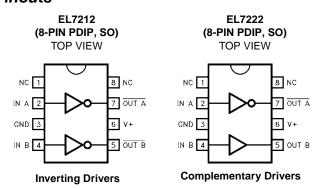
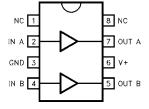


Data Sheet January 1996, Rev. B FN7282


# High Speed, Dual Channel Power MOSFET Drivers

# élantec.


The EL7202/EL7212/EL7222 ICs are matched dual-drivers that improve the operation of the industry standard

DS0026 clock drivers. The Elantec versions are very high speed drivers capable of delivering peak currents of 2.0 amps into highly capacitive loads. The high speed performance is achieved by means of a proprietary "Turbo-Driver" circuit that speeds up input stages by tapping the wider voltage swing at the output. Improved speed and drive capability are enhanced by matched rise and fall delay times. These matched delays maintain the integrity of input-to-output pulse-widths to reduce timing errors and clock skew problems. This improved performance is accompanied by a 10 fold reduction in supply currents over bipolar drivers, yet without the delay time problems commonly associated with CMOS devices. Dynamic switching losses are minimized with non-overlapped drive techniques.

### **Pinouts**



EL7202 (8-PIN PDIP, SO) TOP VIEW



**Non-Inverting Drivers** 

Manufactured under U.S. Patent Nos. 5,334,883, #5,341,047

#### **Features**

- · Industry standard driver replacement
- Improved response times
- Matched rise and fall times
- · Reduced clock skew
- · Low output impedance
- Low input capacitance
- High noise immunity
- · Improved clocking rate
- Low supply current
- · Wide operating voltage range

### **Applications**

- · Clock/line drivers
- CCD Drivers
- · Ultra-sound transducer drivers
- · Power MOSFET drivers
- Switch mode power supplies
- · Class D switching amplifiers
- · Ultrasonic and RF generators
- · Pulsed circuits

# Ordering Information

|                |                |            | •        |
|----------------|----------------|------------|----------|
| PART<br>NUMBER | TEMP. RANGE    | PACKAGE    | PKG. NO. |
| EL7202CN       | -40°C to +85°C | 8-Pin PDIP | MDP0031  |
| EL7202CS       | -40°C to +85°C | 8-Pin SO   | MDP0027  |
| EL7212CN       | -40°C to +85°C | 8-Pin PDIP | MDP0031  |
| EL7212CS       | -40°C to +85°C | 8-Pin SO   | MDP0027  |
| EL7222CN       | -40°C to +85°C | 8-Pin PDIP | MDP0031  |
| EL7222CS       | -40°C to +85°C | 8-Pin SO   | MDP0027  |

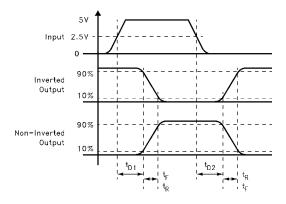
# EL7202, EL7212, EL7222

### **Absolute Maximum Ratings** (T<sub>A</sub> = 25°C)

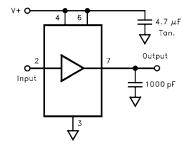
| Supply (V+ to Gnd)            | 16.5V                  | Operating Junction Temperature | 125°C |
|-------------------------------|------------------------|--------------------------------|-------|
| Input Pins                    | 0.3V to +0.3V above V+ | Power Dissipation              |       |
| Combined Peak Output Current  |                        | SOIC                           |       |
| Storage Temperature Range     | 65°C to +150°C         | PDIP                           |       |
| Ambient Operating Temperature | -40°C to +85°C         |                                |       |

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

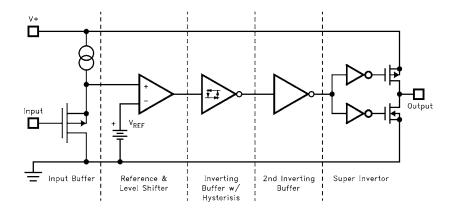
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore:  $T_J = T_C = T_A$ 


# **DC Electrical Specifications** $T_A = 25$ °C, V = 15V unless otherwise specified

| PARAMETER        | DESCRIPTION               | TEST CONDITIONS                                                | MIN      | TYP             | MAX               | UNITS |
|------------------|---------------------------|----------------------------------------------------------------|----------|-----------------|-------------------|-------|
| INPUT            |                           |                                                                | <b>"</b> | •               | 1                 | II.   |
| V <sub>IH</sub>  | Logic "1" Input Voltage   |                                                                | 2.4      |                 |                   | V     |
| I <sub>IH</sub>  | Logic "1" Input Current   | @V+                                                            |          | 0.1             | 10                | μA    |
| V <sub>IL</sub>  | Logic "0" Input Voltage   |                                                                |          |                 | 0.8               | V     |
| I <sub>IL</sub>  | Logic "0" Input Current   | @0V                                                            |          | 0.1             | 10                | μA    |
| V <sub>HVS</sub> | Input Hysteresis          |                                                                |          | 0.3             |                   | V     |
| OUTPUT           |                           |                                                                | -        | -               | •                 | +     |
| R <sub>OH</sub>  | Pull-Up Resistance        | I <sub>OUT</sub> = -100mA                                      |          | 3               | 6                 | Ω     |
| R <sub>OL</sub>  | Pull-Down Resistance      | I <sub>OUT</sub> = +100mA                                      |          | 4               | 6                 | Ω     |
| I <sub>PK</sub>  | Peak Output Current       | Source<br>Sink                                                 |          | 2 2             |                   | А     |
| I <sub>DC</sub>  | Continuous Output Current | Source/Sink                                                    | 100      |                 |                   | mA    |
| POWER SUPPLY     |                           | 1                                                              |          | 1               | 1                 | ll .  |
| Is               | Power Supply Current      | Inputs High/EL7202<br>Inputs High/EL7212<br>Inputs High/EL7222 |          | 4.5<br>1<br>2.5 | 7.5<br>2.5<br>5.0 | mA    |
| V <sub>S</sub>   | Operating Voltage         |                                                                | 4.5      |                 | 15                | V     |

