Sequence

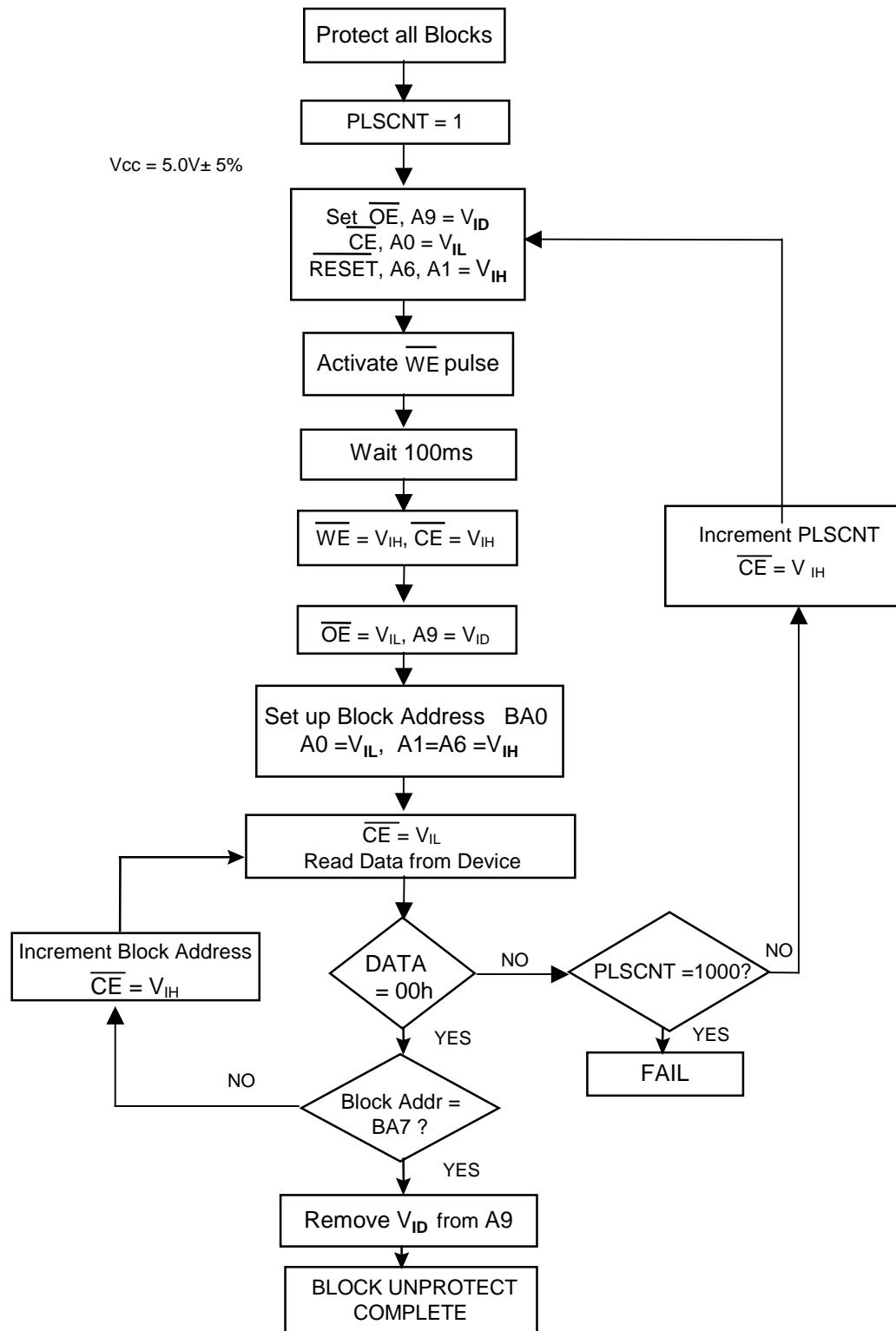

See the Command Definitions section for more information.


Flowchart 3. Embedded Erase

Flowchart 4. Embedded Erase Command Sequence


See the Command Definitions section for more information.


Flowchart 5. DATA Polling Algorithm


Flowchart 6. Toggle Bit Algorithm

Flowchart 7. Sector Protect Flowchart

Flowchart 8. Sector Unprotect Flowchart

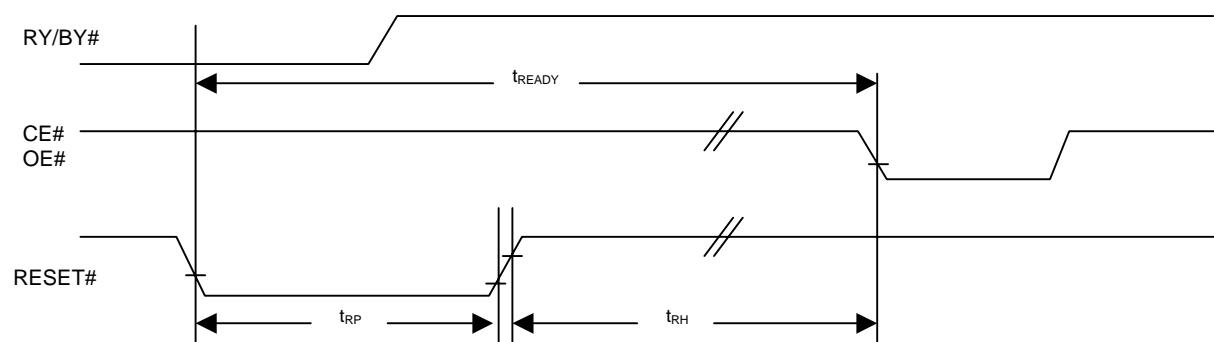
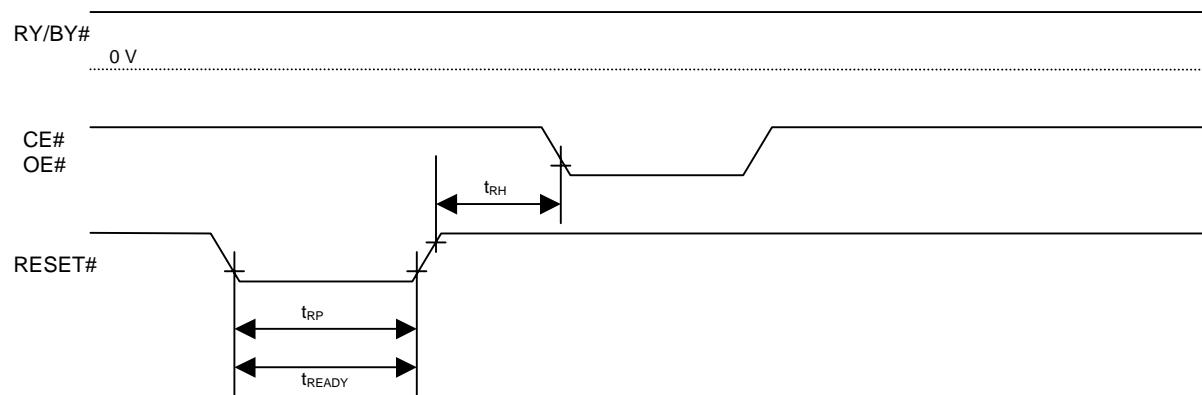
Table 7. DC Characteristics

