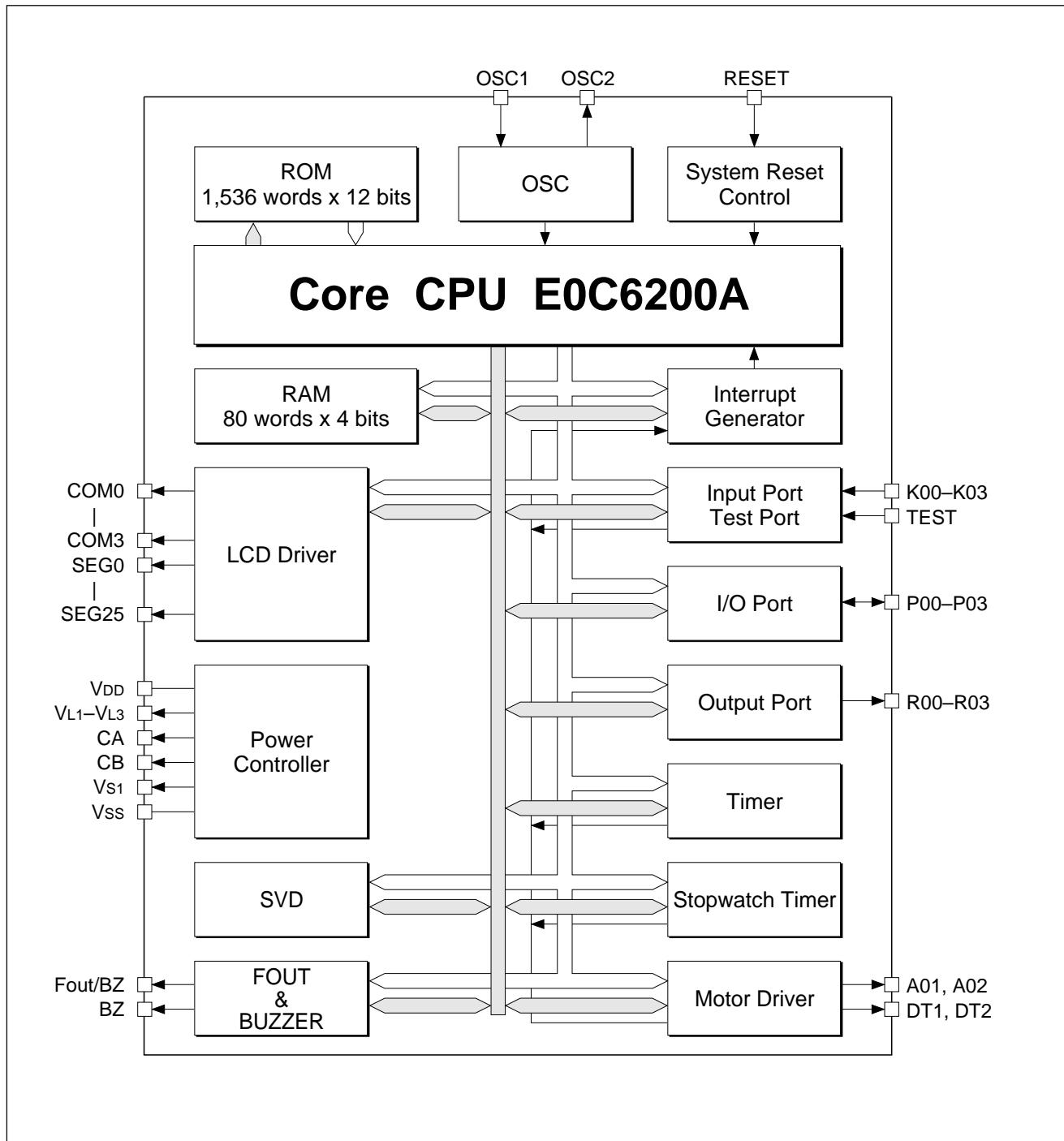


4-bit Single Chip Microcomputer

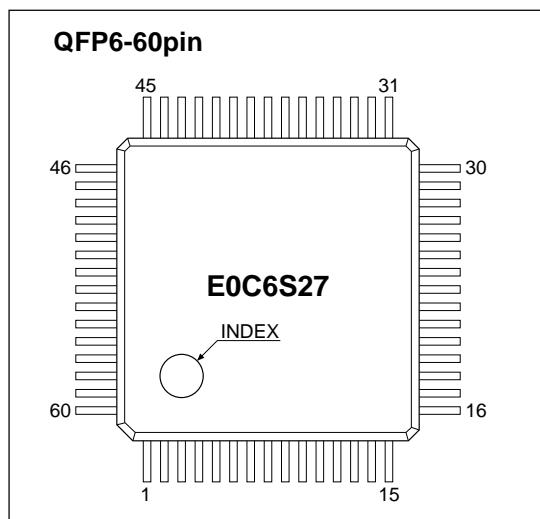
- Core CPU Architecture
- SVD Circuit
- High Quality Display LCD Driver
- Stepping-Motor Driver

■ DESCRIPTION

The E0C6S27 is an advanced single-chip CMOS 4-bit microcomputer consisting of the E0C6200A CMOS 4-bit core CPU. It also contains the ROM, RAM, LCD driver, time base counter, stopwatch counter, and stepping-motor driver. The E0C6S27 provides an excellent solution for application as digital-analog-combinational watch.


