

3.3V Single-Mode LC SFP Transceiver

For SONET OC-48/SDH STM-16

ES248-LP3TA-x-y-z Preliminary Data Sheet

Features

- 1300nm Fabry Perot or DFB Laser for Short & Intermediate Reach Applications
- Temperature Ranges: 0 to 70°C or -40 to 85°C
- Conforms to SONET OC-48/ SDH STM-16 specifications (2.488 Gbps Data Rate)
- Class 1 Laser Safety Conformance
- EMI meets FCC Class B Limit
- Single +3.3V Power Supply
- LV-PECL Data Input and Receiver Output Levels
- TTL Loss of Signal detection
- Industry Standard Duplex LC Optical Connector
- Operates with 9/125 μm single mode optical fibers
- Conforms to Small Form-factor Pluggable (SFP) Multi-Source Agreement
- Compatible with Industry Standard RFT Electrical Connector & Cage
- Meets Mezzanine Height Standard of 9.8 mm
- Hot Pluggable
- EEPROM with Serial ID Functionality

Product Description

The ES248-LP3TA from E2O Communications is a hot pluggable duplex-LC transceiver designed for use in SONET OC-48/SDH STM-16 applications. It operates with a single +3.3V power supply. The transceiver is compatible with the industry standard RFT connector and cage and conforms to the Small Form-factor Pluggable (SFP) multi-source agreement (MSA). It meets the mezzanine height requirement of 9.8 mm.

The transceiver consists of an optical subassembly housing both the transmitter and the receiver, and an electrical subassembly.

All are packaged together with a top metal cover and bottom shield.

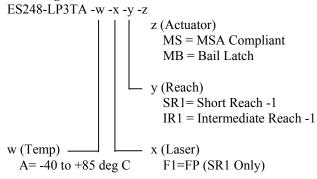
The optical subassembly consists of 2 parts. The transmitter side has a high-performance 1300-nm FP or DFB laser and back facet monitor. The receiver side has an InGaAs PIN and a preamplifier.

All ES248-LP3TA transceivers also include a Loss of Signal detection circuit, which provides a TTL logic high output when there is an unusable input optical signal level. The Tx Disable and Tx Fault pins use TTL logic for communication with the host board. See MSA for details.

A serial EEPROM in the transceiver allows the user to access information. Details of the Serial Identification Protocol will be contained in the SFP Multi-Source Agreement.

Electromagnetic Interference (EMI) & Immunity

Most equipment designs utilizing high-speed transceivers will be required to meet the requirements of FCC in the United States, CENELEC EN55022 (CISPR 22) in Europe and VCCI in Japan.


The ES248-LP3TA transceivers, with their shielded design, perform to the specified limits to assist the designer in the management of the overall equipment EMI performance. They meet the FCC Class B limits.

The ES248-LP3TA transceiver has been designed to provide good immunity to radio-frequency electromagnetic fields. Key components to achieve the good electromagnetic performance (EMC) are the internal shields, the metal cover, and the RFT cage. The RFT cage is designed to provide protection for EMI emission and EMI susceptibility. All transceivers conform to the FCC Class B limits.

Eve Safety

The ES248-LP3TA 1300-nm laser-based transceivers have been designed to meet Class 1 eye safety. They conform to FDA 21CFR1040.10 and 1040.11 and IEC 60825-1.

Ordering Information

B= 0 to +70 deg C DO=DFB (IR1 Only)

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS	NOTES
Storage Temperature	T_{S}	-40		+85	°C	
Supply Voltage	V _{CC}			3.5	V	

RECOMMENDED OPERATING CONDITIONS

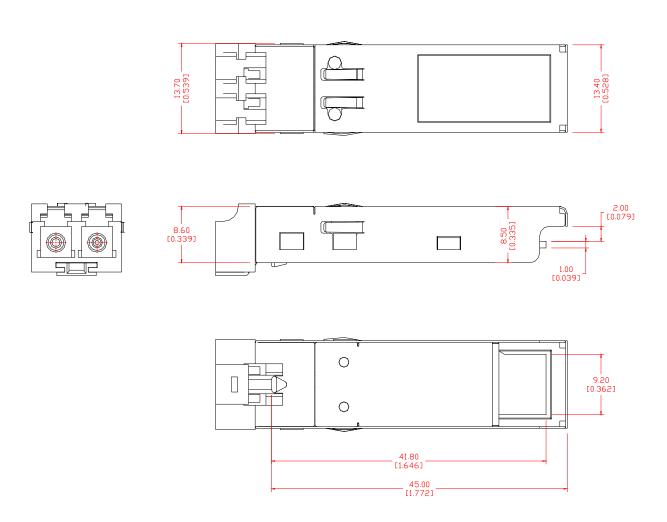
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS	NOTES
Ambient Operating Temperature	T_{A}	0		+70	°C	Version "B"
	T_{A}	-40		+85	°C	Version "A"
Supply Voltage	V_{CC}	3.1		3.5	V	
Transmitter Differential Input Voltage	V_{D}	0.6		2.0	V	
Transmit Disable Input Volt –Lo	$\mathrm{TD}_{\mathrm{Lo}}$			0.3	V	
Transmit Disable Input Volt –Hi	$\mathrm{TD}_{\mathrm{Hi}}$	2.3			V	