($T_a = 0^\circ\text{C}$ to 70°C or -40°C to 85°C ; $V_{CC} = 5.0\text{V} \pm 10\%$)

Symbol	Parameter	Test Conditions	Min	Max	Unit
I_{LI}	Input Leakage Current	$0\text{V} \leq V_{IN} \leq V_{CC}$		± 5	μA
I_{LO}	Output Leakage Current	$0\text{V} \leq V_{OUT} \leq V_{CC}$		± 5	μA
I_{CC1}	Supply Current (read) TTL Byte	$\overline{CE} = V_{IL}; \overline{OE} = V_{IH}; f = 6\text{MHz}$		30	mA
I_{CC2}	Supply Current (Standby) TTL	$\overline{CE} = V_{IH}$		1.0	mA
I_{CC3}	Supply Current (Standby) CMOS	$CE = V_{CC} \pm 0.2\text{V}$		5.0	μA
I_{CC4}	Supply Current (Program or Erase)	Byte program, Sector or Chip Erase in progress		30	mA
V_{IL}	Input Low Voltage		-0.5	0.8	V
V_{IH}	Input High Voltage		2	$V_{CC} \pm 0.5$	V
V_{OL}	Output Low Voltage	$I_{OL} = 2\text{ mA}$		0.45	V
V_{OH}	Output High Voltage TTL	$I_{OH} = -2.5\text{ mA}$	2.4		V
	Output High Voltage CMOS	$I_{OH} = -100\text{ }\mu\text{A}$	$V_{CC} - 0.4\text{V}$		V
V_{ID}	A9 Voltage (Electronic Signature)		11.0	12.0	V
I_{ID}	A9 Current (Electronic Signature)	$A9 = V_{ID}$		100	μA
V_{LKO}	Supply voltage (Erase and Program lock-out)		3.2	4.2	V

Test Conditions

Test Specifications



Test Conditions	-45	-55	-70	-90	Unit
Output Load	1 TTL Gate				
Output Load Capacitance, C_L	30	30	100	100	pF
Input Rise and Fall times	5	5	20	20	ns
Input Pulse Levels	0.0-0.3	0.0-0.3	0.45-2.4	0.45-2.4	V
Input timing measurement reference levels	1.5	1.5	0.8, 2.0	0.8, 2.0	V
Output timing measurement reference levels	1.5	1.5	0.8, 2.0	0.8, 2.0	V

AC CHARACTERISTICS

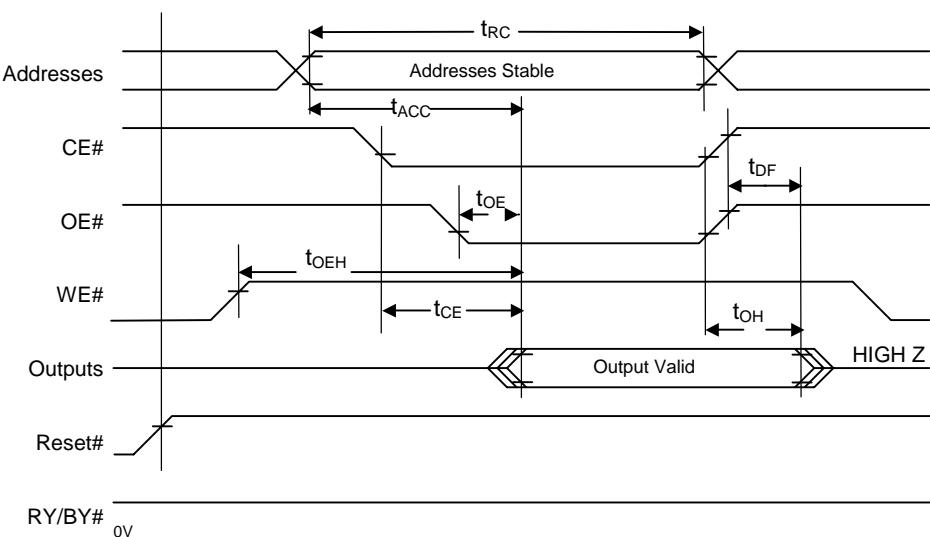
Hardware Reset (Reset#)

Parameter Std	Description	Test Setup	Speed options				Unit
			-45	-55	-70	-90	
t_{READY}	Reset# Pin Low to Read or Write Embedded Algorithms	Max			20		μs
t_{READY}	Reset# Pin Low to Read or Write Non Embedded Algorithms	Max			500		ns
t_{RP}	Reset# Pulse Width	Min			500		ns
t_{RH}	Reset# High Time Before Read	Min			50		ns

Reset# Timings

Table 8. AC CHARACTERISTICS
Read-only Operations Characteristics

Parameter Symbols		Description	Test Setup	Speed Options				Unit	
JEDEC	Standard			-45	-55	-70	-90		
t_{AVAV}	t_{RC}	Read Cycle Time		Min	45	55	70	90	ns
t_{AVQV}	t_{ACC}	Address to Output Delay	$\overline{CE} = V_{IL}$ $OE = V_{IL}$	Max	45	55	70	90	ns
t_{ELQV}	t_{CE}	Chip Enable To Output Delay	$OE = V_{IL}$	Max	45	55	70	90	ns
t_{GLQV}	t_{OE}	Output Enable to Output Delay		Max	25	30	30	35	ns
t_{EHQZ}	t_{DF}	Chip Enable to Output High Z		Max	20	20	20	20	ns
t_{GHQZ}	t_{DF}	Output Enable to Output High Z		Max	20	20	20	20	ns
t_{AXQX}	t_{OH}	Output Hold Time from Addresses, \overline{CE} or OE , whichever occurs first		Min	0	0	0	0	ns


