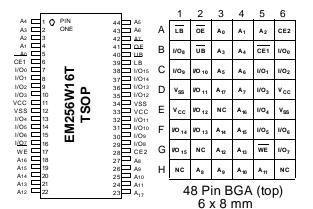


EM256W16 Family


256Kx16 bit Ultra-Low Power Asynchronous Static RAM

www.nanoamp.com

Overview

The EM256W16 is an integrated memory device containing a low power 4 Mbit Static Random Access Memory organized as 262,144 words by 16 bits. The device is fabricated using NanoAmp's advanced CMOS process and high-speed/ultra low-power/low-voltage circuit technology. The device pinout is compatible with other standard 256K x 16 SRAMs. The device is designed such that a creative user can improve system power parameters through use of it's unique page mode operation.

FIGURE 1: Pin Configuration

Features

Wide Voltage Range:

1.65 to 2.25 Volts

• Extended Temperature Range:

-40 to +85 °C

Fast Cycle Time:

 T_{ACC} < 70 ns @ 1.8V

 T_{ACC} < 85 ns @ 1.65V

Very Low Operating Current:

 I_{CC} < 1.0 mA typical at 1.8V, 1 Mhz

Very Low Standby Current:

 $I_{SB} = 2 \mu A @ 55 ^{\circ}C$

 44-Pin TSOP, 48-Pin BGA or Known Good Die available

TABLE 1: Pin Descriptions

	<u> </u>			
Pin Name	Pin Function			
A ₀ -A ₁₇	Address Inputs			
WE	Write Enable Input			
CE1, CE2	Chip Enable Inputs			
OE	Output Enable Input			
UB	Upper Byte Enable Input			
LB	Lower Byte Enable Input			
I/O ₀ -I/O ₁₅	Data Inputs/Outputs			
V _{CC}	Power			
V_{SS}	Ground			

FIGURE 1: Typical Operating Envelope (R/W Mix)

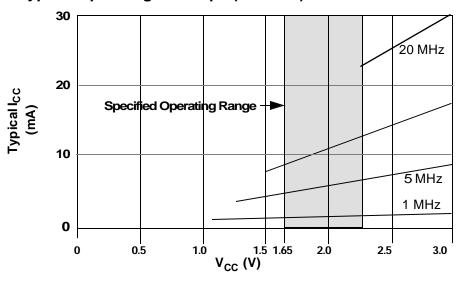


FIGURE 3: Functional Block Diagram Word Address Address Inputs Decode Logic W 0 Input/ Page 16K Page Output Address∟ Address /႘၀ - I/O₇ x 16 Word Mux M Decode and x 16 bit Logic **Buffers** RAM Array CE1 Control Logic

TABLE 2: Functional Description

CE1	CE2	WE	ŌĒ	ŪB	LB	1/O ₀ - 1/O ₁₅ ¹	MODE	POWER
Н	Х	Х	Х	Х	Х	High Z Standby ²		Standby
Х	L	Х	Х	Χ	Х	High Z	Standby ²	Standby
Х	Х	Х	Х	Н	Н	High Z	Standby ²	Standby
L	Н	L	X ³	L ¹	L ¹	Data In Write ³		Active -> Standby ⁴
L	Н	Η	L	L ¹	L ¹	Data Out	Read	Active -> Standby ⁴
L	Н	Н	Н	L^1	L ¹	High Z	Active	Standby ⁴

^{1.} When $\overline{\text{UB}}$ and $\overline{\text{LB}}$ are in select mode (low), I/O₀ - I/O₁₅ are affected as shown. When LB# only is in the select mode only I/O₀ - IO₇ are affected as shown. When $\overline{\text{UB}}$ is in the select mode only I/O₈ - I/O₁₅ are affected as shown. If both $\overline{\text{UB}}$ and $\overline{\text{LB}}$ are in the deselect mode (high), the chip is in a standby mode.

TABLE 3: Capacitance*

Item	Symbol	Test Condition	Min	Max	Unit
Input Capacitance	C _{IN}	$V_{IN} = 0V, f = 1 \text{ MHz}, T_A = 25^{\circ}C$		8	pF
I/O Capacitance	C _{I/O}	V _{IN} = 0V, f = 1 MHz, T _A = 25°C		8	pF

Note: These parameters are verified in device characterization and are not 100% tested $\,$

^{2.} When the device is in standby mode, control inputs (WE, OE, UB, and LB), address inputs and data input/outputs are internally isolated from any external influence and disabled from exerting any influence externally.

^{3.} When $\overline{\text{WE}}$ is invoked, the $\overline{\text{OE}}$ input is internally disabled and has no effect on the circuit.

