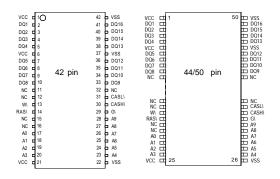


Features

1 Meg x 16 bit CMOS Dynamic Random Access Memory

- · Access Times: 60 and 70ns
- · EDO Cycle time 25 and 30ns
- Single +3.3V (±10%) Supply Operation
- 1024 cycles/16ms Refresh
- RAS-Only, CAS-BEFORE-RAS, and HIDDEN refresh capability
- · Low Operating Power Dissipation
- · Low Standby Power
- · Common I/O
- All Inputs/Outputs TTL Compatible Package Style
- 44/50 pin Plastic TSOP
- 42 pin Plastic SOJ

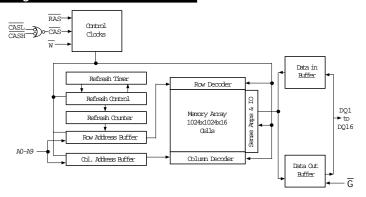

1 Megabit x 16 Dynamic RAM 3.3V, Extended Data Out

EDI's ruggedized plastic 1Mx16 DRAM allows the user to capitalize on the cost advantage of using a plastic component while not sacrificing all of the reliability available in a full military device.

Extended temperature testing is performed with the test patterns developed for use on EDI's fully compliant DRAMs. EDI fully characterizes devices to determine the proper test patterns for testing at temperature extremes. This is critical because the operating characteristics of device change when it is operated beyond the commercial temperature range. Using commercial test methods will not guarantee a device that operates reliably in the field at temperature extremes. Users of EDI's ruggedized plastic benefit from EDI's extensive experience in characterizing DRAMs for use in military systems.

The x16 width of the memory allows the user to build a cost effective x64 wide main memory array for the Power PC microprocessor. The wider memory width provides for a higher memory bandwidth required by today's systems.

Pin Configurations



Pin Names

AØ-A9 Address Inputs CASL\ and CASH\ Column Address Strobe RAS\ Row Address Strobe W Write Control Input G١ Output Enable DQ1-DQ16 Data Inputs/Outputs VCC Power (+5V±10%) **VSS** Ground NC No Connection

Block Diagram

Absolute Maximum Ratings*

Voltage on any pin relative to VSS	-1.0V to 5.5V
Operating Temperature TA (Ambient)	
Industrial	-40°C to +85°C
Military	-55°C to +125°C
Storage Temperature	-65°C to +125°C
Power Dissipation	1 Watt
Output Current	50 mA

[&]quot;Stress greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended DC Operating Conditions

Note 1

Parameter	Sym	Min	Тур	Max	Units
Supply Voltage	VCC	3.0	3.3	3.6	V
Supply Voltage	VSS	0	0	0	V
Input High Voltage	VIH	2		5.5	٧
Input Low Voltage	VIL	-1.0		0.8	V

Notes: 1. All voltage values are with respect to VSS.

Electrical Characteristics (VCC = 5.0V ±10%) Note 2.

Parameter	Sym	Conditions	Min	Тур	Max	Units
Average Supply Current from VCC	ICC1	RAS CAS\ Cycling	RAS CAS\ Cycling			
Operating (Notes 3, 4)		TRC = TWC = Min, Output Open				
Supply Current from VCC	ICC2	$RAS\ = CAS\ = W=VIH$, Outputs Open	l		2	mA
Standby	ICC5	RAS\ = CAS\ = W. VCC-0.2, Outputs Op		1	mΑ	
Average Supply Current from VCC	ICC3	RASCAS\ Address Cycling		150	mΑ	
Refreshing (Note 3)		TRC = Min, Outputs Open				
Average Supply Current from VCC	ICC4	$RAS\ = VIL, CAS\ = Cycling$			120	mA
EDO Page Mode (Notes 3, 4)		TPC = Min, Outputs Open				
Average Supply Current from VCC	ICC6	CAS\ before RAS\ Refresh Cycling			160	mA
RAS\ Only Refresh Mode (Note 3)						
CAS\ before RAS\ Refresh Mode (Note 3)		TRC = Min, Outputs Open				
Input Current	IIL	0V - VIN - 6.5V	-2		10	μΑ
		All Other Input Pins = 0V				-
Off-State Output Current	IOZ	Q Floating 0V- V OUT - 5.5V	-10		2	μA
Output High Voltage	VOH	IOH = -2.0mA	2.4		VCC	·V
Output Low Voltage	VOL	IOL= 2.2mA	0	_	0.4	V

Notes: 2. Current flowing into an IC is positive, out is negative.