Notes:

For - 50

$V_{CC} = 5.0V \pm 5\%$
Output Load : 1 TTL gate and 30pF
Input Rise and Fall Times: 5ns
Input Rise Levels: 0.0 V to 3.0 V
Timing Measurement Reference Level, Input and Output: 1.5 V

For all others:

$V_{CC} = 5.0V \pm 10\%$
Output Load: 1 TTL gate and 100 pF
Input Rise and Fall Times: 20 ns
Input Pulse Levels: 0.45 V to 2.4 V
Timing Measurement Reference Level, Input and Output: 0.8 V and 2.0 V

Figure 5. AC Waveforms for READ Operations

Table 9. AC CHARACTERISTICS
Write (Erase/Program) Operations

Parameter Symbols					Speed Options				
JEDEC	Standard	Description			-45	-55	-70	-90	
t_{AVAV}	t_{WC}	Write Cycle Time		Min	45	55	70	90	ns
t_{AVWL}	t_{AS}	Address Setup Time		Min	0	0	0	0	ns
t_{WLAX}	t_{AH}	Address Hold Time		Min	35	45	45	45	ns
t_{DVWH}	t_{DS}	Data Setup Time		Min	20	25	30	45	ns
t_{WHDX}	t_{DH}	Data Hold Time		Min	0	0	0	0	ns
	t_{OES}	Output Enable Setup Time		Min	0	0	0	0	ns
	t_{OEH}	Output Enable Hold Time	Read	Min	0	0	0	0	ns
			Toggle and DATA Polling	Min	10	10	10	10	ns
t_{GHWL}	t_{GHWL}	Read Recovery Time before Write (\overline{OE} High to \overline{WE} Low)		Min	0	0	0	0	ns
t_{ELWL}	t_{CS}	\overline{CE} Setup Time		Min	0	0	0	0	ns
t_{WHEH}	t_{CH}	\overline{CE} Hold Time		Min	0	0	0	0	ns
t_{WLWH}	t_{WP}	Write Pulse Width		Min	25	30	35	45	ns
t_{WHDL}	t_{WPH}	Write Pulse Width High		Min	20	20	20	20	ns
t_{WHWH1}	t_{WHWH1}	Programming Operation		Typ	7	7	7	7	μ s
				Max	200	200	200	200	μ s
t_{WHWH2}	t_{WHWH2}	Sector Erase Operation		Typ	0.3	0.3	0.3	0.3	s
				Max	5	5	5	5	s
t_{WHWH3}	t_{WHWH3}	Chip Erase Operation		Typ	3	3	3	3	s
				Max	35	35	35	35	s
	t_{VCS}	Vcc Setup Time		Min	50	50	50	50	μ s
	t_{VIDR}	Rise Time to VID		Min	500	500	500	500	ns

Table 10. AC CHARACTERISTICS
Write (Erase/Program) Operations

Alternate \overline{CE} Controlled Writes

Parameter Symbols				Speed Options					
JEDEC	Standard	Description			-45	-55	-70	-90	Unit
t_{AVAV}	t_{WC}	Write Cycle Time		Min	45	55	70	90	ns
t_{AVEL}	t_{AS}	Address Setup Time		Min	0	0	0	0	ns
t_{ELAX}	t_{AH}	Address Hold Time		Min	35	45	45	45	ns
t_{DVEH}	t_{DS}	Data Setup Time		Min	20	25	30	45	ns
t_{EHDX}	t_{DH}	Data Hold Time		Min	0	0	0	0	ns
	t_{OES}	Output Enable Setup Time		Min	0	0	0	0	ns
	t_{OEH}	Output Enable	Read	0	0	0	0	0	ns
		Hold Time	Toggle and Data Polling	10	10	10	10	10	ns
t_{GHEL}	t_{GHEL}	Read Recovery Time before Write (\overline{OE} High to \overline{CE} Low)		Min	0	0	0	0	ns
t_{WLEL}	t_{WS}	\overline{WE} Setup Time		Min	0	0	0	0	ns
t_{EHWL}	t_{WH}	\overline{WE} Hold Time		Min	0	0	0	0	ns
t_{ELEH}	t_{CP}	Write Pulse Width		Min	25	30	35	45	ns
t_{EHEL}	t_{CPH}	Write Pulse Width High		Min	20	20	20	20	ns
t_{WHWH1}	t_{WHWH1}	Programming Operation		Typ	7	7	7	7	μ s
				Max	200	200	200	200	μ s
t_{WHWH2}	t_{WHWH2}	Sector Erase Operation		Typ	0.3	0.3	0.3	0.3	s
				Max	5	5	5	5	s
t_{WHWH3}	t_{WHWH3}	Chip Erase Operation		Typ	3	3	3	3	s
				Max	35	35	35	35	s
	t_{VCS}	Vcc Setup Time		Min	50	50	50	50	μ s
	t_{VIDR}	Rise Time to V_{ID}		Min	500	500	500	500	ns

Table 11. ERASE AND PROGRAMMING PERFORMANCE

Parameter	Limits			Comments
	Typ	Max	Unit	
Sector Erase Time	0.3	5	sec	Excludes 00H programming prior to erasure
Chip Erase Time	3	35	sec	
Byte Programming Time	7	200	μs	Excludes system level overhead
Chip Programming Time	2	5	sec	
Erase/Program Endurance	100K		cycles	Minimum 100K cycles guaranteed

Table 12. LATCH UP CHARACTERISTICS

Parameter Description	Min	Max
Input voltage with respect to Vss on all pins except I/O pins (including A9 and \overline{OE})	-1.0 V	12.0 V
Input voltage with respect to Vss on all I/O Pins	-1.0 V	Vcc + 1.0 V
Vcc Current	200 mA	200 mA