■ FEATURES

- CMOS LSI 4-bit parallel processing
- Clock 32.768kHz for Crystal or CR oscillation circuit
- Instruction set 100 instructions
- Instruction execution time 153μsec, 214μsec, 366μsec at 32.768kHz mode
- ROM size 1,536 × 12 bits
- RAM size 80 × 4 bits
- Input port 4 bits (pull down resistors are available by mask option)
- Output port 4 bits (general purpose)
- I/O port 4 bits
- LCD driver 26 segments × 2/3/4 commons
- Timer Clock timer / Stopwatch timer
- Built-in stopwatch timer
- Supply voltage detection (SVD) circuit .. 1.2V / 2.4V
- Interrupts External : Input interrupt 1 system
Internal : Timer interrupt 2 systems
Motor driver interrupt 1 system
- Current consumption HALT mode (32.768kHz/3.0V) : 1.0μA (Typ.)
- Package QFP6-60pin (plastic)
Die form


■ LINE UP

Model	Supply voltage	Oscillator
E0C6S27 (Normal type)	2.2 to 3.6V	32.768kHz Crystal or 65kHz CR (Typ.)
E0C6SA27 (High speed type)	2.2 to 3.6V	200kHz CR (Typ.)
E0C6SB27 (Wide voltage type)	0.9 to 3.6V	32.768kHz Crystal or 65kHz CR (Typ.)
E0C6SL27 (Low voltage type)	0.9 to 1.8V	32.768kHz Crystal

■ BLOCK DIAGRAM

■ PIN CONFIGURATION

Pin No.	Pin name						
1	OSC1	16	COM2	31	TEST	46	P01
2	OSC2	17	COM3	32	SEG13	47	P02
3	N.C.	18	SEG0	33	SEG14	48	P03
4	Vs1	19	SEG1	34	SEG15	49	RESET
5	CA	20	SEG2	35	SEG16	50	K00
6	CB	21	SEG3	36	SEG17	51	K01
7	VL1	22	SEG4	37	SEG18	52	K02
8	VL2	23	SEG5	38	SEG19	53	K03
9	VL3	24	SEG6	39	SEG20	54	R00
10	DT1	25	SEG7	40	SEG21	55	R01
11	A01	26	SEG8	41	SEG22	56	R02
12	A02	27	SEG9	42	SEG23	57	R03
13	DT2	28	SEG10	43	SEG24	58	N.C.
14	COM0	29	SEG11	44	SEG25	59	Vss
15	COM1	30	SEG12	45	P00	60	VDD

N.C. : No Connection

■ PIN DESCRIPTION

Pin name	Pin No.	I/O	Function
VDD	60	(I)	Power supply pin (+)
Vss	59	(I)	Power supply pin (-)
Vs1	4	O	Oscillation and internal logic system regulated voltage output pin
VL1	7	O	LCD system regulated voltage output pin (-1.05V)
VL2	8	O	LCD system booster voltage output pin (VL1×2)
VL3	9	O	LCD system booster voltage output pin (VL1×3)
CA, CB	5, 6	—	Voltage booster capacitor connecting pin
OSC1	1	I	Crystal oscillation input pin
OSC2	2	O	Crystal oscillation output pin
K00-K03	50-53	I	Input port pin
P00-P03	45-48	I/O	I/O port pin
R00-R03	54-57	O	Output port pin
SEG0-SEG25	18-30, 32-44	O	LCD segment output pin
COM0-COM3	14-17	O	LCD common output pin
RESET	49	I	Initial reset input pin
TEST	31	I	Testing input pin
DT1, DT2	10, 13	I/O	Test pin
A01, A02	11, 12	O	Motor driving port pin

■ ELECTRICAL CHARACTERISTICS

● Absolute Maximum Ratings

Rating	Symbol	Value	(V _{DD} =0V)
Supply voltage	V _{SS}	-5.0 to 0.5	V
Input voltage (1)	V _I	V _{SS} - 0.3 to 0.5	V
Input voltage (2)	V _{IOSC}	V _{SS} - 0.3 to 0.5	V
Operating temperature	T _{OPR}	-20 to 70	°C
Storage temperature	T _{STG}	-65 to 150	°C
Soldering temperature / Time	T _{SOL}	260°C, 10sec (lead section)	—
Permissible dissipation *1	P _D	250	mW

*1: In case of plastic package (QFP6-60pin).

● Recommended Operating Conditions

E0C6S27

(Ta=-20 to 70°C)

Condition	Symbol	Remark	Min.	Typ.	Max.	Unit
Supply voltage	V _{SS}	V _{DD} =0V	-3.6	-3.0	-2.2	V
Oscillation frequency	f _{OSC}	Crystal oscillation		32.768		kHz
		CR oscillation, R=470kΩ		65	80	kHz
Booster capacitor	C ₁		0.1			μF
Capacitor between V _{DD} and V _{L1}	C ₂		0.1			μF
Capacitor between V _{DD} and V _{L2}	C ₃		0.1			μF
Capacitor between V _{DD} and V _{L3}	C ₄		0.1			μF
Capacitor between V _{DD} and V _{S1}	C ₅		0.1			μF

E0C6SA27

(Ta=-20 to 70°C)

Condition	Symbol	Remark	Min.	Typ.	Max.	Unit
Supply voltage	V _{SS}	V _{DD} =0V	-3.6	-3.0	-2.2	V
Oscillation frequency	f _{OSC}	CR oscillation, R=160kΩ		200	260	kHz
Booster capacitor	C ₁		0.1			μF
Capacitor between V _{DD} and V _{L1}	C ₂		0.1			μF
Capacitor between V _{DD} and V _{L2}	C ₃		0.1			μF
Capacitor between V _{DD} and V _{L3}	C ₄		0.1			μF
Capacitor between V _{DD} and V _{S1}	C ₅		0.1			μF

E0C6SL27

(Ta=-20 to 70°C)

Condition	Symbol	Remark	Min.	Typ.	Max.	Unit
Supply voltage	V _{SS}	V _{DD} =0V *3	-1.8	-1.5	-1.1	V
		V _{DD} =0V, With software control *1	-1.8	-1.5	-0.9 *2	V
Oscillation frequency	f _{OSC}			32.768		kHz
Booster capacitor	C ₁		0.1			μF
Capacitor between V _{DD} and V _{L1}	C ₂		0.1			μF
Capacitor between V _{DD} and V _{L2}	C ₃		0.1			μF
Capacitor between V _{DD} and V _{L3}	C ₄		0.1			μF
Capacitor between V _{DD} and V _{S1}	C ₅		0.1			μF

*1: When the heavy load protection mode is set by software and the SVD circuit is turned off.

