PRELIMINARY DATA SHEET

ECG008

BROADBAND HIGH OIP3 AMPLIFIER

DC - 3000 MHz

Features

- DC to 3000 MHz
- 40 dBm Typical OIP3 at 1000 MHz
- Highly Reliable InGaP HBT
- 15.0 dB Typical Gain at 1000 MHz
- 23.0 dBm Typical P1dB at 2000 MHz
- 4.8 dB Typical Noise Figure at 2000 MHz
- Excellent Stability

Applications

- Multi-carrier Systems
- High Linearity Amplifiers
- Cellular, PCS, WLL

Package Available

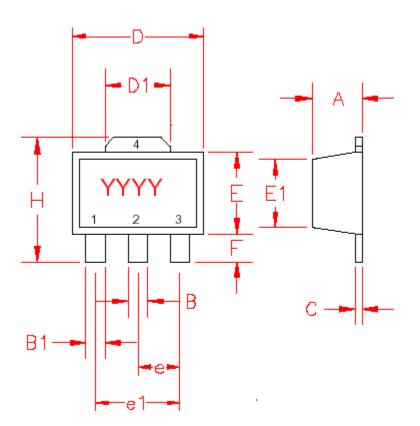
(-B) SOT-89

Description

The ECG008 is a high reliability, high OIP3 amplifier in a low cost SOT-89 package, optimized for the commercial communications market. The device is manufactured using advanced Indium Gallium Phosphide Heterojunction Bipolar Transistor (InGaP HBT) technology. The amplifier is internally matched to achieve low VSWR and high OIP3 over the DC to 3000 MHz range. Typical OIP3 at 1000 MHz is +40 dBm. The ECG008 operates from a single positive voltage power supply. The ECG008 is designed in the Darlington configuration with direct feedback. Its operation frequency at low end is limited only by the DC blocking capacitor and the RF choke inductor (large values are required in both cases).

Electrical Specifications

Test Conditions: Ic= 120mA Ta = 25°C,


PARAMETER			LIMITS		UNIT	TEST CONDITION
		MIN.	TYP.	MAX.	ONT	TEST CONDITION
Frequency		DC		3000	MHz	
Gain (Small Signal)	f = 1000 MHz f = 2000 MHz f = 3000 MHz	13	15 15 15		dB	
Output Power @ 1 dB Compression	f = 1000 MHz f = 2000 MHz f = 3000 MHz		24 23 20		dBm	
Output Third Order Intercept	f = 1000 MHz f = 2000 MHz f = 3000 MHz	34	40 37 33		dBm	Note 1
Input Return Loss, 50 Ohm	1000 to 3000 MHz		18.0		dB	
Output Return Loss, 50 Ohm	1000 to 2000 MHz		14.0		dB	
Output Return Loss, 50 Ohm	3000 MHz		9.0		dB	
Noise Figure	f = 1000 MHz f = 2000 MHz		4.6 4.8		dB	
Device Voltage		6.8	7.3	7.8	V	
Output Mismatch without Spurs			10:1			
	Output Power @ 1 dB Compression Output Third Order Intercept Input Return Loss, 50 Ohm Output Return Loss, 50 Ohm Output Return Loss, 50 Ohm Noise Figure Oevice Voltage Output Mismatch without Spurs	Gain (Small Signal) f = 2000 MHz f = 3000 MHz f = 1000 MHz f = 2000 MHz f = 2000 MHz f = 2000 MHz f = 3000 MHz f = 3000 MHz f = 1000 MHz f = 2000 MHz f = 2000 MHz f = 3000 MHz f = 3000 MHz nput Return Loss, 50 Ohm 1000 to 3000 MHz Dutput Return Loss, 50 Ohm 3000 MHz Dutput Return Loss, 50 Ohm 3000 MHz Noise Figure f = 1000 MHz Device Voltage Dutput Mismatch without Spurs	Gain (Small Signal) f = 2000 MHz 13 f = 3000 MHz f = 1000 MHz 1 f = 2000 MHz f = 2000 MHz 1 f = 3000 MHz f = 3000 MHz 34 f = 3000 MHz f = 3000 MHz 34 putput Return Loss, 50 Ohm 1000 to 3000 MHz 3000 MHz Dutput Return Loss, 50 Ohm 3000 MHz 3000 MHz Dutput Return Loss, 50 Ohm 3000 MHz 6.8 Device Voltage 6.8 Dutput Mismatch without Spurs	Gain (Small Signal) f = 2000 MHz 13 15 Coutput Power @ 1 dB f = 1000 MHz 24 Compression f = 2000 MHz 23 f = 3000 MHz 20 Coutput Third Order Intercept f = 1000 MHz 34 f = 3000 MHz 33 Input Return Loss, 50 Ohm 1000 to 3000 MHz 18.0 Output Return Loss, 50 Ohm 1000 to 2000 MHz 14.0 Output Return Loss, 50 Ohm 3000 MHz 9.0 Noise Figure f = 1000 MHz 4.6 f = 2000 MHz 4.8 Device Voltage 6.8 7.3	Gain (Small Signal) f = 2000 MHz 13 15 f = 3000 MHz 15 15 Output Power @ 1 dB f = 1000 MHz 24 Compression f = 2000 MHz 23 f = 3000 MHz 40 37 f = 2000 MHz 34 37 f = 3000 MHz 33 33 nput Return Loss, 50 Ohm 1000 to 3000 MHz 18.0 Output Return Loss, 50 Ohm 1000 to 2000 MHz 14.0 Output Return Loss, 50 Ohm 3000 MHz 9.0 Noise Figure f = 1000 MHz 4.6 f = 2000 MHz 4.8 Oevice Voltage 6.8 7.3 7.8 Output Mismatch without Spurs 10:1	Gain (Small Signal) f = 2000 MHz 13 15 dB Output Power @ 1 dB f = 1000 MHz 24 23 dBm Compression f = 2000 MHz 23 dBm Output Third Order Intercept f = 1000 MHz 34 37 dBm Output Return Loss, 50 Ohm 1000 to 3000 MHz 18.0 dB Output Return Loss, 50 Ohm 1000 to 2000 MHz 14.0 dB Output Return Loss, 50 Ohm 3000 MHz 9.0 dB Noise Figure f = 1000 MHz 4.6 4.6 dB Device Voltage 6.8 7.3 7.8 V Output Mismatch without Spurs 10:1 10:1 10:1