Table 13. 32-PIN PLCC PIN CAPACITANCE @ 25°C, 1.0MHz

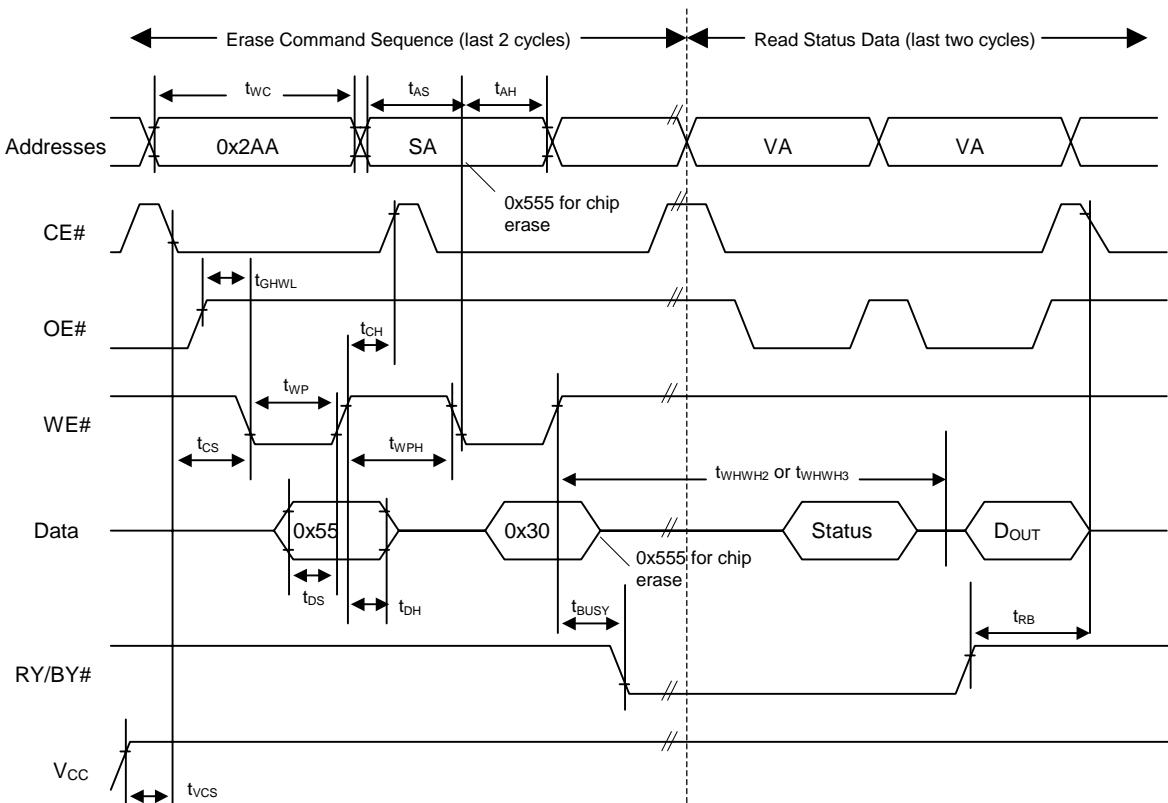
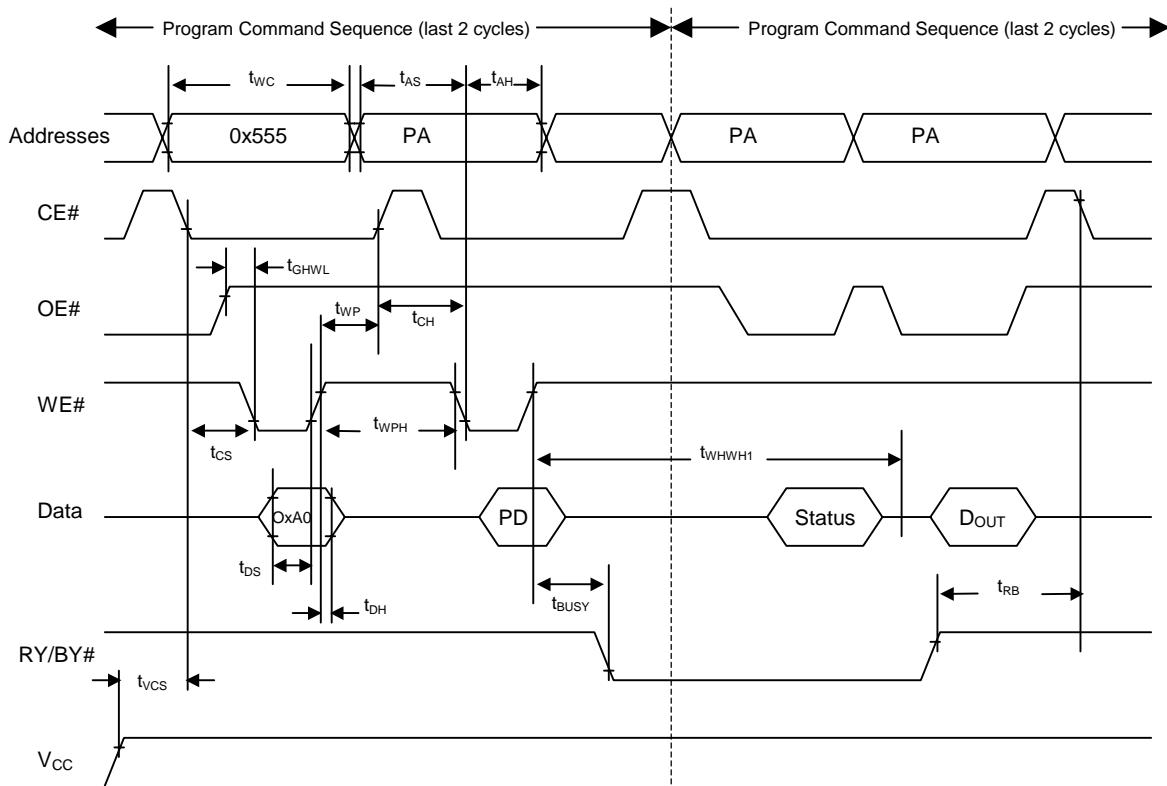