*2: The voltage which can be displayed on the LCD panel will differ according to the characteristics of the LCD panel.

*3: When there is no software control during CR oscillation or crystal oscillation.

E0C6SB27

(Ta=-20 to 70°C)

Condition	Symbol	Remark	Min.	Typ.	Max.	Unit
Supply voltage	V _{SS}	V _{DD} =0V *3	-3.6	-3.0	-1.1	V
		V _{DD} =0V, With software control *1	-3.6	-3.0	-0.9 *2	V
Oscillation frequency	f _{OSC}	Crystal oscillation		32.768		kHz
		CR oscillation, R=470kΩ		65	80	kHz
Booster capacitor	C ₁		0.1			μF
Capacitor between V _{DD} and V _{L1}	C ₂		0.1			μF
Capacitor between V _{DD} and V _{L2}	C ₃		0.1			μF
Capacitor between V _{DD} and V _{L3}	C ₄		0.1			μF
Capacitor between V _{DD} and V _{S1}	C ₅		0.1			μF

*1: When the heavy load protection mode is set by software and the SVD circuit is turned off.

*2: The voltage which can be displayed on the LCD panel will differ according to the characteristics of the LCD panel.

*3: When there is no software control during CR oscillation or crystal oscillation.

● DC Characteristics

E0C6S27/6SA27/6SB27

(Unless otherwise specified: $V_{DD}=0V$, $V_{SS}=-3.0V$, $f_{osc}=32.768kHz$, $T_a=25^\circ C$, $V_{S1}/V_{L1}-V_{L3}$ are internal voltage, $C1-C5=0.1\mu F$)

Characteristic	Symbol	Condition	Min.	Typ.	Max.	Unit
High level input voltage (1)	VIH1	K00-K03, P00-P03	$0.2 \cdot V_{SS}$		0	V
High level input voltage (2)	VIH2	RESET, TEST	$0.15 \cdot V_{SS}$		0	V
Low level input voltage (1)	VIL1	K00-K03, P00-P03	V_{SS}		$0.8 \cdot V_{SS}$	V
Low level input voltage (2)	VIL2	RESET, TEST	V_{SS}		$0.85 \cdot V_{SS}$	V
High level input current (1)	IIH1	VIH1=0V, No pull down resistor	K00-K03, P00-P03	0	0.5	μA
High level input current (2)	IIH2	VIH2=0V, With pull down resistor	K00-K03	10	40	μA
High level input current (3)	IIH3	VIH3=0V, With pull down resistor	P00-P03 RESET, TEST	30	100	μA
Low level input current	IIL	$V_{IL}=V_{SS}$	K00-K03, P00-P03 RESET, TEST	-0.5		μA
High level output current (1)	IOH1	$V_{OH1}=0.1 \cdot V_{SS}$	R02, R03, P00-P03		-1.0	mA
High level output current (2)	IOH2	$V_{OH2}=0.1 \cdot V_{SS}$ (built-in protection resistance)	R00, R01		-1.0	mA
Low level output current (1)	IOL1	$V_{OL1}=0.9 \cdot V_{SS}$	R02, R03, P00-P03	3.0		mA
Low level output current (2)	IOL2	$V_{OL2}=0.9 \cdot V_{SS}$ (built-in protection resistance)	R00, R01	3.0		mA
Common output current	IOH3	$V_{OH3}=-0.05V$	COM0-COM3		-3	μA
	IOL3	$V_{OL3}=V_{L3}+0.05V$		3		μA
Segment output current (during LCD output)	IOH4	$V_{OH4}=-0.05V$	SEG0-SEG25		-3	μA
	IOL4	$V_{OL4}=V_{L3}+0.05V$		3		μA
Segment output current (during DC output)	IOH5	$V_{OH5}=0.1 \cdot V_{SS}$	SEG0-SEG25		-300	μA
	IOL5	$V_{OL5}=0.9 \cdot V_{SS}$		300		μA

E0C6SL27

(Unless otherwise specified: $V_{DD}=0V$, $V_{SS}=-1.5V$, $f_{osc}=32.768kHz$, $T_a=25^\circ C$, $V_{S1}/V_{L1}-V_{L3}$ are internal voltage, $C1-C5=0.1\mu F$)

Characteristic	Symbol	Condition	Min.	Typ.	Max.	Unit
High level input voltage (1)	VIH1	K00-K03, P00-P03	$0.2 \cdot V_{SS}$		0	V
High level input voltage (2)	VIH2	RESET, TEST	$0.15 \cdot V_{SS}$		0	V
Low level input voltage (1)	VIL1	K00-K03, P00-P03	V_{SS}		$0.8 \cdot V_{SS}$	V
Low level input voltage (2)	VIL2	RESET, TEST	V_{SS}		$0.85 \cdot V_{SS}$	V
High level input current (1)	IIH1	VIH1=0V, No pull down resistor	K00-K03, P00-P03	0	0.5	μA
High level input current (2)	IIH2	VIH2=0V, With pull down resistor	K00-K03	5	20	μA
High level input current (3)	IIH3	VIH3=0V, With pull down resistor	P00-P03 RESET, TEST	10	60	μA
Low level input current	IIL	$V_{IL}=V_{SS}$	K00-K03, P00-P03 RESET, TEST	-0.5		μA
High level output current (1)	IOH1	$V_{OH1}=0.1 \cdot V_{SS}$	R02, R03, P00-P03		-200	μA
High level output current (2)	IOH2	$V_{OH2}=0.1 \cdot V_{SS}$ (built-in protection resistance)	R00, R01		-200	μA
Low level output current (1)	IOL1	$V_{OL1}=0.9 \cdot V_{SS}$	R02, R03, P00-P03	700		μA
Low level output current (2)	IOL2	$V_{OL2}=0.9 \cdot V_{SS}$ (built-in protection resistance)	R00, R01	700		μA
Common output current	IOH3	$V_{OH3}=-0.05V$	COM0-COM3		-3	μA
	IOL3	$V_{OL3}=V_{L3}+0.05V$		3		μA
Segment output current (during LCD output)	IOH4	$V_{OH4}=-0.05V$	SEG0-SEG25		-3	μA
	IOL4	$V_{OL4}=V_{L3}+0.05V$		3		μA
Segment output current (during DC output)	IOH5	$V_{OH5}=0.1 \cdot V_{SS}$	SEG0-SEG25		-100	μA
	IOL5	$V_{OL5}=0.9 \cdot V_{SS}$		130		μA