^{4.} The device will consume active power in this mode whenever addresses are changed. Data inputs are internally isolated from any external influence.

TABLE 4: Absolute Maximum Ratings*

Item	Symbol Rating		Unit
Voltage on any pin relative to V _{SS}	V _{IN,OUT}	-0.3 to V _{CC} +0.3	V
Voltage on V _{CC} Supply Relative to V _{SS}	V _{CC}	-0.3 to 3.0	V
Power Dissipation (TSOP)	P _D	500	mW
Storage Temperature	T _{STG}	-40 to 125	°C
Operating Temperature	T _A	40 to +85	°C
Soldering Temperature and Time	T _{SOLDER}	260 °C, 10sec(Lead only)	°C

^{*} Stresses greater than those listed above may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

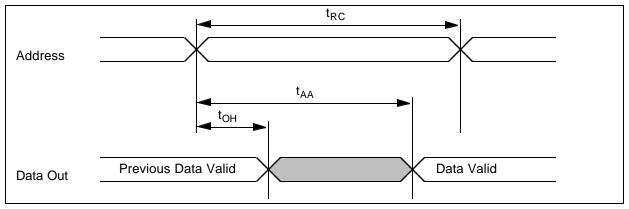
TABLE 5: Operating Characteristics (Over specified Temperature Range)

Item	Symbol	Test Conditions	Min	Тур	Max	Unit
Supply Voltage	V _{CC}		1.65		2.25	V
Data Retention Voltage	V_{DR}	Chip Disabled (Note 3)	1.0			V
Input High Voltage	V _{IH}		0.7V _{CC}		V _{CC} +0.5	V
Input Low Voltage	V _{IL}		-0.5		0.3V _{CC}	V
Output High Voltage	V _{OH}	$I_{OH} = 0.2 \text{mA}$	V _{CC} -0.3			V
Output Low Voltage	V _{OL}	I _{OL} = -0.2mA			0.3	V
Input Leakage Current	I _{LI}	$V_{IN} = 0$ to V_{CC}			0.5	μΑ
Output Leakage Current	I _{LO}	OE# = V _{IH} or Chip Disabled			0.5	μΑ
Read/Write Operating Supply Current - Page Access Mode (Note 1)	I _{CC1}	$V_{IN} = V_{IH}$ or V_{IL} Chip Enabled, IOL = 0		10	20	mA
Read/Write Operating Supply Current - Word Access Mode (Note 1)	I _{CC2}	$V_{IN} = V_{IH}$ or V_{IL} Chip Enabled, IOL = 0		5	8	mA
Read/Write Quiescent Operating Supply Current (Note 2)	I _{CC3}	$V_{IN} = V_{CC}$ or $0V$ Chip Enabled, $IOL = 0$ $f = 0$, $t_A = 85^{\circ}C$			20	μΑ
Typical Operation Standby Current (Note 2)	I _{SB1}	$V_{IN} = V_{CC}$ or 0V Chip Disabled, $t_A = 55^{\circ}$ C			2	μΑ
Maximum Standby Current (Note 2)	I _{SB2}	$V_{IN} = V_{CC}$ or 0V Chip Disabled, $t_A = 85^{\circ}C$		10	μА	
Maximum Data Retention Current (Note 2)	I _{DR}	Vcc = 1.0V, $V_{IN} = V_{CC}$ or 0 Chip Disabled, $t_A = 85^{\circ}$ C	Vcc = 1.0V, V _{IN} = V _{CC} or 0		5	μА

^{1.} Operating current is a linear function of operating frequency and voltage. You may calculate operating current using the formula shown with operating frequency (f) expressed in MHz and operating voltage (V) in volts. Example: When operating at 2 MHz at 2.0 volts the device will draw a typical active current of 0.8*2*2 = 3.2 mA in the page access mode. This parameter is specified with the outputs disabled to avoid external loading effects. The user must add current required to drive output capacitance expected in the actual system.

^{2.} This device assumes a standby mode if the chip is disabled (CE1 high or CE2 low). It will also automatically go into a standby mode whenever all input signals are quiescent (not toggling) regardless of the state of CE1 or CE2. In order to achieve low standby current all inputs must be within 0.2 volts of either VCC or VSS.

^{3.} The Chip is Disabled when $\overline{CE1}$ is high or CE2 is low. The Chip is Enabled when $\overline{CE1}$ is low and CE2 is high.