Excellence in Communications

Absolute Maximum Ratings

Device Current	160	mA
RF Power Input	10	dBm
Operating Temperature	-40 to +85	°C
Storage Temperature	-65 to +150	°C
Junction Temperature	200	°C

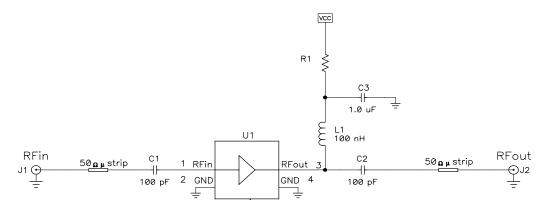
Symbol	Incl	nes	
Sy	MIN.	MAX.	
Α	.055	.063	
В	.017	.022	
B1	.014	.019	
С	.014	.017	
D	.173	.181	
D1	.064	.072	
Е	.090	.102	
E1	.084	.090	
е	.05	59	
e1	.118		
F	.035	.047	
Н	.155	.167	

Pin Definitions

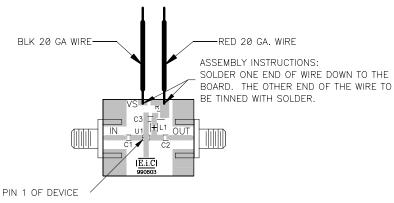
Pin #	Pin	Definition
1	RFin	This pin has a nominal 50 ohm input impedance. It requires a DC blocking capacitor large
'	IXI III	enough to handle the lowest frequency used.
2. 4	Gnd	The two ground connections should be directly connected together to the ground plane on
2, 4 Gild		the PCB. The ground connection also serves as a heatsink.
3		This pin has a nominal 50 ohm output impedance. It requires a DC bias of 120mA through a series inductor and a resistor. A bypass capacitor (1.0 micro Farad) on the DC side of the inductor is recommended for providing instantaneous current during a modulated RF signal. Use a DC blocking capacitor on the output with similar requirements as the input side.