● Analog Circuit Characteristics and Current Consumption

E0C6S27 (Crystal, Normal Operating Mode)

(Unless otherwise specified: VDD=0V, Vss=-3.0V, fosc=32.768kHz, Ta=25°C, CG=25pF, Vs1/VL1–VL3 are internal voltage, C1–C5=0.1μF)

Characteristic	Symbol	Condition	Min.	Typ.	Max.	Unit	
Internal voltage	VL1	Connect 1MΩ load resistor between VDD and VL1 (without panel load)	$\frac{1}{2} \bullet VL_2 - 0.1$		$\frac{1}{2} \bullet VL_2 \times 0.9$	V	
	VL2	Connect 1MΩ load resistor between VDD and VL2 (without panel load)	-2.25	-2.10	-1.95	V	
	VL3	Connect 1MΩ load resistor between VDD and VL3 (without panel load)	$\frac{3}{2} \bullet VL_2 - 0.1$		$\frac{3}{2} \bullet VL_2 \times 0.9$	V	
SVD voltage	V _{SVD}		-2.55	-2.40	-2.25	V	
SVD circuit response time	t _{SVD}				100	μS	
Current consumption	I _{OP}	During HALT		0.7	1.4	μA	
		During execution *1	Without panel load		1.9	3.5	μA

*1: The SVD circuit is turned off.

E0C6S27 (Crystal, Heavy Load Protection Mode)

(Unless otherwise specified: VDD=0V, Vss=-3.0V, fosc=32.768kHz, Ta=25°C, CG=25pF, Vs1/VL1–VL3 are internal voltage, C1–C5=0.1μF)

Characteristic	Symbol	Condition	Min.	Typ.	Max.	Unit	
Internal voltage	VL1	Connect 1MΩ load resistor between VDD and VL1 (without panel load)	$\frac{1}{2} \bullet VL_2 - 0.1$		$\frac{1}{2} \bullet VL_2 \times 0.85$	V	
	VL2	Connect 1MΩ load resistor between VDD and VL2 (without panel load)	-2.25	-2.10	-1.95	V	
	VL3	Connect 1MΩ load resistor between VDD and VL3 (without panel load)	$\frac{3}{2} \bullet VL_2 - 0.1$		$\frac{3}{2} \bullet VL_2 \times 0.85$	V	
SVD voltage	V _{SVD}		-2.55	-2.40	-2.25	V	
SVD circuit response time	t _{SVD}				100	μS	
Current consumption	I _{OP}	During HALT		5.0	15	μA	
		During execution *1	Without panel load		6.5	19	μA

*1: The SVD circuit is turned off.

E0C6SL27 (Crystal, Normal Operating Mode)

(Unless otherwise specified: VDD=0V, Vss=-1.5V, fosc=32.768kHz, Ta=25°C, CG=25pF, Vs1/VL1–VL3 are internal voltage, C1–C5=0.1μF)

Characteristic	Symbol	Condition	Min.	Typ.	Max.	Unit	
Internal voltage	VL1	Connect 1MΩ load resistor between VDD and VL1 (without panel load)	-1.15	-1.05	-0.95	V	
	VL2	Connect 1MΩ load resistor between VDD and VL2 (without panel load)	$2 \bullet VL_1 - 0.1$		$2 \bullet VL_1 \times 0.9$	V	
	VL3	Connect 1MΩ load resistor between VDD and VL3 (without panel load)	$3 \bullet VL_1 - 0.1$		$3 \bullet VL_1 \times 0.9$	V	
SVD voltage	V _{SVD}		-1.30	-1.20	-1.10	V	
SVD circuit response time	t _{SVD}				100	μS	
Current consumption	I _{OP}	During HALT		0.6	1.1	μA	
		During execution *1	Without panel load		1.7	3.0	μA

*1: The SVD circuit is turned off.

E0C6SL27 (Crystal, Heavy Load Protection Mode)

(Unless otherwise specified: VDD=0V, Vss=-1.5V, fosc=32.768kHz, Ta=25°C, CG=25pF, Vs1/VL1–VL3 are internal voltage, C1–C5=0.1μF)

Characteristic	Symbol	Condition	Min.	Typ.	Max.	Unit	
Internal voltage	VL1	Connect 1MΩ load resistor between VDD and VL1 (without panel load)	-1.15	-1.05	-0.95	V	
	VL2	Connect 1MΩ load resistor between VDD and VL2 (without panel load)	$2 \bullet VL_1 - 0.1$		$2 \bullet VL_1 \times 0.85$	V	
	VL3	Connect 1MΩ load resistor between VDD and VL3 (without panel load)	$3 \bullet VL_1 - 0.1$		$3 \bullet VL_1 \times 0.85$	V	
SVD voltage	V _{SVD}		-1.30	-1.20	-1.10	V	
SVD circuit response time	t _{SVD}				100	μS	
Current consumption	I _{OP}	During HALT		1.2	2.2	μA	
		During execution *1	Without panel load		3.4	6.0	μA

*1: The SVD circuit is turned off.

