
E
APPLICATION

NOTE

AP-614

Adapting DRAM-Based
Designs for the 28F016XD

Order Number: 292168-001

SUJAN KAMRAN
TECHNICAL MARKETING
ENGINEER

November 1995

Information in this document is provided solely to enable use of Intel products. Intel assumes no liability whatsoever, including
infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel's Terms and Conditions of
Sale for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear
in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trademark
or products.

*Other brands and names are the property of their respective owners.

Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

© INTEL CORPORATION 1995 CG-041493

E AP-614

1

1.0 INTRODUCTION

The Intel 28F016XD DRAM-interface flash memory
obsoletes the redundant two-memory paradigm of
nonvolatile memory (NVM) shadowed to DRAM in
many embedded designs. Traditionally, system
architectures stored code in nonvolatile and relatively
low performance memory sources (HDD, ROM, Bulk-
Flash) and then downloaded it to a faster volatile source
for execution. Using the 28F016XD for both the
nonvolatile code storage memory AND the code
execution memory eliminates this need for redundancy
as shown in Figure 1.

Advantages derived from eliminating the traditional
dual-memory scenario include:

• System Cost Savings

• Equivalent or Higher Performance

• Faster System Boot

• Reduced Board Space

• Lower Overall Power Requirements

• Simplified Design

• Increased Reliability

The 28F016XD device is priced competitively with
respect to the combination of 16-Mbit x16 DRAMs and
ROM/HDD, while offering comparable performance to
DRAM. Systems in which the HDD can be replaced
benefit further with the removal of the Drive Controller.
The boot ROM/Flash code can also be incorporated into
the 28F016XD. These are all examples of how the
28F016XD makes it possible to integrate many memories
into one, reducing cost and board space while
simplifying the overall design.

The 28F016XD leverages the existing DRAM controller
in system designs, thereby minimizing the glue logic
required to interface to flash memory. It is a 16-Mbit
device, organized as 1-Mbyte x 16, with ten row and ten
column addresses multiplexed on A0–A9. The
28F016XD’s presence on the main-memory bus assures
cacheability, maximizing the effective system read
performance. Flash memory also presents significant
power/energy and reliability advantages compared to
DRAM, since it does not require refresh and is not
susceptible to alpha-particle soft errors.

CPU

System
Bus

Controller

DRAM
Controller

Data
DRAM

Code
DRAM

Boot
ROM HDD

28F016XD

2168_01

Figure 1. The 28F016XD Eliminates the Need to Shadow Code from a Slow,
Nonvolatile Memory Source to a Faster, Volatile Execution Memory

AP-614 E

2

Modifications to DRAM-based systems to become
compatible with Intel’s 28F016XD 16-Mbit DRAM-
interface flash memory are straightforward. This
application note discusses the design considerations that
one must consider when converting a traditional code-
DRAM-based design to its 28F016XD-based alternative
including:

• Hardware

 DRAM Controller Timing Compatibility

 Memory Address Multiplexing

 Parity

• Software

 Direct Execute O/S and Applications

 BIOS Memory Scan

This document highlights two examples of reference
designs that Intel has completed with the 28F016XD.
The first details the simple Intel 386™ EX embedded
microprocessor evaluation board (MB1) modifications to
make the system 28F016XD-compatible. The second
example is an Intel486™ CPU-based motherboard (with
the Intel 82420ZX PCIset) which was adapted to utilize
the 28F016XD. The focus remains on the process and
analysis, using these reference designs as examples,
allowing this document to serve as a guide for
determining 28F016XD compatibility with many
systems.

2.0 HARDWARE
CONSIDERATIONS/CHANGES

2.1 Wait-State Profile/Memory
Controller Timings

The key to determining the compatibility of a system
with the 28F016XD flash memory is the flexibility of its
DRAM controller. The system memory controller,
whether it be integrated in an embedded micro-
controller/chipset or implemented in a custom
ASIC/FPGA, bridges the processor and main memory
sub-system. This logic generates the necessary control
signals (RAS# and CAS#) for DRAM read, write, and
refresh cycles.

System compatibility with the 28F016XD hinges on the
ability of the memory controller to compensate for the
timing differences between “standard” DRAMs and the

28F016XD. Depending on the system configuration, one
or a combination of the following may need to be done to
the controller timings in order for the system to become
28F016XD-compatible:

• nothing

• reduce overall system operating frequency

• increase CAS# access time (wait-states) for
28F016XD-based memory banks

The most significant timing differences between the
28F016XD and DRAMs (which can be compensated for
with additional wait-states) are shown in Table 1. See the
28F016XD datasheet referenced in the Additional
Information section for complete timing information.
Generally, memory controllers which allow for the CAS#
pulse-width (tCAS) to be programmed will accommodate
the other access time-related inconsistencies. Memory
controllers which support per-bank wait-state control
enable maximum system performance by optimizing
access times to both DRAM and 28F016XD memory
banks.