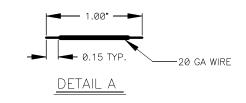
ECG008

BROADBAND HIGH OIP3 AMPLIFIER


DC - 3000 MHz

Evaluation Board Schematic SOT-89


Recommended Bias Resistor Values


R = (Vcc-Vde)/Icc = (Vcc-7.3)/0.120

Approximate Supply Voltage (V _{cc}) based on standard values for R1		10	11	12
R1 (Ohms)	15	22	30	39

Evaluation Board Layout

Evaluation Board Materials

QTY	DESIGNATOR	VALUE	DESCRIPTION	MANUFACTURER &P/N	
2	C1, C2	100pF	CAPACITOR, 0603	MARUWA CE101J1NO	NOTE 1
1	C3	1.0uF	CAPACITOR, 0603	MARUWA CE105K1NR	NOTE 1
1	R1	10 Ω	RESISTOR, 0603	ROHM MCR10J100	NOTE 1
1	L1	100 nH	INDUCTOR, 0805	TOKO LL2012-FR10K	NOTE 1
2	J1, J2		SMA CONNECTOR	EF JOHNSON 142-0701-881	NOTE 1
1			IC, ECG008	EiC Corp	
RED			20 GA, WIRE 1.0"	ANY	SEE DETAIL A
BLACK			20 GA, WIRE 1.0"	ANY	SEE DETAIL A
			PCB	EiC Corp 60-000009-003B	

1. EIC RECOMMENDED COMPONENTS ARE SHOW. EQUIVALENT COMPONENTS MAY BE USED. 2. LARGER VALUES GIVE BETTER LOW FREQUENCY RESPONSE(<500MHz) NOTES: UNLESS OTHERWISE SPECIFIED

Figure 1

Vde vs. Icc (IC Tested on Eval Board)

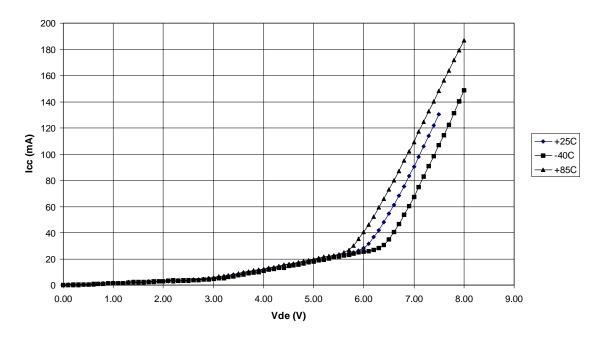


Figure 2

P1dB vs. Frequency (IC Tested on Eval Board)

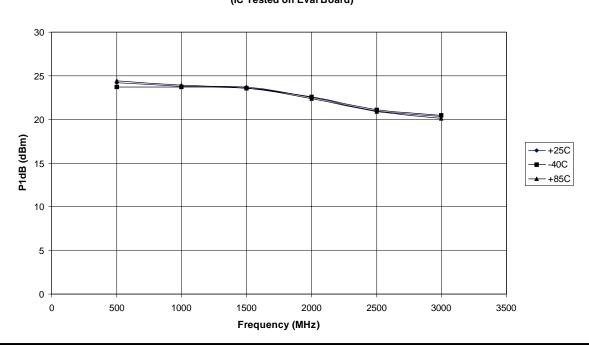


Figure 3

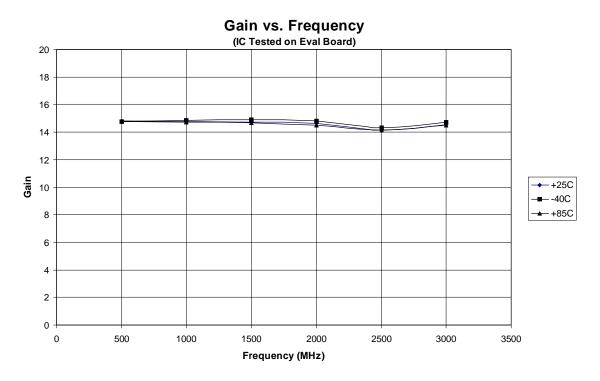
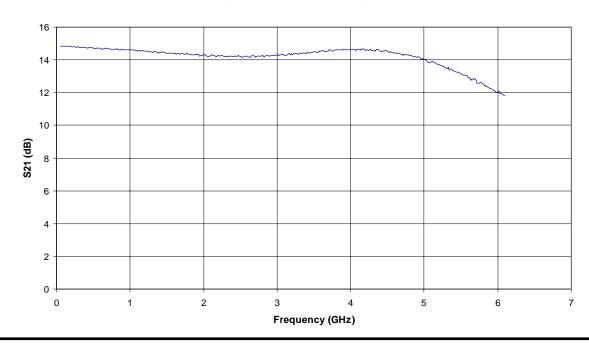