E0C6SB27 (Crystal, Normal Operating Mode)

(Unless otherwise specified: VDD=0V, Vss=-3.0V, fosc=32.768kHz, Ta=25°C, CG=25pF, Vs1/VL1-VL3 are internal voltage, C1-C5=0.1μF)

Characteristic	Symbol	Condition	Min.	Typ.	Max.	Unit
Internal voltage	VL1	Connect 1MΩ load resistor between VDD and VL1 (without panel load)	-1.15	-1.05	-0.95	V
	VL2	Connect 1MΩ load resistor between VDD and VL2 (without panel load)	2•VL1-0.1		2•VL1×0.9	V
	VL3	Connect 1MΩ load resistor between VDD and VL3 (without panel load)	3•VL1-0.1		3•VL1×0.9	V
SVD voltage	VsVD		-1.30	-1.20	-1.10	V
SVD circuit response time	tsVD				100	μS
Current consumption	IOP	During HALT		0.7	1.4	μA
		During execution *1	Without panel load		1.9	3.5

*1: The SVD circuit is turned off.

E0C6SB27 (Crystal, Heavy Load Protection Mode)

(Unless otherwise specified: VDD=0V, Vss=-3.0V, fosc=32.768kHz, Ta=25°C, CG=25pF, Vs1/VL1-VL3 are internal voltage, C1-C5=0.1μF)

Characteristic	Symbol	Condition	Min.	Typ.	Max.	Unit
Internal voltage	VL1	Connect 1MΩ load resistor between VDD and VL1 (without panel load)	-1.15	-1.05	-0.95	V
	VL2	Connect 1MΩ load resistor between VDD and VL2 (without panel load)	2•VL1-0.1		2•VL1×0.85	V
	VL3	Connect 1MΩ load resistor between VDD and VL3 (without panel load)	3•VL1-0.1		3•VL1×0.85	V
SVD voltage	VsVD		-1.30	-1.20	-1.10	V
SVD circuit response time	tsVD				100	μS
Current consumption	IOP	During HALT		1.4	2.8	μA
		During execution *1	Without panel load		3.8	7.0

*1: The SVD circuit is turned off.

E0C6S27 (CR, Normal Operating Mode)

(Unless otherwise specified: VDD=0V, Vss=-3.0V, fosc=65kHz, RCR=470kΩ, Ta=25°C, Vs1/VL1-VL3 are internal voltage, C1-C5=0.1μF)

Characteristic	Symbol	Condition	Min.	Typ.	Max.	Unit
Internal voltage	VL1	Connect 1MΩ load resistor between VDD and VL1 (without panel load)	$\frac{1}{2}•VL2-0.1$		$\frac{1}{2}•VL2\times0.9$	V
	VL2	Connect 1MΩ load resistor between VDD and VL2 (without panel load)	-2.25	-2.10	-1.95	V
	VL3	Connect 1MΩ load resistor between VDD and VL3 (without panel load)	$\frac{3}{2}•VL2-0.1$		$\frac{3}{2}•VL2\times0.9$	V
SVD voltage	VsVD		-2.55	-2.40	-2.25	V
SVD circuit response time	tsVD				100	μS
Current consumption	IOP	During HALT		6.5	14.0	μA
		During execution *1	Without panel load		9.0	18.0

*1: The SVD circuit is turned off.

E0C6S27 (CR, Heavy Load Protection Mode)

(Unless otherwise specified: VDD=0V, Vss=-3.0V, fosc=65kHz, RCR=470kΩ, Ta=25°C, Vs1/VL1-VL3 are internal voltage, C1-C5=0.1μF)

Characteristic	Symbol	Condition	Min.	Typ.	Max.	Unit
Internal voltage	VL1	Connect 1MΩ load resistor between VDD and VL1 (without panel load)	$\frac{1}{2}•VL2-0.1$		$\frac{1}{2}•VL2\times0.85$	V
	VL2	Connect 1MΩ load resistor between VDD and VL2 (without panel load)	-2.25	-2.10	-1.95	V
	VL3	Connect 1MΩ load resistor between VDD and VL3 (without panel load)	$\frac{3}{2}•VL2-0.1$		$\frac{3}{2}•VL2\times0.85$	V
SVD voltage	VsVD		-2.55	-2.40	-2.25	V
SVD circuit response time	tsVD				100	μS
Current consumption	IOP	During HALT		16.0	35.0	μA
		During execution *1	Without panel load		18.0	40.0

*1: The SVD circuit is turned off.

E0C6SA27 (CR, Normal Operating Mode)(Unless otherwise specified: V_{DD}=0V, V_{SS}=-3.0V, f_{osc}=200kHz, R_{CR}=160kΩ, Ta=25°C, V_{S1}/V_{L1}–V_{L3} are internal voltage, C₁–C₅=0.1μF)

Characteristic	Symbol	Condition	Min.	Typ.	Max.	Unit
Internal voltage	V _{L1}	Connect 1MΩ load resistor between V _{DD} and V _{L1} (without panel load)	$\frac{1}{2} \cdot V_{L2} - 0.1$		$\frac{1}{2} \cdot V_{L2} \times 0.9$	V
	V _{L2}	Connect 1MΩ load resistor between V _{DD} and V _{L2} (without panel load)	-2.25	-2.10	-1.95	V
	V _{L3}	Connect 1MΩ load resistor between V _{DD} and V _{L3} (without panel load)	$\frac{3}{2} \cdot V_{L2} - 0.1$		$\frac{3}{2} \cdot V_{L2} \times 0.9$	V
SVD voltage	V _{SVD}		-2.55	-2.40	-2.25	V
SVD circuit response time	t _{SVD}				100	μS
Current consumption	I _{OP}	During HALT		60	110	μA
		During execution *1		70	130	μA

*1: The SVD circuit is turned off.