Unlike the specifications shown in Table 1, some timing
incompatibilities (with respect to DRAM) cannot be
resolved by simply configuring DRAM controller wait-
states. Determining DRAM-controller/system compat-
ibility with the specifications shown in Table 2 is crucial
for ensuring the ability to interface to the 28F016XD.

Most DRAM controller designs up to 33 MHz will be
compatible with the 28F016XD’s hold and precharge
times. However, one should examine carefully the impact
of the “Output Buffer Turn-Off Delay” (tOFF) timing
difference with respect to each specific design.

The DRAM controller, processor or other system
memory (e.g., DRAM) must not drive the data bus (after
reading from the 28F016XD) until tOFF has elapsed.

High-speed transceivers placed in the 28F016XD-data
path can eliminate such contention issues, as illustrated
in Figure 2. Note that some systems which incorporate
buffers on the data path to minimize CPU local bus
loading may not require additional transceivers to avoid
bus contention.

See AP-384, “Designing with the 28F016XD” for
complete details in understanding the timing differences
between the 28F016XD and DRAMs, and to determine
memory controller compatibility.

E AP-614

3

Table 1. Key 28F016XD Timing Parameters Compared to 60ns–70 ns 16-Mbit DRAMs for
Determining Memory Controller Compatibility (VCC = 5V)

Symbol Description 28F016XD DRAM

tAA Access Time from Column Address (max) 65 ns 30–35 ns

tCAS CAS# Pulse Width (Reads/Writes) (max) 35/50 ns 15–20 ns

tCAC Access Time from CAS# (max) 35 ns 15–20 ns

Table 2. Additional 28F016XD Timing Parameters Compared to 60–70 ns 16-Mbit DRAMs for
Determining Memory Controller Compatibility (VCC = 5V)

Symbol Description 28F016XD DRAM

tCAH Column Address Hold Time (min) 20 ns 10–15 ns

tRAH Row Address Hold Time (min) 15 ns 10 ns

tCP CAS# Precharge Time (min) 15 ns 10 ns

tCRP CAS# to RAS# Precharge Time (min) 10 ns 5 ns

tOFF Output Buffer Turn-Off Delay (max) 30 ns 15 ns

RAS#
CAS#
WE#

28F016XD

DataData BUS
 B

TRANSCEIVERS
(e.g., DM74LS245)

BUS
 A

DIR
G#

2168_02

Figure 2. 28F016XD-Data Path Transceivers
Eliminate Potential Bus Contention Issues

2.2 Memory Address Translation

Understanding the memory translation of the system
memory controller is another vital element in converting
a design to the 28F016XD. Most DRAM controllers do
not obey a 100% sequential ordering of memory
addressing between the CPU and memory components,
as shown in Figure 3. In DRAM-based systems, the order
of the individual bits doesn’t matter as long as the
address is unique. This flexibility only holds true because
the memory is written to and read from in the same
system; the DRAM of any design satisfies this
requirement. The 28F016XD memory, on the other hand,
may be mass-programmed by a system with a different
address translation scheme than that of the actual
platform in which it will eventually reside.

AP-614 E

4

Memory
Controller

28F016XD

RAS#
WE#

GND

+5V

RY/BY#

R

INT

OE#

CAS#

WR#
RASx#
CASx#

CPU

3/5#

+5V/
+12V

A24-0

Dec.

A

15-0
DQ

A

V
CC V

PP

15-0D

9-0

2168_03

Figure 3. The DRAM Controller/Chipset Multiplexes and Perhaps Scrambles the
Host Address Bus between the CPU and the Actual Memory Components

The chipset/memory controller determines the address
bus multiplexing between the host CPU and main
memory. For example, Table 3 shows the memory
address translation of the Intel 82420ZX PCIset. Table 4
shows the memory address translation of the Needham’s
EMP-20 programmer.

Cases where the programming (writing) system is
different from the reading (host) system must

synchronize the memory address translations to match
one another. A possible solution to synchronize the
memory address translations would be to modify the
host/programmer’s translation scheme to match the
others. This may be as simple as changing PLD
equations. More than likely, however, this would require
significant hardware changes to the board or the re-
design of the memory controller/ASIC—an extremely
expensive proposition, both in terms of dollars and time.