Parameter Symbol	Parameter Description	Test Setup	Typ	Max	Unit
C_{IN}	Input Capacitance	$V_{IN} = 0$	4	6	pF
C_{OUT}	Output Capacitance	$V_{OUT} = 0$	8	12	pF
C_{IN2}	Control Pin Capacitance	$V_{IN} = 0$	8	12	pF

Table 14. 32-PIN TSOP PIN CAPACITANCE @ 25°C, 1.0MHz

Parameter Symbol	Parameter Description	Test Setup	Typ	Max	Unit
C_{IN}	Input Capacitance	$V_{IN} = 0$	6	7.5	pF
C_{OUT}	Output Capacitance	$V_{OUT} = 0$	8.5	12	pF
C_{IN2}	Control Pin Capacitance	$V_{IN} = 0$	7.5	9	pF

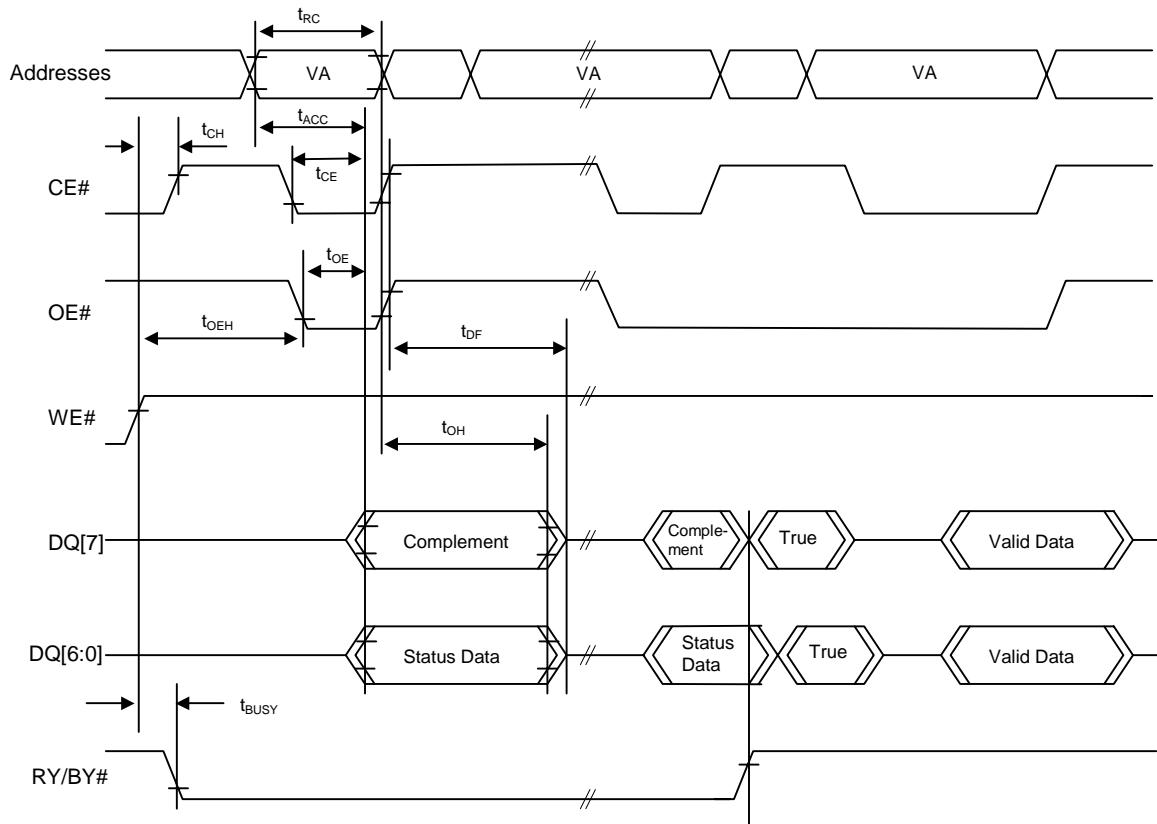

Table 15. DATA RETENTION

Parameter Description	Test Conditions	Min	Unit
Minimum Pattern Data Retention Time	150°C	10	Years
	125°C	20	Years

SWITCHING WAVEFORMS
Figure 6. AC Waveforms for Chip/Sector Erase Operations Timings

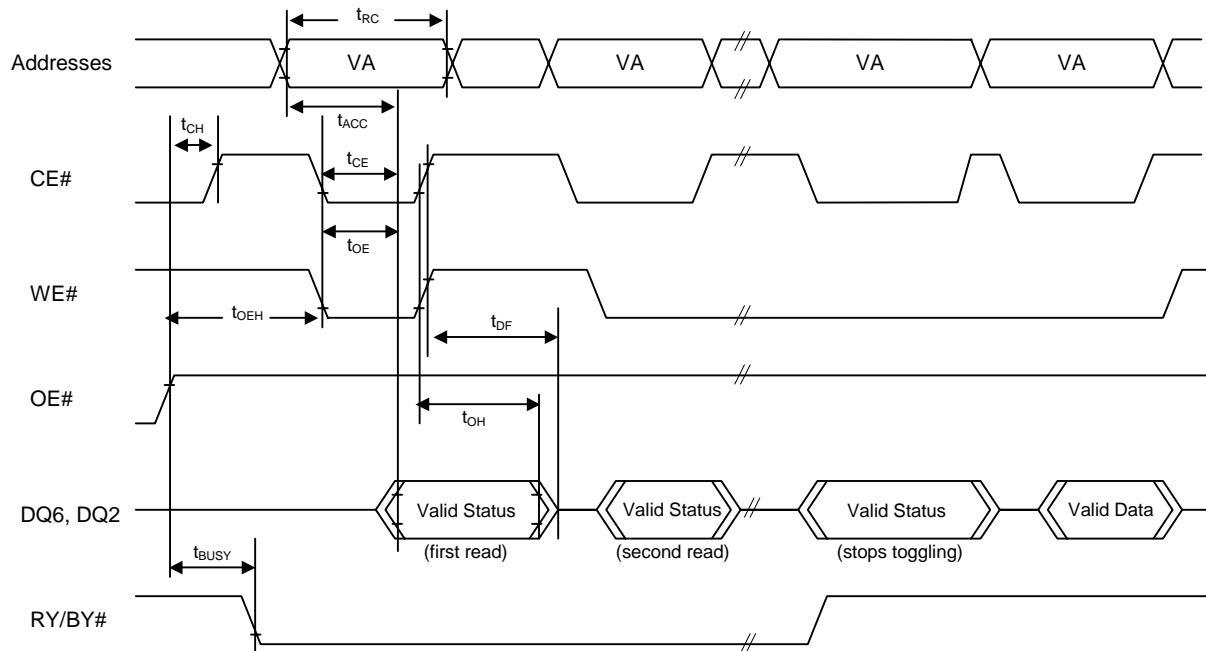
Notes:

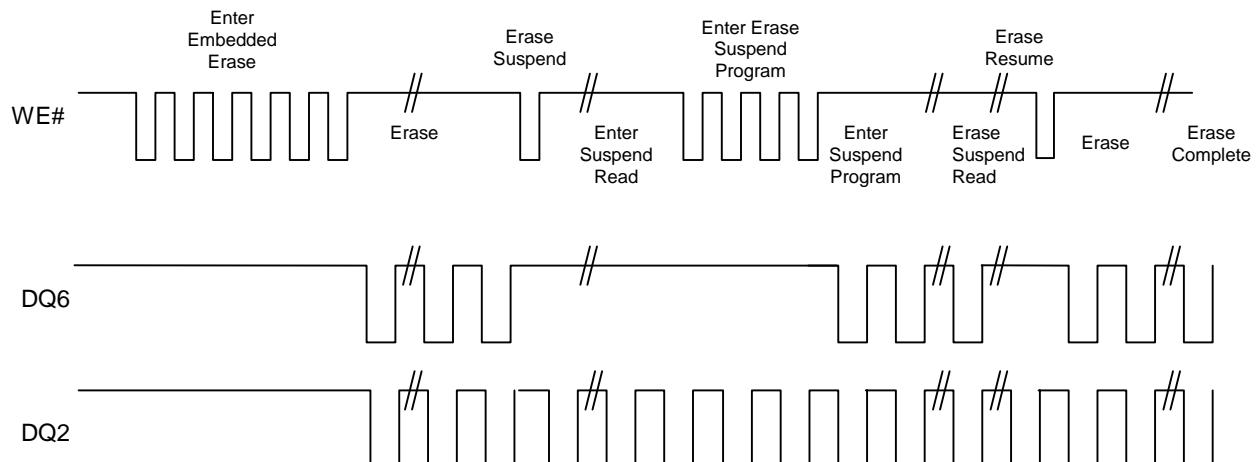
1. SA=Sector Address (for sector erase), VA=Valid Address for reading status, D_{out}=true data at read address.
2. V_{CC} shown only to illustrate t_{VCS} measurement references. It cannot occur as shown during a valid command sequence.


Figure 7. Program Operation Timings

Notes:

1. PA=Program Address, PD=Program Data, D_{OUT} is the true data at the program address.
2. V_{CC} shown in order to illustrate t_{VCS} measurement references. It cannot occur as shown during a valid command sequence.


Figure 8. AC Waveforms for /DATA Polling During Embedded Algorithm Operations

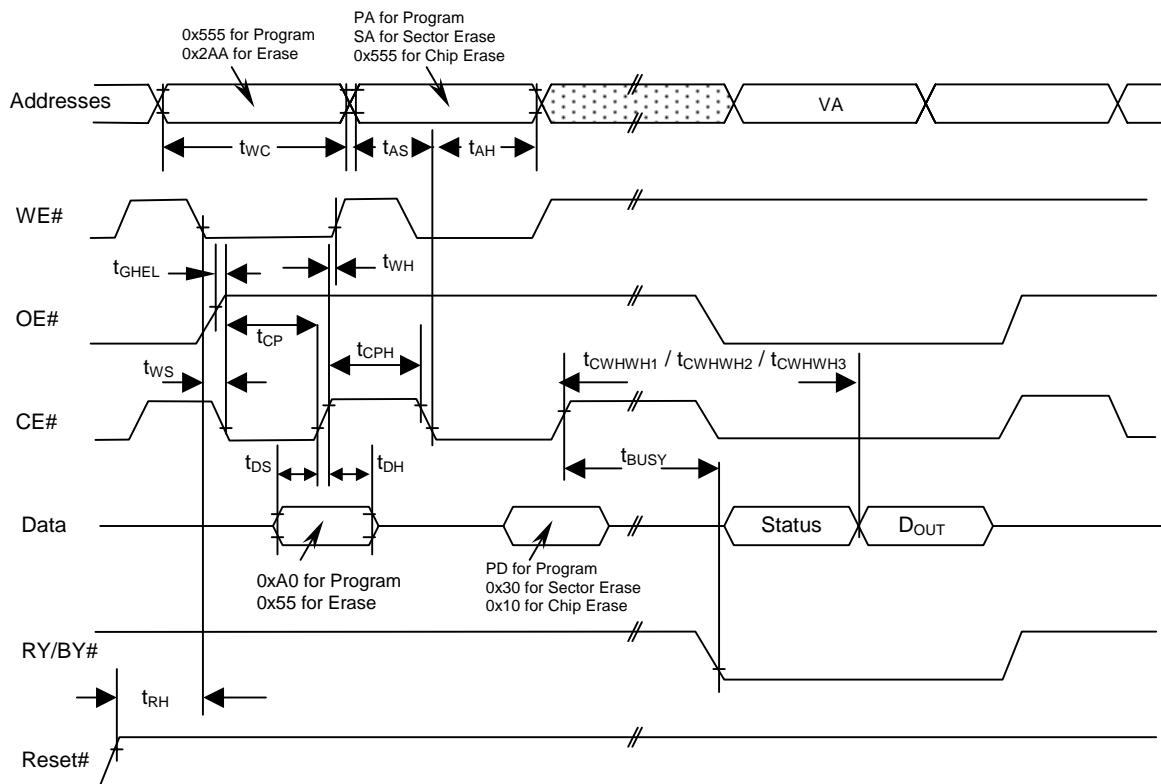

Notes:

1. VA=Valid Address for reading Data# Polling status data
2. This diagram shows the first status cycle after the command sequence, the last status read cycle and the array data read cycle.