E0C6SA27 (CR, Heavy Load Protection Mode)(Unless otherwise specified: V_{DD}=0V, V_{SS}=-3.0V, f_{osc}=200kHz, R_{CR}=160kΩ, Ta=25°C, V_{S1}/V_{L1}–V_{L3} are internal voltage, C₁–C₅=0.1μF)

Characteristic	Symbol	Condition	Min.	Typ.	Max.	Unit
Internal voltage	V _{L1}	Connect 1MΩ load resistor between V _{DD} and V _{L1} (without panel load)	$\frac{1}{2} \cdot V_{L2} - 0.1$		$\frac{1}{2} \cdot V_{L2} \times 0.85$	V
	V _{L2}	Connect 1MΩ load resistor between V _{DD} and V _{L2} (without panel load)	-2.25	-2.10	-1.95	V
	V _{L3}	Connect 1MΩ load resistor between V _{DD} and V _{L3} (without panel load)	$\frac{3}{2} \cdot V_{L2} - 0.1$		$\frac{3}{2} \cdot V_{L2} \times 0.85$	V
SVD voltage	V _{SVD}		-2.55	-2.40	-2.25	V
SVD circuit response time	t _{SVD}				100	μS
Current consumption	I _{OP}	During HALT		85	160	μA
		During execution *1		95	180	μA

*1: The SVD circuit is turned off.

E0C6SB27 (CR, Normal Operating Mode)(Unless otherwise specified: V_{DD}=0V, V_{SS}=-3.0V, f_{osc}=65kHz, R_{CR}=470kΩ, Ta=25°C, V_{S1}/V_{L1}–V_{L3} are internal voltage, C₁–C₅=0.1μF)

Characteristic	Symbol	Condition	Min.	Typ.	Max.	Unit
Internal voltage	V _{L1}	Connect 1MΩ load resistor between V _{DD} and V _{L1} (without panel load)	-1.15	-1.05	-0.95	V
	V _{L2}	Connect 1MΩ load resistor between V _{DD} and V _{L2} (without panel load)	$2 \cdot V_{L1} - 0.1$		$2 \cdot V_{L1} \times 0.9$	V
	V _{L3}	Connect 1MΩ load resistor between V _{DD} and V _{L3} (without panel load)	$3 \cdot V_{L1} - 0.1$		$3 \cdot V_{L1} \times 0.9$	V
SVD voltage	V _{SVD}		-1.30	-1.20	-1.10	V
SVD circuit response time	t _{SVD}				100	μS
Current consumption	I _{OP}	During HALT		6.5	14.0	μA
		During execution *1		9.0	18.0	μA

*1: The SVD circuit is turned off.

E0C6SB27 (CR, Heavy Load Protection Mode)(Unless otherwise specified: V_{DD}=0V, V_{SS}=-3.0V, f_{osc}=65kHz, R_{CR}=470kΩ, Ta=25°C, V_{S1}/V_{L1}–V_{L3} are internal voltage, C₁–C₅=0.1μF)

Characteristic	Symbol	Condition	Min.	Typ.	Max.	Unit
Internal voltage	V _{L1}	Connect 1MΩ load resistor between V _{DD} and V _{L1} (without panel load)	-1.15	-1.05	-0.95	V
	V _{L2}	Connect 1MΩ load resistor between V _{DD} and V _{L2} (without panel load)	$2 \cdot V_{L1} - 0.1$		$2 \cdot V_{L1} \times 0.85$	V
	V _{L3}	Connect 1MΩ load resistor between V _{DD} and V _{L3} (without panel load)	$3 \cdot V_{L1} - 0.1$		$3 \cdot V_{L1} \times 0.85$	V
SVD voltage	V _{SVD}		-1.30	-1.20	-1.10	V
SVD circuit response time	t _{SVD}				100	μS
Current consumption	I _{OP}	During HALT		15.0	35.0	μA
		During execution *1		18.0	40.0	μA

*1: The SVD circuit is turned off.

● Oscillation Characteristics

The oscillation characteristics change depending on the conditions (components used, board pattern, etc.). Use the following characteristics as reference values.

E0C6S27 (Crystal)

(Unless otherwise specified: V_{DD}=0V, V_{SS}=-3.0V, Crystal: C-002R (C_l=35kΩ), C_G=25pF, C_D=built-in, Ta=25°C)

Characteristic	Symbol	Condition	Min.	Typ.	Max.	Unit
Oscillation start voltage	V _{STA}	t _{STA} ≤5sec (V _{SS})	-2.2			V
Oscillation stop voltage	V _{STP}	t _{STP} ≤10sec (V _{SS})	-2.2			V
Built-in capacitance (drain)	C _D	Including the parasitic capacity inside the IC		20		pF
Frequency/voltage deviation	Δf/ΔV	V _{SS} =-1.8 to -3.6V			5	ppm
Frequency/IC deviation	Δf/ΔIC		-10		10	ppm
Frequency adjustment range	Δf/ΔC _G	C _G =5 to 25pF	40			ppm
Harmonic oscillation start voltage	V _{HHO}	C _G =5pF (V _{SS})			-3.6	V
Permitted leak resistance	R _{LEAK}	Between OSC1 and V _{DD} , V _{SS}	200			MΩ

E0C6SL27 (Crystal)

(Unless otherwise specified: V_{DD}=0V, V_{SS}=-1.5V, Crystal: C-002R (C_l=35kΩ), C_G=25pF, C_D=built-in, Ta=25°C)

Characteristic	Symbol	Condition	Min.	Typ.	Max.	Unit
Oscillation start voltage	V _{STA}	t _{STA} ≤5sec (V _{SS})	-1.1			V
Oscillation stop voltage	V _{STP}	t _{STP} ≤10sec (V _{SS})	-1.1(-0.9)*1			V
Built-in capacitance (drain)	C _D	Including the parasitic capacity inside the IC		20		pF
Frequency/voltage deviation	Δf/ΔV	V _{SS} =-1.1 to -1.8V (-0.9) *1			5	ppm
Frequency/IC deviation	Δf/ΔIC		-10		10	ppm
Frequency adjustment range	Δf/ΔC _G	C _G =5 to 25pF	40			ppm
Harmonic oscillation start voltage	V _{HHO}	C _G =5pF (V _{SS})			-1.8	V
Permitted leak resistance	R _{LEAK}	Between OSC1 and V _{DD} , V _{SS}	200			MΩ

*1: Items enclosed in parentheses () are those used when operating at heavy load protection mode.

