Description The ETC706R/S/T and ETC708R/S/T are inexpensive microprocessor supervisory circuits that monitor power supplies in 3.0 and 3.3 Volt microprocessor based systems. The circuit functions include a watchdog timer, microprocessor reset, power failure warning and a debounced manual reset input. The ETC706 offers a watchdog timer function, while the ETC708 has no watchdog timer but has an active high reset output in addition to the active low reset output. The R, S, and T versions are similar in all respects except for supply voltage reset threshold levels. The threshold levels are 2.63, 2.93, and 3.08V respectively. When the supply voltage drops below the reset threshold level, $\overline{\text{RESET}}$ (and RESET for the ETC708) is asserted. ### **Typical Applications** - Laptop Computers - Intelligent Instruments - Critical Microprocessor Power Monitoring - Printers - Computers - Controllers ### **Ordering Information** | <u>Part</u> | <u>Package</u> | Temp. Range | |-------------|----------------|----------------| | ETC70N | 8-Lead PDIP | -40°C to +85°C | | ETC70M | 8-Lead SOIC | -40°C to +85°C | | ETC70 D | Tested Die | 0°C to +70°C | ### Pin Configuration N Package - 8 Lead Plastic DIP Package M Package - 8 Lead Plastic SOIC Package #### **Features** - Debounced Manual Reset Input is TTL/CMOS Compatible - Reset Pulse Width, 200ms - Watchdog Timer, 1.6s (ETC706) - Precision Supply Voltage Monitor - Early Power Fail Warning or Low Battery Detect ### **Typical Operating Circuit** ### **Absolute Maximum Ratings** | Terminal Voltage | Operating Temperature Range | |--------------------------------------|--| | VCC | ETC70_N, ETC70_M40°C to 85°C | | All Other Inputs0.3V to (VCC + 0.3V) | Storage Temperature Range65°C to 150°C | | Input Current | Lead Temperature (Soldering - 10 sec.) 300°C | | VCC, Gnd | Power Dissipation (PDIP) 475mW | | Output Current (all outputs) 20mA | Power Dissipation (SOIC) 400mW | Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability. Operating ranges define those limits between which the functionality of the device is guaranteed. #### **Electrical Characteristics** V_{CC} = 2.70V to 5.5V for ETC70_R, V_{CC} = 3.00V to 5.5V for ETC70_S, V_{CC} = 3.15V to 5.5V for ETC70_T, T_A = -40°C to 85°C unless otherwise noted. | Parameter | Conditions | Min | | Max | Units | |--|--|----------------------|----------------------|------------|----------| | Operating Voltage Range, V _{CC} | | 1.4 | | 5.5 | V | | Supply Current | | | 30 | μА | | | Reset Voltage Threshold | 2.55
2.85
3.00 | 2.63
2.93
3.08 | 2.70
3.00
3.15 | V | | | Reset Threshold Hysteresis | | 20 | | mV | | | Reset Pulse Width, t _{RS} | 140 | 200 | 280 | ms | | | RESET Output Voltage | ISource = 200μA
ISink = 1.2mA
ISink = 50μA, VCC = 1.4V | 0.8 x VCC | | 0.3
0.3 | V | | RESET Output Voltage | ISource = 200μA
ISink = 500μA | 0.8 x VCC | | 0.3 | V | | Watchdog Timeout Period, twD | | 1.0 | 1.6 | 2.25 | sec | | VDI Minimum Input Pulse, t _{WP} $VIL = 0.4V, VIH = 80\% \text{ of VCC} \\ VIL = 0.4V, VIH = 80\% \text{ of VCC} > 4.5V$ | | 100
50 | | | ns
ns | | WDI Threshold Voltage | VIH
VIL | 0.7 x VCC | | 0.6 | V | | WDI Input Current | WDI = 0V or VCC | -1 | | 1 | μА | | WDO Output Voltage | 0.8 x VCC | | 0.3 | V | | #### **Electrical Characteristics** V_{CC} = 2.70V to 5.5V for ETC70_R, V_{CC} = 3.00V to 5.5V for ETC70_S, V_{CC} = 3.15V to 5.5V for ETC70_T, T_A = -40°C to 85°C unless otherwise noted. | Parameter | Conditions | Min Typ | | Max | Units | |--|------------|-----------------------|------|-----|----------| | MR Pull-Up Current | MR = 0V | 20 | 250 | 600 | μА | | MR Pulse Width, t _{MR} | VCC > 4.5V | 500
150 | | | nS
nS | | MR Input Threshold | VIL
VIH | 0.7 x VCC | | 0.6 | V | | MR to Reset Output Delay, t _{MD} | | | | 750 | nS | | PFI Input Threshold | | 1.2 | 1.25 | 1.3 | V | | PFI Input Current | | -25 | 0.01 | +25 | nA | | PFO Output Voltage ISink = 1.2mA ISource = 200μA | | 0.8 x V _{CC} | | 0.3 | V | #### **Pin Functions** | | Pin No. | | | |----------|---------|--------|---| | Pin Name | ETC706 | ETC708 | | | MR | 1 | 1 | Manual Reset Input forces RESET to assert when pulled below 0.8V. An internal pull-up current of 250μA on this input forces it high when left floating. This input can also be driven from TTL or CMOS logic. | | vcc | 2 | 2 | Primary supply input, +5V. | | GND | 3 | 3 | IC ground pin, 0V reference. | | PFI | 4 | 4 | Power fail input. Internally connected to the power fail comparator which is referenced to 1.25V. The power fail output (PFO) remains high if PFI is above 1.25V. PFI should be connected to GND or VOUT if the power fail comparator is not used. | | PFO | 5 | 5 | Power fail output. The power fail comparator is independent of all other functions on this device. | | WDI | 6 | N/A | Watchdog input. The WDI input monitors microprocessor activity, an internal watchdog