Table 3. Host Address Translation of the Intel 82420ZX PCIset

MA[10:0]1 10 9 8 7 6 5 4 3 2 1 0

Row Address A24 A22 A20 A19 A18 A17 A16 A15 A14 A13 A12

Column Address A23 A21 A11 A10 A09 A08 A07 A06 A05 A04 A03

NOTE:
1. MA[10:0] are the eleven main-memory address lines. These correspond to (28F016XD A[9:0], EMA0/OMA0).

Table 4. Host Address Translation of the Needham’s EMP-20 Programmer

MA[9:0] 9 8 7 6 5 4 3 2 1 0

Row Address A21 A20 A19 A18 A17 A16 A15 A14 A13 A12

Column Address A11 A10 A09 A08 A07 A06 A05 A04 A03 A02

E AP-614

5

An alternative to making the actual translations match in
hardware would be to make the translations match by
software—“scrambling” the image file read into the
programmer to match the host system’s translation
scheme. Appendix A lists a “C” program that shuffles an
image file (Intel Hex format) to match the Needham’s
EMP-20 and Intel386 EX embedded microprocessor
evaluation board memory address translations. This
example code is also available on the Intel Applications
Support BBS and can easily be modified to account for
the memory address translations and scrambling of many
systems.

Programming and reading the 28F016XD in the same
system avoids the need to compensate for differing
memory address translations between a SIMM
programmer and the final system. Using the host CPU
and system to program the flash SIMM eliminates the
need for a software “reshuffling” routine and provides a
significantly more elegant solution. Refer to AP-610, “In-
System Flash Code and Data Update Techniques” for
information on writing to flash memory in the host
system.

2.3 Parity

The 28F016XD flash memory component is intrinsically
nonvolatile and therefore not susceptible to alpha-particle
soft errors, as are DRAMs. Therefore, in general,
28F016XD-based memory banks do not require parity.
Most DRAM controllers today allow for
enabling/disabling parity support via a configuration
register. The use of parity is continually decreasing as
DRAM manufacturing processes mature, thereby
drastically reducing the probability of soft errors.

In systems requiring parity for DRAM banks, simple
logic can generate parity bits if the memory controller
does not support per-bank parity control. Figure 4
illustrates this parity-generation logic, which can be
incorporated directly on the SIMM or system board. For
a list of SIMM vendors that provide 28F016XD-based
SIMMs, see Appendix B or consult Intel’s FaxBack*
system for SIMM product briefs.

RAS#

CAS#

WE# 28F016XD

DATA DATA

L
O
G
I
C

RAS#
CAS#

WE#

PARITY

2168_04

Figure 4. Simple Logic Can Implement Parity
Generation for 28F016XD-Based Memory Banks

2.4 Intel386 EX Embedded
Microprocessor Evaluation
Board Hardware
Considerations

Timing Issues

Timing/wait-state profile changes were not required to
make the Intel386 EX embedded microprocessor
evaluation board 28F016XD-compatible. The system
operating frequency of 25 MHz, combined with the
simple DRAM control implemented in a 22V10 PLD,
was already compatible with the 28F016XD timings. The
DRAM control for this platform was designed to support
two wait-state, non-page-mode accesses; these timings
match those of the 28F016XD.

Other MB1 Hardware Changes

The following list describes the minor hardware changes
to the standard Intel386 EX embedded microprocessor
evaluation board that were required in order to replace
the DRAM SIMM with a 28F016XD SIMM:

• Utilized (optional) 32-K SRAM as a source of
“scratch-pad” memory for program variables

• Modified jumper settings to account for 4-MB
28F016XD-based SIMM

AP-614 E

6

• Reconfigured chip-selects to support the 4-MB
28F016XD-based SIMM and re-mapping of the
optional SMM SRAM

Complete implementation details of modifying the
Intel386 EX embedded microprocessor evaluation board
to operate with a 28F016XD-based SIMM are available
as a reference design on the Intel Applications Support
BBS (file: E3X_XDFL.EXE).

2.5 Intel486 Embedded
Microprocessor Hardware
Considerations

Timing Issues

The primary hardware concern in adapting the 82420ZX
PCIset-based Intel486 embedded microprocessor system
for 28F016XD compatibility centered around
configuring the wait-state profile of the DRAM control
logic. Accommodating the 28F016XD timings required
some modification of the DRAM-control default settings.
An ISA stub at address 0C8000H contained the code to
modify the appropriate configuration registers of the
chipset.