E0C6SB27 (Crystal)

(Unless otherwise specified: V_{DD}=0V, V_{SS}=-1.5V, Crystal: C-002R (C_l=35kΩ), C_G=25pF, C_D=built-in, Ta=25°C)

Characteristic	Symbol	Condition	Min.	Typ.	Max.	Unit
Oscillation start voltage	V _{STA}	t _{STA} ≤5sec (V _{SS})	-1.1			V
Oscillation stop voltage	V _{STP}	t _{STP} ≤10sec (V _{SS})	-1.1(-0.9)*1			V
Built-in capacitance (drain)	C _D	Including the parasitic capacity inside the IC		20		pF
Frequency/voltage deviation	Δf/ΔV	V _{SS} =-1.1 to -3.6V (-0.9) *1			5	ppm
Frequency/IC deviation	Δf/ΔIC		-10		10	ppm
Frequency adjustment range	Δf/ΔC _G	C _G =5 to 25pF	40			ppm
Harmonic oscillation start voltage	V _{HHO}	C _G =5pF (V _{SS})			-3.6	V
Permitted leak resistance	R _{LEAK}	Between OSC1 and V _{DD} , V _{SS}	200			MΩ

*1: Items enclosed in parentheses () are those used when operating at heavy load protection mode.

E0C6S27 (CR)

(Unless otherwise specified: V_{DD}=0V, V_{SS}=-3.0V, R_{CR}=470kΩ, Ta=25°C)

Characteristic	Symbol	Condition	Min.	Typ.	Max.	Unit
Oscillation frequency dispersion	f _{OSC}		-20	65kHz	20	%
Oscillation start voltage	V _{STA}	(V _{SS})	-2.2			V
Oscillation start time	t _{STA}	V _{SS} =-2.2 to -3.6V		3		mS
Oscillation stop voltage	V _{STP}	(V _{SS})	-2.2			V

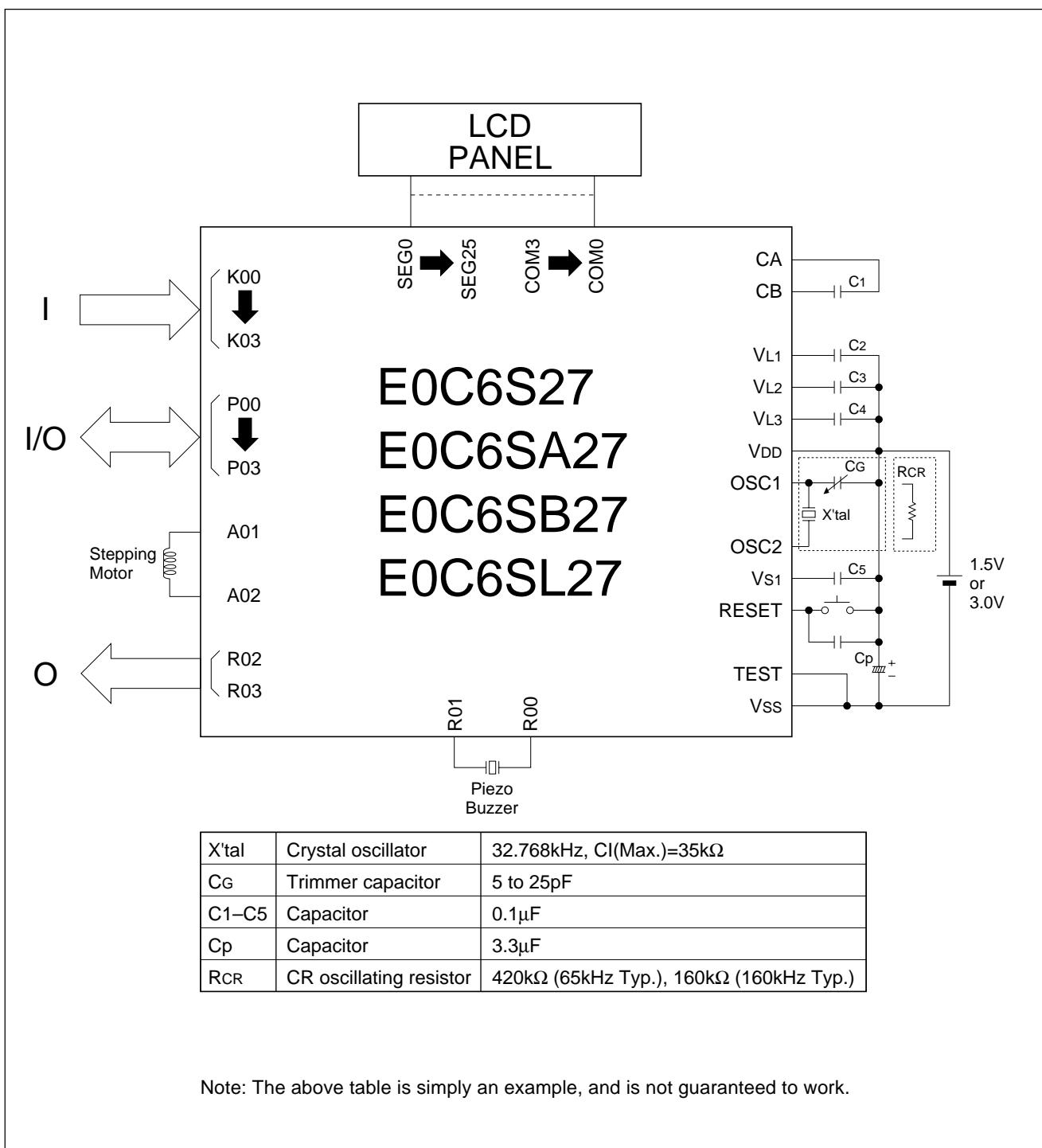
E0C6SA27 (CR)

(Unless otherwise specified: V_{DD}=0V, V_{SS}=-3.0V, R_{CR}=160kΩ, Ta=25°C)