timer resets itself with each transition on the watchdog input. If the WDI pin is held high or low for longer than the watchdog timeout period, WDO is forced to active low. The watchdog function cannot be disabled. | | N/C | N/A | 6 | No Connect | | RESET | 7 | 7 | RESET is asserted if either V _{CC} goes below the reset threshold or by a low signal on the manual reset input (MR). RESET remains asserted for one reset timeout period (200ms) after V _{CC} exceeds the reset threshold or after the manual reset pin transitions from low to high. The watchdog timer will not assert RESET unless WDO is connected to MR. | | WDO | 8 | N/A | Output for the watchdog timer. The watchdog timer resets itself with each transition on the watchdog input. If the WDI pin is held high or low for longer than the watchdog timeout period, WDO is forced low. WDO will also be forced low if V _{CC} is below the reset threshold and will remain low until V _{CC} returns to a valid level. | | RESET | N/A | 8 | RESET is the compliment of RESET and is asserted if either V _{CC} goes below the reset threshold or by a low signal on the manual reset input (MR). RESET is suitable for microprocessors systems that use an active high reset. | ## **Block Diagram** Figure 1. ETC706 Block Diagram Figure 2. ETC708 Block Diagram ## **Circuit Description** #### **Power Fail Warning** An additional comparator which is independent of other functions on the ETC706/ETC708 is provided for early warning of power failure. An external voltage divider Figure 1. Power Fail Comparator can be used to compare unregulated DC to an internal 1.25V reference. The voltage divider ratio on the input of the power fail comparator (PFI) can be chosen so as to trip the power fail comparator a few milliseconds before VCC falls below the maximum reset threshold voltage. The output of the power fail comparator $\overline{(PFO)}$ can be used to interrupt the microprocessor when used in this mode and execute shut-down procedures prior to power loss. #### Watchdog Timer The microprocessor can be monitored by connecting the WDI pin (watchdog input) to a bus line or I/O line. If a transition doesn't occur on the WDI pin within the watchdog timeout period, the microprocessor is reset. RESET will remain asserted for 200ms when this occurs. A minimum pulse of 50ns (4.5V supply) or 100ns (2.7V supply) or any transition low-to-high or high-to-low on the WDI pin will reset the watchdog timer. The output of the watchdog timer (WDO) will remain high if WDI sees a valid transition within the watchdog timeout period. If VCC falls below the reset threshold voltage then WDO goes low immediately regardless of WDI. Likewise, WDO goes high immediately after VCC exceeds the reset threshold. WDO can be connected to MR to generate a reset pulse upon watchdog timeout. #### Microprocessor Reset The $\overline{\text{RESET}}$ pin is asserted whenever V_{CC} falls below the reset threshold voltage or when $\overline{\text{MR}}$ goes low. The Figure 2. Reset Timing Diagram reset pin remains asserted for a period of 200ms after VCC has risen above the reset threshold voltage and $\overline{\text{MR}}$ goes high. The reset function ensures the microprocessor is properly reset and powers up into a known condition after a power failure. RESET will remain valid with VCC as low as 1.4V. ## **Alternate Source Cross Reference Guide** | | ETC Direct | |--------------|--------------------| | Industry P/N | <u>Replacement</u> | | MAX706RCPA | ETC706RN | | MAX706RCSA | ETC706RM | | MAX706REPA | ETC706RN | | MAX706RESA | ETC706RM | | MAX706SCPA | ETC706SN | | MAX706SCSA | ETC706SM | | MAX706SEPA | ETC706SN | | MAX706SESA | ETC706SM | | MAX706TCPA | ETC706TN | | MAX706TCSA | ETC706TM | | MAX706TEPA | ETC706TN | | MAX706TESA | ETC706TM | | MAX708RCPA | ETC708RN | | MAX708RCSA | ETC708RM | | MAX708REPA | ETC708RN | | MAX708RESA | ETC708RM | | MAX708SCPA | ETC708SN | | MAX708SCSA | ETC708SM | | MAX708SEPA | ETC708SN | | MAX708SESA | ETC708SM | | MAX708TCPA | ETC708TN | | MAX708TCSA | ETC708TM | | MAX708TEPA | ETC708TN | | MAX708TESA | ETC708TM | ## **Packaging Information** #### M Package, 8-Pin Small Outline #### N Package, 8-Pin Plastic Dual-In-Line #### - Electronic Technology · 402 Campus Drive ◆ Huxley, IA 50124 ◆ Phone: (515) 597-7000 ◆ http://www.etechcorp.com V051799 © 1999 This publication is to provide information only, and, unless specified to the contrary by the Company in writing, is not to form part of any order or contract. This information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Electronic Technology reserves the right to change the circuitry and specifications without notice at any time. No representation, implied or expressed, is made regarding the suitability of the products or services contained herein for intended use. All rights reserved. Withten the reserved in reserve