ELECTRICAL CHARACTERISTICS (Over Specified T_{op} Range, $V_{CC} = +3.1V$ to +3.5V)

PARAMETER	SYMB OL	MIN.	TYP.	MAX.	UNITS	NOTES
TRANSMITTER						
Supply Current	I_{CCT}			150	mA	
RECEIVER						
Supply Current	I_{CCR}			130	mA	
Data Output Voltage Swing (Differential)	Vdiff	0.5		1.9	V	
Data Output Rise & Fall Times	t_r, t_f			TBD	ns	10% - 90%
Loss of Signal Detect Output – High	Voh, TTL	2.0		Vcc	V	
Loss of Signal Detect Output -Low	Vol, TTL	0.0		0.8	V	

OPTICAL CHARACTERISTICS (Over Specified T_{op} Range, $V_{CC} = +3.1V$ to +3.5V)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS	NOTES
TRANSMITTER						
Output Optical Power 9/125 µm, NA = 0.10 fiber	P _{OUT}	-10		-3	dBm avg.	For SR-1 option
Output Optical Power $9/125 \mu m$, NA = 0.10 fiber	P _{OUT}	-5		0	dBm avg.	For IR-1 option
Optical Extinction Ratio		8.2			dB	
Center Wavelength	$\lambda_{\mathbf{c}}$	1266		1360	nm	
Spectral Width – rms	σ			4	nm	For SR-1 option
Spectral Width - rms	σ			1	nm	For IR-1 option
SMSR		30			dB	For IR-1 option
Output Optical Eye						Conforms to eye mask Bellcore TR-NWT-000253
RECEIVER						
Minimum Optical Input Power (Sensitivity)	$P_{\rm IN}$			-18	dBm avg.	For SR-1 and IR-1 options
Maximum Optical Input Power (Saturation)	$P_{\rm IN}$	-3			dBm avg.	For SR-1 option
Maximum Optical Input Power (Saturation)	$P_{\rm IN}$	0			dBm avg.	For IR-1 option
Operating Center Wavelength	$\lambda_{ m c}$	1260		1360	nm	
Loss of Signal – Deasserted	P_{A}			-18	dBm avg.	
Loss of Signal – Asserted	P_{D}	-30			dBm avg.	
Loss of Signal – Hysteresis	P _A - P _D	1.0		5.0	dB	


Table 1: SFP PIN DEFINITION

PIN	SYMBOL	DESCRIPTION OF FUNCTION					
1	VeeT	Transmitter Signal Ground					
2	TX Fault	Transmitter Fault Indication					
3	TX Disable	Transmitter Disable					
4	MOD-DEF2	Module Definition 2					
5	MOD-DEF1	Module Definition 1					
6	MOD-DEF0	Module Definition 0					
7	Rate Select	Select between full or reduced receiver bandwidth					
8	LOS	Loss of Signal					
9	VeeR	Receiver Signal Ground					
10	VeeR	Receiver Signal Ground					
11	VeeR	Receiver Signal Ground					
12	RD-	Received Data Inverted Differential Output					
13	RD+	Received Data Non-Inverted Differential Output					
14	VeeR	Receiver Signal Ground					
15	VccR	+3.3V Receiver Power Supply					
16	VccT	+3.3V Transmitter Power Supply					
17	VeeT	Transmitter Signal Ground					
18	TD+	Transmitter Data Non-Inverted Differential Input					
19	TD-	Transmitter Data Inverted Differential Input					
20	VeeT	Transmitter Signal Ground					

Mechanical Specs:

Figure 1: SFP Transceiver Package Outline

E2O Communications, Inc. reserves the right to make changes in product design, features, capabilities, function, or specifications at any time without notice. Information supplied by E2O Communications, Inc. is believed to be accurate and reliable at the time of release. No responsibility is assumed by E2O Communications, Inc. for its use nor for any infringements of third parties, which may result from its use. No license is granted by implication or otherwise under any patent right of E2O Communications, Inc.