Figure 9. AC Waveforms for Toggle Bit During Embedded Algorithm Operations

AC CHARACTERISTICS

DQ2 vs. DQ6


Temporary Sector Unprotect

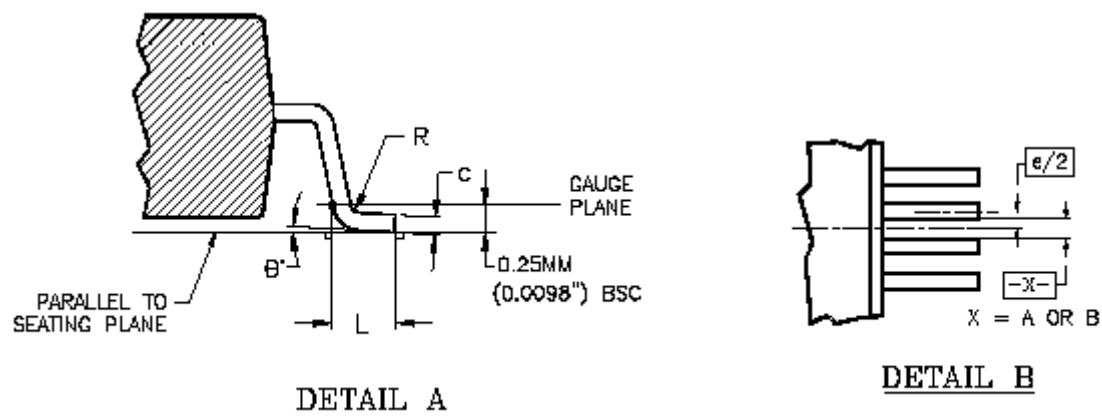
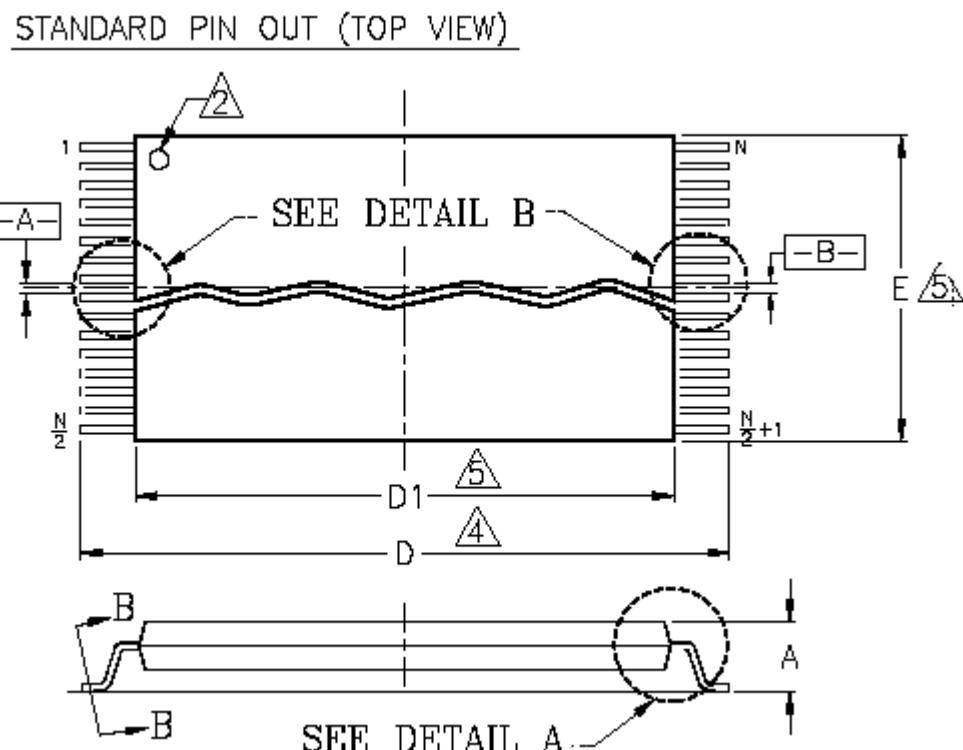
Parameter Std	Description		Speed Option				Unit	
			-45	-55	-70	-90		
t_{VIDR}	V_{ID} Rise and Fall Time	Min	500			Ns		
t_{RSP}	RESET# Setup Time for Temporary Sector Unprotect	Min	4			μs		

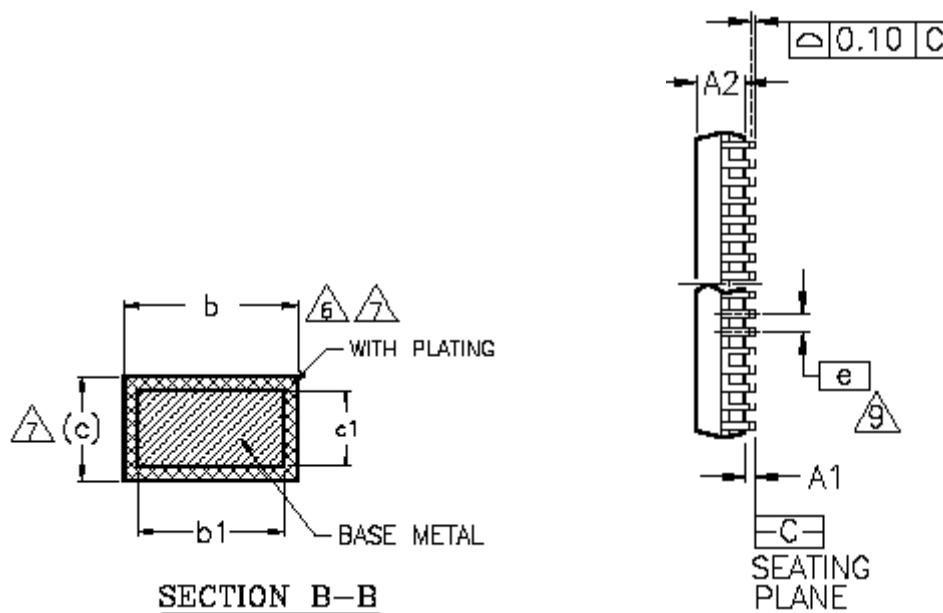
Temporary Sector Group Unprotect Timing Diagram

Figure 10. Alternate CE# Controlled Write Operation Timings

Notes:

PA = address of the memory location to be programmed.



PD = data to be programmed at byte address.