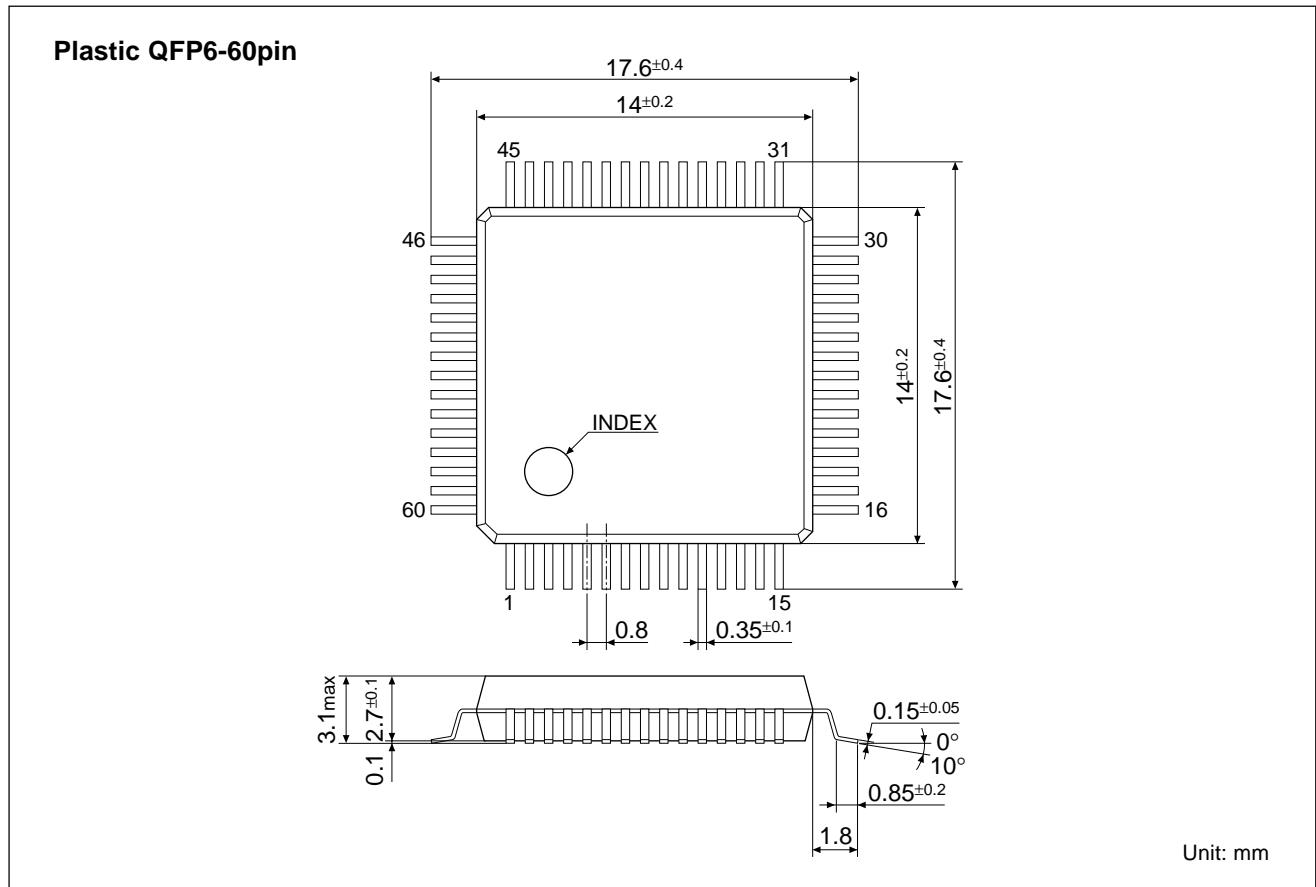
Characteristic	Symbol	Condition	Min.	Typ.	Max.	Unit
Oscillation frequency dispersion	f _{OSC}		-30	200kHz	30	%
Oscillation start voltage	V _{STA}	(V _{SS})	-2.2			V
Oscillation start time	t _{STA}	V _{SS} =-2.2 to -3.6V		3		mS
Oscillation stop voltage	V _{STP}	(V _{SS})	-2.2			V

E0C6SB27 (CR)

(Unless otherwise specified: V_{DD}=0V, V_{SS}=-1.5V, R_{CR}=470kΩ, Ta=25°C)


Characteristic	Symbol	Condition	Min.	Typ.	Max.	Unit
Oscillation frequency dispersion	f _{OSC}		-20	65kHz	20	%
Oscillation start voltage	V _{STA}	(V _{SS})	-1.1			V
Oscillation start time	t _{STA}	V _{SS} =-1.1 to -3.6V		3		mS
Oscillation stop voltage	V _{STP}	(V _{SS})	-1.1			V

● Motor Driver Characteristics


(Unless otherwise specified: V_{DD}=0V, V_{SS}=-1.58V, Crystal: C-002R (C_l=35kΩ), C_G=25pF, C_D=built-in, T_a=25°C)

Characteristic	Symbol	Condition	Min.	Typ.	Max.	Unit
Output voltage	V _{out}	V _{SS} =-1.35V R _L =2kΩ	1.15			V
Diode characteristic	I _D	V _n =0.6V	10			μA
Output driver leak (Pch)	I _{leak}				1	MΩ

■ BASIC EXTERNAL CONNECTION DIAGRAM

■ PACKAGE DIMENSIONS

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Control Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency.

All product names mentioned herein are trademarks and/or registered trademarks of their respective companies.

©Seiko Epson Corporation 1998 All rights reserved.

SEIKO EPSON CORPORATION**ELECTRONIC DEVICES MARKETING DIVISION****Electronic Device Marketing Department
IC Marketing & Engineering Group**

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department I (Europe & U.S.A.)
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564**ED International Marketing Department II (Asia)**
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

Electric Device Information of EPSON WWW server

<http://www.epson.co.jp>