Figure 4

Gain vs. Frequency, T=25 degree C

(IC Tested in a 50 Ohm Fixture)

BROADBAND HIGH OIP3 AMPLIFIER

DC - 3000 MHz

Figure 5

S11, S22 vs. Frequency, T=25 degree C

(IC Tested in a 50 Ohm Fixture)

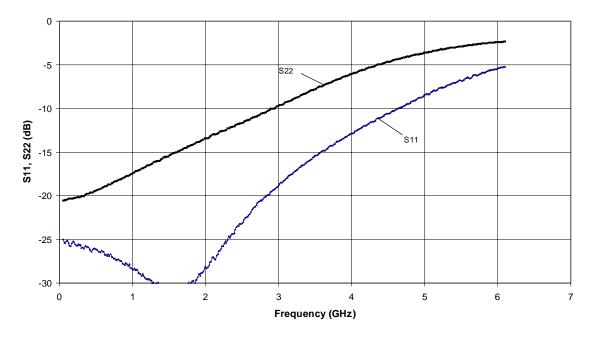
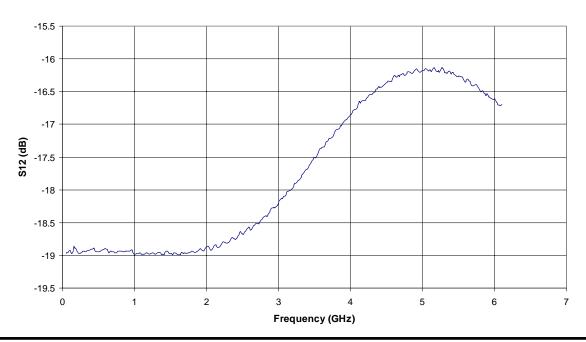



Figure 6

Reverse Isolation vs. Frequency, T=25 degree C

(IC Tested in a 50 Ohm Fixture)

ECG008

BROADBAND HIGH OIP3 AMPLIFIER

DC - 3000 MHz

Figure 7

OIP3 vs. Frequency

(IC Tested on Eval Board)

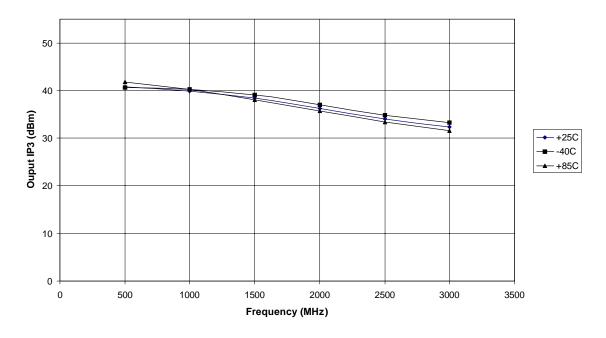
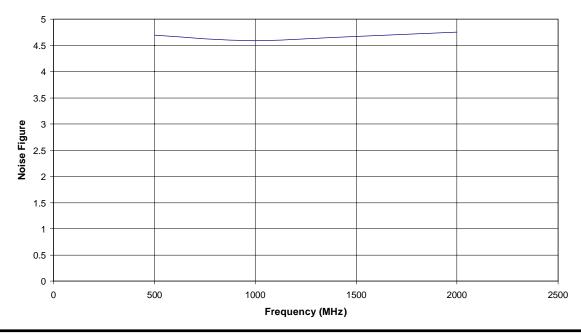



Figure 8

Noise Figure vs. Frequency

(IC Tested on Eval Board)

PRELIMINARY DATA SHEET

DC - 3000 MHz

APPLICATION NOTES

Please visit our website at www.eiccorp.com to view or download the following documents. You may also call our Customer Service to request a hardcopy.

Document #	Description
AP-000192-000	Discussion of Technology and Reliability Enhancements
AP-000194-000	Biasing and Performance Enhancements
AP-000487-000	Tape and Reel Specifications and Package Drawings
AP-000515-000	Voltage Spike Suppression
AP-000516-000	Application Note Index