TABLE 6: Timing Test Conditions

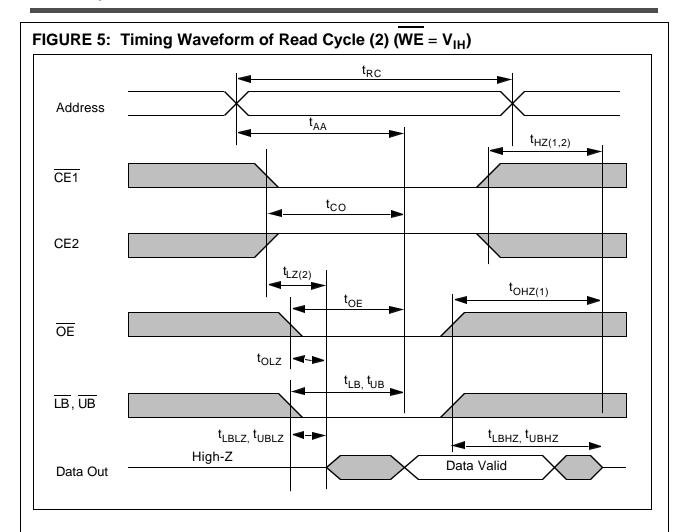

Item	
Input Pulse Level	0.1V _{CC} to 0.9 V _{CC}
Input Rise and Fall Time	5ns
Input and Output Timing Reference Levels	0.5 V _{CC}
Operating Temperature	-40 to +85°C
Output Loading	30 pF

TABLE 7: Read Cycle Timing

Item	Symbol	1.65 -	2.25 V	1.8 - 2.25 V		- Units
nem	Symbol	Min.	Max.	Min.	Max.	Units
Read Cycle Time	t _{RC}	85		70		ns
Address Access Time	t _{AA}		85		70	ns
Chip Enable to Valid Output	t _{CO}		85		70	ns
Output Enable to Valid Output	t _{OE}		30		25	ns
Byte Select to Valid Output	t _{LB} , t _{UB}		85		70	ns
Chip Enable to Low-Z output	t _{LZ}	10		10		ns
Output Enable to Low-Z Output	t _{OLZ}	5		5		ns
Byte Select to Low-Z Output	t_{LBZ}, t_{UBZ}	10		10		ns
Chip Enable to High-Z Output	t _{HZ}	10	30	10	25	ns
Output Disable to High-Z Output	t _{OHZ}	10	30	10	25	ns
Byte Select Disable to High-Z Output	t _{LBHZ} , t _{UBHZ}	10	30	10	25	ns
Output Hold from Address Change	t _{OH}	5		5		ns

FIGURE 4: Timing of Read Cycle (1) ($\overline{CE1} = \overline{OE} = V_{IL}$, CE2, $\overline{WE} = V_{IH}$)

TABLE 8: Write Cycle Timing

Hom	Symbol	1.65 -	1.65 - 2.25 V		1.8 - 2.25 V	
Item	Symbol	Min.	Max.	Min.	Max.	Units
Write Cycle Time	t _{WC}	85		70		ns
Chip Enable to End of Write	t _{CW}	50		40		ns
Address Valid to End of Write	t _{AW}	50		40		ns
Byte Select to End of Write	t _{LBW} , t _{UBW}	50		40		ns
Address Set-up Time	t _{AS}	0		0		ns
Write Pulse Width	t _{WP}	50		40		ns
Write Recovery Time	t _{WR}	0		0		ns
Write to High-Z Output	t _{WHZ}		25		20	ns
Data to Write Time Overlap	t _{DW}	30		25		ns
Data Hold from Write Time	t _{DH}	0		0		ns
End Write to Low-Z Output	t _{OW}	10		10		ns