- 3. ICC1(av), ICC3(av), ICC4(av), and ICC6 are dependent on cycle rate. Maximum current is measured at the fastest cycle rate.
- 4. ICC1(av), and ICC4(av) are dependent on output loading. Specified values are obtained with the output open.

EDI4161MEV-RP

Capacitance

(f=1.0MHz, VIN=VCC or VSS)

Parameter	Sym	Test Conditions	Min Typ	Max	Unit
Address Input Capacitance	ČA	VI = VSS		5	pF
Input Capacitance (D)	CD	f = 1MHz		7	pF
Input Capacitance (CASW RAS\)	CC, CW, CR	Vi = 25mVrms		7	pF
Output Capacitance (Q)	CQ	VO = VSS, $f = 1MHz$, $Vi = 25mVrms$		7	pF

Input Conditions for Each Mode

The EDI4161MEV provides, in addition to normal Read, Write, and Read-modify-Write operations, a number of other functions, e.g. Extended Data Out, RAS\-only Refresh, and Delayed Write. The input conditions for each are shown below.

ACT = Active NAC= Non-active NAC= Non-active DNC= Don't care OPN = Open

Inputs							Input	/Output
Operation	RAS\	CAS\	W۱	G\	Row Address	Column Address	D	Q
Read*	ACT	ACT	NAC	ACT	APD	APD	OPN	VLD
Early Write*	ACT	ACT	ACT	DNC	APD	APD	VLD	OPN
Read-Modify-Write*	ACT	ACT	ACT	ACT	APD	APD	VLD	VLD
RAS\ -only Refresh	ACT	NAC	DNC	DNC	APD	DNC	DNC	OPN
Hidden Refresh	ACT	ACT	DNC	ACT	APD	DNC	OPN	VLD
CAS\ before RAS\ Refresh	ACT	ACT	NAC	DNC	DNC	DNC	DNC	OPN
Standby	NAC	DNC	DNC	DNC	DNC	DNC	DNC	OPN

^{*}Extended Data Out Mode Identical.

Timing Requirements Read, Write, Read-Modify-Write, Refresh, and Fast Page Mode Cycles

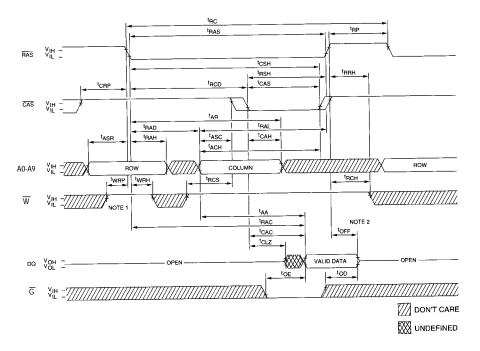
(VCC=3.3V±10%) Note 1,2,5,11,12

		6	Ons	7(Ons		
Parameter	Sym	Min	Max	Min	Max	Unit	Notes
Random Read or Write Cycle Time	TRC	105		125		ns	
Read-Modify-Write Cycle Time	TRWC	145		170		ns	
Access Timefrom CAS\	TCAC		15		20	ns	3,4,5
Access Timefrom RAS\	TRAC		60		70	ns	3,4,10
Access Time From Column Address	TAA		30		35	ns	3,10
CAS to output in Low-Z	TCLZ	0		0		ns	6
Output buffer turn-off delay	TOFF	3	15	3	15	ns	6,14
Transition Time	TT	2	50	2	50	ns	2
RAS\Precharge Time	TRP	40		50		ns	
RAS\LowPulseWidth	TRAS	60	10,000	70	10,000	ns	
RAS\Hold Time after CAS\Low	TRSH	13	-,	15		ns	
CAS\Hold Time after RAS\Low	TCSH	50		55		ns	
CAS\Low Pulse Width	TCAS	12	10,000	13	10,000	ns	
RAS\to CAS\ Delay Time	TRCD	14	45	14	50	ns	4
Column Address Delay from RAS\Low	TRAD	12	30	12	35	ns	10
Delay CAS\ High to RAS\ Low	TCRP	5		5		ns	
Row Address Set Up Time	TASR	0		0		ns	
Row Address Hold Time	TRAH	10		10		ns	
Column Address Set Up Time	TASC	0		0		ns	
Column Address Hold Time	TCAH	10		12		ns	
Column Address Hold Time Referenced RAS	TAR	45		50		ns	
Column Address to RAS\Setup	TRAL	30		35		ns	
Read Set Up Time before CAS\Low	TRCS	0		0		ns	
Read Hold Time after CAS\ High	TRCH	0		0		ns	8
Read Hold Time after RAS\ High	TRRH	0		0		ns	8
Write Hold Time after CAS\Low	TWCH	10		12		ns	<u> </u>
Write Command Hold Time Referenced to RAS		45		55		ns	
Write Pulse Width	TWP	10		12		ns	
RAS\Hold Time after Write Low	TRWL	15		15		ns	
CAS\Hold Time after Write Low	TCWL	15		15		ns	
Data Set up Time	TDS	0		0		ns	9
Data Hold Time after CAS\Low	TDH	10		12		ns	9
Data Hold Time Referenced to RAS	TDHR	45		55		ns	
Refresh Cycle	TREF	7.0	16	- 55	16	ms	
Write Setup Time before CAS\Low	TWCS	0	10	0	10	ns	7
CAS\Low to W\ Low Delay	TCWD	35		40		ns	
RAS\Low to W\Low Delay	TRWD	80		90		ns	
Column Address Setup to CAS High	TACH	15		15		ns	
GLow to Output Valid	TOE	13	15	13	20	ns	13
CAS Low to DOUT	TCOH	3	13	3	20	ns	13
RAS Low to W Low	TWRH	<u>3</u> 10		<u>3</u> 		ns	
Write High to RAS Low	TWRP	10		10		ns	
Address to W\ Low Delay	TAWD	55		60		ns	7