VA = Valid Address for reading program or erase status

D_{out} = array data read at VA

Shown above are the last two cycles of the program or erase command sequence and the last status read cycle
Reset# shown to illustrate t_{RH} measurement references. It cannot occur as shown during a valid command sequence.

FIGURE 4. TSOP

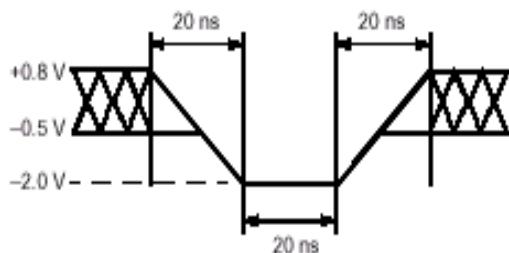
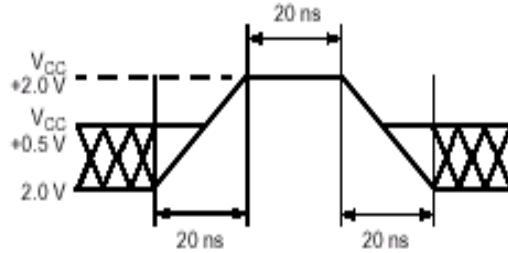
Package			
Jedec			
Symbol	MIN	NOM	MAX
A	—	—	1.20
A1	0.05	—	0.15
A2	0.95	1.00	1.05
b1	0.17	0.20	0.23
b	0.17	0.22	0.27
c1	0.10	—	0.16
c	0.10	—	0.21
D	19.80	20.00	20.20
D1	18.30	18.40	18.50
E	9.90	10.00	10.10
e	0.50 BASIC		
L	0.50	0.60	0.70
θ	0°	3°	5°
R	0.08	—	0.20
N	40		

NOTES:

- 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (mm).
(DIMENSIONING AND TOLERANCING CONFORMS TO ANSI Y14.5M-1982)
- 2. PIN 1 IDENTIFIER FOR STANDARD PIN OUT (DIE UP).
- 3. TO BE DETERMINED AT THE SEATING PLANE **C**. THE SEATING PLANE IS DEFINED AS THE PLANE OF CONTACT THAT IS MADE WHEN THE PACKAGE LEADS ARE ALLOWED TO REST FREELY ON A FLAT HORIZONTAL SURFACE.
- 4. DIMENSIONS D1 AND E DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTRUSION IS 0.15mm (.0059") PER SIDE.
- 5. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.09mm (0.0031") TOTAL IN EXCESS OF b DIMENSION AT MAX. MATERIAL CONDITION. MINIMUM SPACE BETWEEN PROTRUSION AND AN ADJACENT LEAD TO BE 0.07mm (0.0028").
- 6. THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm (.0039") AND 0.25mm (.0098") FROM THE LEAD TIP.
- 7. LEAD COPLANARITY SHALL BE WITHIN 0.10mm (0.004") AS MEASURED FROM THE SEATING PLANE.
- 8. DIMENSION "e" IS MEASURED AT THE CENTERLINE OF THE LEADS.

ABSOLUTE MAXIMUM RATINGS

Parameter	Value	Unit	
Storage Temperature	-65 to +125	°C	
Plastic Packages	-65 to +125	°C	
Ambient Temperature With Power Applied	-55 to +125	°C	
Output Short Circuit Current ¹	200	mA	
Voltage with Respect to Ground	A9, OE#, Reset# ²	-2.0 to +12.5	V
	V _{cc} & All other pins ³	-2.0 to +7.0	V



Notes:

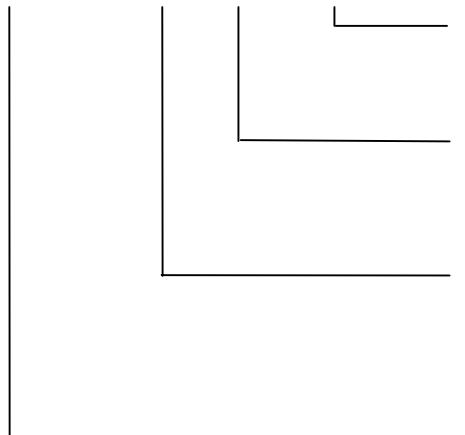
1. No more than one output shorted at a time. Duration of the short circuit should not be greater than one second.
2. Minimum DC input voltage on A9, OE#, RESET# pins is -0.5V. During voltage transitions, A9, OE#, RESET# pins may overshoot V_{ss} to -2.0V for periods of up to 20ns. See figure below. Maximum DC input voltage on A9, OE#, and RESET# is 12.5V which may overshoot to 13.5V for periods up to 20ns.
3. Minimum DC voltage on input or I/O pins is -0.5 V. During voltage transitions, inputs may overshoot V_{ss} to -2.0 V for periods of up to 20ns. See figure below. Maximum DC voltage on output and I/O pins is V_{cc} + 0.5 V. During voltage transitions, outputs may overshoot to V_{cc} + 2.0 V for periods up to 20ns. See figure below.
4. Stresses above the values so mentioned above may cause permanent damage to the device. These values are for a stress rating only and do not imply that the device should be operated at conditions up to or above these values. Exposure of the device to the maximum rating values for extended periods of time may adversely affect the device reliability.

RECOMMENDED OPERATING RANGES¹

Parameter	Value	Unit
Ambient Operating Temperature Commercial Devices Industrial Devices	0 to 70 -40 to 85	°C
Operating Supply Voltage V _{cc} for ± 5% devices V _{cc} for ± 10% devices	4.75 to 5.25 4.5 to 5.5	V

1. Recommended Operating Ranges define those limits between which the functionality of the device is guaranteed.

Maximum Negative Overshoot
WaveformMaximum Positive Overshoot
Waveform


ORDERING INFORMATION

EN29F080

50

T

I

TEMPERATURE RANGE

(Blank) = Commercial (0°C to +70°C)
I = Industrial (-40°C to +85°C)

PACKAGE

T = 40-pin

S = Small Outline Package

SPEED

45 = 45ns

50 = 50ns

70 = 70ns

90 = 90ns

BASE PART NUMBER

EN = EON Silicon Devices

29F = FLASH, 5V Read Program Erase

080 = 8 Megabit (1024K x 8)