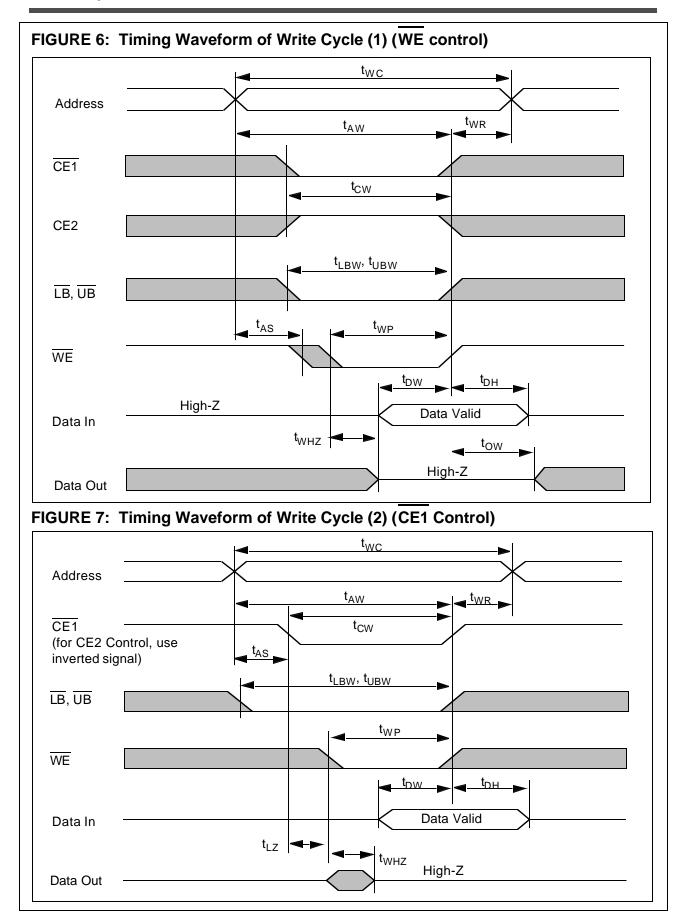
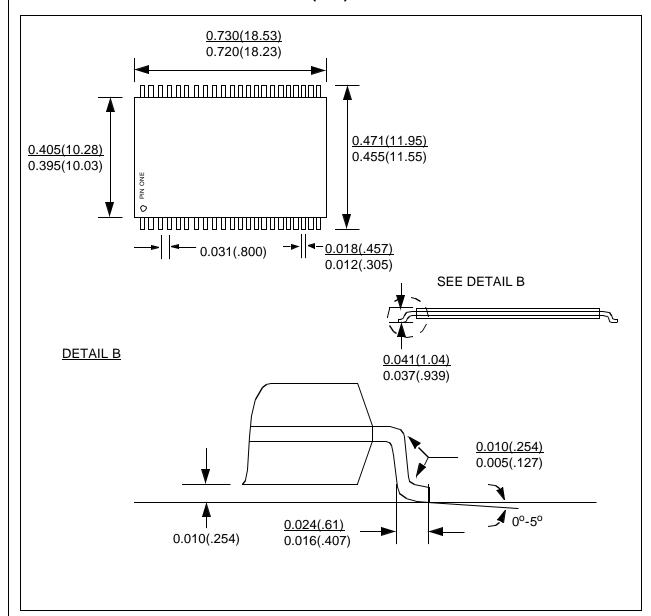



FIGURE 8: 44-LEAD TSOP PACKAGE (T44)

Note:

- 1. ALL DIMENSIONS IN INCHES (MILLIMETERS)
- 2. PACKAGE DIMENSIONS EXCLUDE MOLDING FLASH

FIGURE 9: BALL GRID ARRAY PACKAGING 0.20±0.04 -1.24±0.10 — A1 BALL PAD CORNER (3) 1. .30 DIA. TYP Е 2. SEATING PLANE - Z Ζ 0.15 Ζ 0.05 → 0.70±0.05 SIDE VIEW **TOP VIEW** 1. DIMENSION IS MEASURED AT THE A1 BALL PAD SD MAXIMUM SOLDER BALL DIAMETER. CORNER PARALLEL TO PRIMARY Z. 2. PRIMARY DATUM Z AND SEATING

BOTTOM VIEW

- 2. PRIMARY DATUM Z AND SEATING PLANE ARE DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.
- 3. A1 BALL PAD CORNER I.D. TO BE MARKED BY INK.

TABLE 9: Dimensions (mm)

D	E		BALL MATRIX			
	_	SD	SE	J	K	TYPE
6	8	0.375	0.375	1.125	1.375	FULL

TABLE 10: Revision History

Revision #	Date	Change Description		
01	Sept. 19, 2000	Sept. 19, 2000 Production Release		
02	Mar 2001	Mar 2001 Changed BGA package dimensions to 6x8 mm, other minor edits		
03	May 2001	Corrected BGA mechanical drawing dimension K		

 $\ @$ 2000-2001 Nanoamp Solutions, Inc. All rights reserved.

NanoAmp Solutions, Inc. ("NanoAmp") reserves the right to change or modify the information contained in this datasheet and the products described therein, without prior notice. NanoAmp does not convey any license under its patent rights nor the rights of others. Charts, drawings and schedules contained in this datasheet are provided for illustration purposes only and they vary depending upon specific applications.

NanoAmp makes no warranty or guarantee regarding suitability of these products for any particular purpose, nor does NanoAmp assume any liability arising out of the application or use of any product or circuit described herein. NanoAmp does not authorize use of its products as critical components in any application in which the failure of the NanoAmp product may be expected to result in significant injury or death, including life support systems and critical medical instruments.