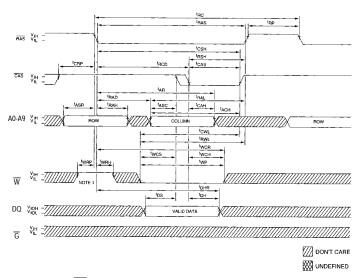
Write Cycle, Early and Delayed Write

(VCC = 5.0V+10%) Notes 1.2.5.11.12

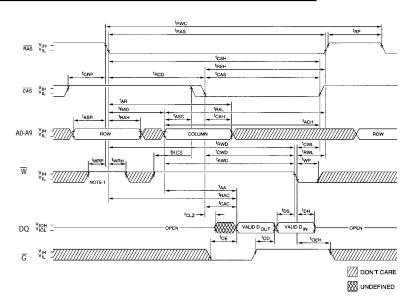
		60	Ons	70)ns		
Parameter	Sym	Min	Max	Min	Max	Unit	Notes
CAS\Setup for CAS\ before RAS\ Refresh	TCSR	5		5		ns	
CAS\ Hold for CAS\ before RAS\ Refresh	TCHR	10		12		ns	
Precharge to CAS\Active	TRPC	5		5		ns	
Access Timefrom CAS\Precharge	TCPA		35		40	ns	3
EDO Page Cycle Time	TPC	25		30		ns	
EDO Page Read-Modify-Write Cycle Time	TPRWC75		85			ns	
CAS precharge time (EDO cycle)	TCP	10		10		ns	
RAS pulse width (EDO Cycle)	TRASP	60	125K	70	125K	ns	
RAS Hold Time From CAS Precharge	TRHCP	35		40		ns	
Output Disable Time after G\High	TOD	0	15	0	15	ns	6
Write Low to Next G\Low	TOEH	12		12		ns	
G Low to CAS High Setup Time	TOES	5		5		ns	
G High Hold From CAS High	TOEHC	10		10		ns	
OE High Pulse Width	TOEP	10		10		ns	
G Setup prior to RAS during	TORD	0		0		ns	
Hidden Refresh Cycle							
GdelayfromW	TWHZ	0	13	0	15	ns	
W pulse to disable at CAS high	TWPZ	10		12		ns	


Notes:

- 1. An initial pause of 100µs is required after power-up followed by any 8 ROR or CBR cycles before proper device operation is achieved, and must be repeated whenever TRFF is exceeded
- 2. VIH(min) and VIL(max) are reference levels for measuring timing of input signals. Transition times are measured between VIH(min) and VIL(max) and are assumed to be 3ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL loads and 100pF.
- 4. Operation within the TrCD (max) limit insures that TRAC (max) can be met. TRCD (max) is specified as a reference point only. If TRCD is greater than the specified TRCD(max) limit, then access time is controlled exclusively by TCAC.
- 5. Assumes that TRCD>TRCD (max)
- 6. This parameter defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL.
- 7. TWCS, TRWD, TCWD and TAWD are non restrictive operating parameters. They are included in the data sheet as electric characteristics only. If TWCS-TWCS(min), the cycle is an early write and the data output will remain high impedance for the duration of the cycle. If TCWD-TCWD(min), TRWD-TRWD(min) and TAWD-TAWD(min) then the cycle is a read-modify-write cycle and the data output will contain the data read from the selected address. If neither of the above conditions is satisfied, the condition of the data out is indeterminate.
- 8. Either TRCH or TRRH must be satisfied for a read cycle.
- 9. These parameters are referenced to the CAS leading edge in early write cycles and to the W leading edge in read-modify-write cycles.
- 10. Operation within the TRAD(max) limit insures that TRAC(max) can be met. TRAD (max) is specified as a reference point only. If TRAD is greater than the specified TRAD(max) limit, then access time is controlled by TAA.
- 11. 1024 (1K Ref.) cycles of burst refresh must be executed within 16ms before and after self refresh, in order to meet refresh specification.
- 12. TAR, TWCR, and TDHR are referenced to TRAD (max).
- 13. If OE is tied permanently LOW, LATE WRITE or READ-MODIFY-WRITE operations are not permissible and should not be attempted. Additionally, WE must be pulsed during CAS HIGH time in order to place I/O buffers in High Z.
- 14. TOFF (MAX) defines the time at which the output achieves the open circuit conditions, and is not referenced to VOH or VOL. It is referenced from the rising edge of RAS or CAS, whichever occurs last.


Read Cycle

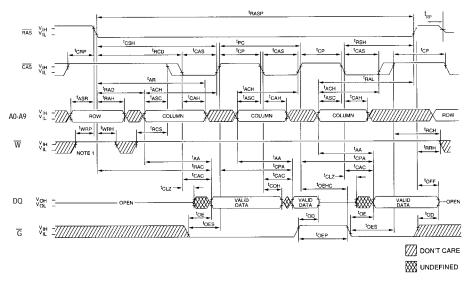
Notes: 1. Although \overline{W} is a "don't care" at \overline{RAS} time during an access cycle (Read or Write), the system designer should implement \overline{W} high for TWRP and TWRH. The design implementation will facilitate compatibility with future EDO DRAMs.


2. TOFF is referenced from rising edge of \overline{RAS} or \overline{CAS} , whichever occurs last.

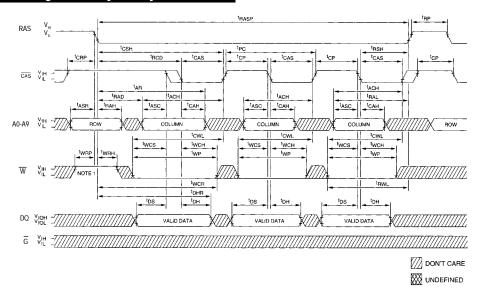
Write Cycle, Early Write

Notes: 1. Although \overline{W} is a "don't care" at \overline{RAS} time during an access cycle (Read or Write), the system designer should implement \overline{W} high for TWRP and TWRH. The design implementation will facilitate compatibility with future EDO DRAMs.

Read Write Cycle Late Write and Read-Modify-Write Cycles

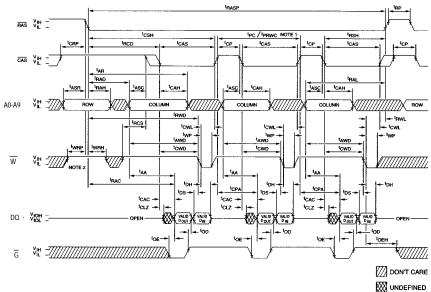


Notes: 1. Although \overline{W} is a "don't care" at \overline{RAS} time during an access cycle (Read or Write), the system designer should implement \overline{W} high for TWRP and TWRH. The design implementation will facilitate compatibility with future EDO DRAMs.



EDO-Page-Mode Read Cycle

Notes: 1. Although \overline{W} is a "don't care" at \overline{RAS} time during an access cycle (Read or Write), the system designer should implement \overline{W} high for TWRP and TWRH. The design implementation will facilitate compatibility with future EDO DRAMs.


EDO-Page-Mode Early Write Cycle

Notes: 1. Although \overline{W} is a "don't care" at \overline{RAS} time during an access cycle (Read or Write), the system designer should implement \overline{W} high for TWRP and TWRH. The design implementation will facilitate compatibility with future EDO DRAMs.