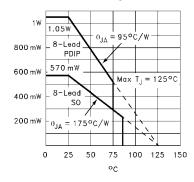

# **AC Electrical Specifications** $T_A = 25$ °C, V = 15V unless otherwise specified

| PARAMETER                 | DESCRIPTION         | TEST CONDITIONS                                   | MIN | TYP       | MAX | UNITS |
|---------------------------|---------------------|---------------------------------------------------|-----|-----------|-----|-------|
| SWITCHING CHARACTERISTICS |                     |                                                   |     |           |     |       |
| t <sub>R</sub>            | Rise Time           | C <sub>L</sub> = 500pF<br>C <sub>L</sub> = 1000pF |     | 7.5<br>10 | 20  | ns    |
| t <sub>F</sub>            | Fall Time           | C <sub>L</sub> = 500pF<br>C <sub>L</sub> = 1000pF |     | 10<br>13  | 20  | ns    |
| t <sub>D1</sub>           | Turn-On Delay Time  | See Timing Table                                  |     | 18        | 25  | ns    |
| t <sub>D2</sub>           | Turn-Off Delay Time | See Timing Table                                  |     | 20        | 25  | ns    |

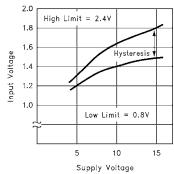

# Timing Table



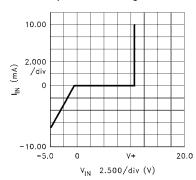
# Standard Test Configuration



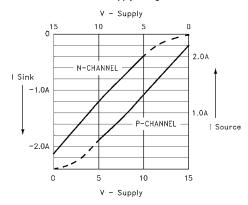

# Simplified Schematic



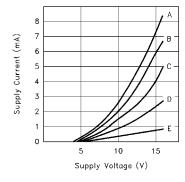

# **Typical Performance Curves**


#### Max Power/Derating Curves




#### Switch Threshold vs Supply Voltage

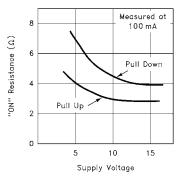



#### Input Current vs Voltage

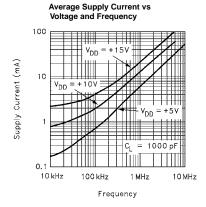


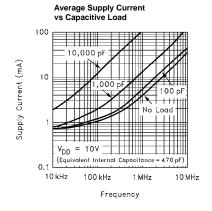
#### Peak Drive vs Supply Voltage

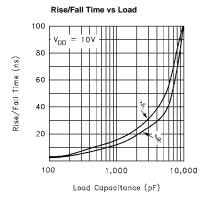


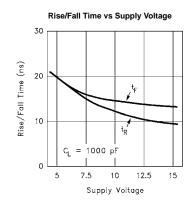

# **Quiescent Supply Current**

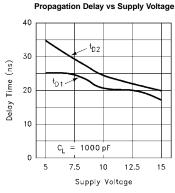


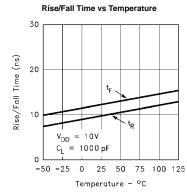

CASE:

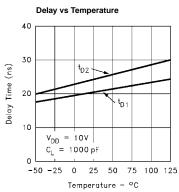

| CASE:  |             |       |
|--------|-------------|-------|
| Device | Input Level | Curve |
| EL7202 | GND         | A     |
| EL7202 | GND, V+     | B     |
| EL7202 | V+          | C     |
| EL7212 | GND         | C     |
| EL7212 | GND, V+     | D     |
| EL7212 | V+          | E     |
| EL7222 | GND         | B     |
| EL7222 | GND, V+     | C     |
| EL7222 | V+          | D     |


"ON" Resistance vs Supply Voltage

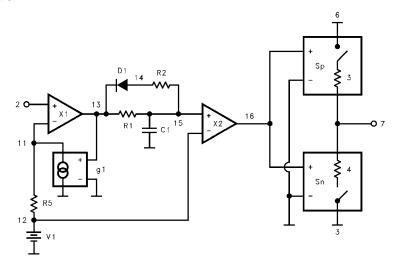




# Typical Performance Curves (Continued)












### EL7212 Macro Model



```
EL7212 model ****
                 input
                         Vsupply
                             Vout
.subckt M7212
V1 12 3 1.6
R1 13 15 1k
R2 14 15 5k
R5 11 12 100
C1 15 3 43.3 pF
D1 14 13 dmod
X1 13 11 2 3 comp1
X2 16 12 15 3 comp1
sp 6 7 16 3 spmod
sn 7 3 16 3 snmod
g1 11 0 13 0 938µ
.model dmod d
.model spmod vswitch ron3 roff2meg von1 voff1.5
.model snmod vswitch ron4 roff2meg von3 voff2
.subckt comp1 out inp inm vss
e1 out vss table { (v(inp) v(inm))* 5000} (0,0) (3.2,3.2)
Rout out vss 10meg
Rinp inp vss 10meg
Rinm inm vss 10meg
.ends comp1
```

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com