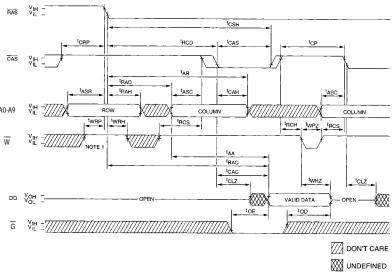
EDI4161MEV-RP


EDO-Page-Mode Read-Write Cycle

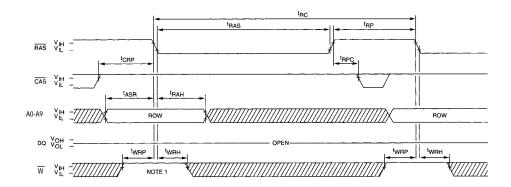
Notes: 1. TPC is for Late Write Cycles Only

1. The is not Late write cycles only 2. Although W is a "don't care" at RAS time during an access cycle (Read or Write), the system designer should implement W high for TWRP and TWRH. The design implementation will facilitate compatibility with future EDO DRAMs.

EDO-Page-Mode Read-Early-Write Cycle

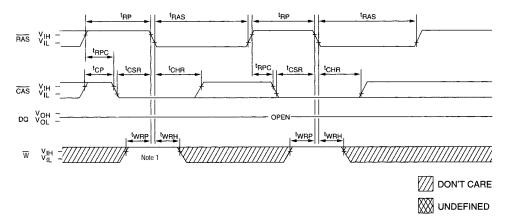

Notes: 1. Although \overline{W} is a "don't care" at \overline{RAS} time during an access cycle (Read or Write), the system designer should implement \overline{W} high for TWRP and TWRH. The design implementation will facilitate compatibility with future EDO DRAMs.

W UNDEFINED



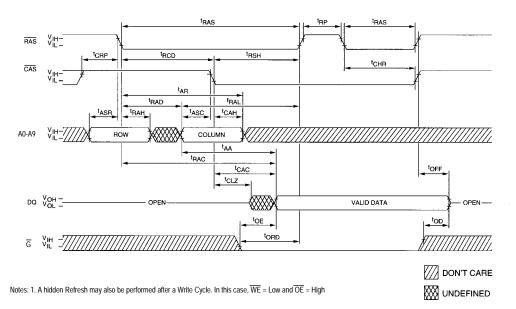
Read Cycle with WE Controlled Disable

Notes: 1. Although \overline{W} is a "don't care" at \overline{RAS} time during an access cycle (Read or Write), the system designer should implement \overline{W} high for TWRP and TWRH. The design implementation will facilitate compatibility with future EDO DRAMs.


RAS- Only Refresh Cycle

Notes: 1. Although \overline{W} is a "don't care" at \overline{RAS} time during an access cycle (Read or Write), the system designer should implement \overline{W} high for TWRP and TWRH. The design implementation will facilitate compatibility with future EDO DRAMs.

CBR Refresh Cycle


(A0-A9 and G=Don't Care)

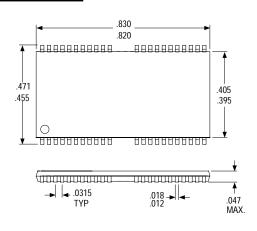
Notes: 1. Although \overline{W} is a "don't care" at \overline{RAS} time during an access cycle (Read or Write), the system designer should implement \overline{W} high for TWRP and TWRH. The design implementation will facilitate compatibility with future EDO DRAMs.

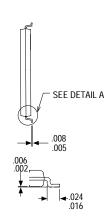
Hidden Refresh Cycle

(W=High, G=Low) Note 1

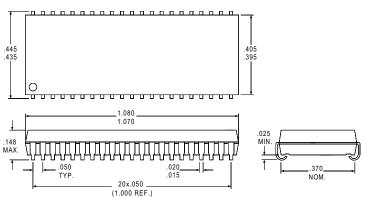
Ordering Information

MILITARY (-55°C TO +125°C)


Part No.	Speed (ns)	Package No.
EDI4161MEV60SM	60	371
EDI4161MEV70SM	70	371
EDI4161MEV60MM	60	420
EDI4161MEV70MM	70	420


INDUSTRIAL (-40°C TO +85°C)

Part No.	Speed (ns)	Package No.
EDI4161MEV60SI	60	371
EDI4161MEV70SI	70	371
EDI4161MEV60MI	60	420
EDI4161MEV70MI	70	420


Package Description

Package No. 371 44/50 Pin Plastic TSOP

Package No. 420 42 Pin Plastic SOJ