Appendix C lists the code used to write to the 82420ZX
PCIset’s configuration registers. This example code can
be adapted for a wide array of systems/controllers. In
short, this software routine writes certain values to
different I/O addresses (control registers of the chipset)
to configure the DRAM timing profiles and memory map
of the system. Section 3.3 discusses incorporating this
reconfiguration code into the system BIOS.

The 82420ZX PCIset supports two-way interleaved
DRAM memory banks for maximum memory sub-
system performance. In general, interleaving is a
configurable option to boost system performance. The
82420ZX PCIset, however, does not allow for non-
interleaved main memory banks. This interleaving
resulted in a timing incompatibility between this Intel486
embedded microprocessor system and the 28F016XD at
33 MHz. Specifically, the tOFF specification for the
28F016XD of 30 ns does not allow sufficient time for
one-bank of flash to tri-state before an access to the other
bank (in the same interleaved pair) would begin to drive
the data bus. This contention issue was resolved by
slowing the overall system operating frequency to 25
MHz, thereby allowing an additional
10 ns to compensate for the extended tOFF of the
28F016XD. Disabling interleaving, although not an
option with this chipset, may have allowed 33 MHz

performance (perhaps even without the addition of wait-
states).

Memory Address Translation

As discussed in Section 2.2, the memory address
translation differences between the SIMM programmer
and the host system needed to be well understood.
Instead of developing a software utility to “shuffle” the
binary code file to compensate for the translation
difference between the host system and programmer, our
software team developed routines that enable
programming the 28F016XD SIMMs directly in the
Intel486 embedded microprocessor system. Using the
host CPU and system to program the flash SIMMs
eliminated the need for a software “reshuffling” routine
and provided a significantly more elegant solution.
Example code for writing to the flash SIMMs is available
on the Intel Applications Support BBS (filename:
614_CODE.EXE).

3.0 SOFTWARE CONSIDERATIONS

One important aspect to keep in mind when developing
code for direct execution out of a nonvolatile memory
concerns code and data segments—they must be
separated! This separation prevents program data from
accidentally being written to nonvolatile memory. Flash
memory is in-system updateable, but not fully bit
alterable. Therefore, specific address assignments are
necessary to fit code and data into a given target system’s
memory map.

3.1 Compiled Code

The compiler is an important tool in developing
optimized code for flash memory. It’s the role of the
compiler to convert source code into the actual machine
language for the target microprocessor. This tool,
however, only generates machine code. It does not
resolve memory allocation addresses for code and data
segments. Memory allocation is left up to the linker to
complete.

Fortunately, many linkers provide a mechanism to
explicitly place code and data in a specific location for
embedded applications. Therefore, the source code
structure does not have to define specific locations for
data structures when generating code for direct execution
out of a nonvolatile memory. This linker mechanism
furnishes a simple process for porting code from one
system to another without requiring any code
modifications.

E AP-614

7

Numerous compilers/linkers available in the marketplace
today specify code and data segments locations via a
command line switch. Through the command line, the
linker receives specific segment addresses. The linker
then uses this information to place the code and data
segments into the target system.
AB-62, “Compiled Code Optimizations for Flash
Memories,” describes this process in detail for
developing new applications as well as recompiling
legacy code for direct execution out of nonvolatile
memory.

3.2 Direct Execute Operating
Systems

Many operating systems available today for the
embedded market are so-called “ROM-able. For
example, the Intel386 EX embedded microprocessor
evaluation board showcased Datalight’s ROM-DOS*,
while the Intel486 embedded microprocessor system
operated under the Microsoft MS-DOS ROM-
Executable* environment. In both cases, the operating
system was executed directly from the 28F016XD-based
SIMM. Reference Appendix D for a listing of embedded
operating systems providers.

Creating the direct-execute image files of Microsoft MS-
DOS ROM-Executable generates two files. The first is
the “low” file which needs to be placed at any 16-Kbyte
address boundary between 0C0000H–0DFFFFH. This
address region is scanned at boot-up for “stub” files
(BIOS extensions) indicating the presence of the O/S.
This “low” file also contains a user-specified pointer to
the area in “main-memory” where the remaining code

exists. The second file created (the “high” file) is this
remaining code. For further information about
implementing a direct-execute DOS-based system, refer
to AP-362, “Implementing Mobile PC Designs Using
High-Density FlashFile™ Components.”

Figures 5 and 6 show the memory map of Intel386 EX
embedded microprocessor evaluation board and Intel486
microprocessor system, respectively.

00000H

FFFFFH 1MB

32KB
SRAM

FE000H

07FFFH

ROM-BIOS (8K)

EC000H

D0000H

C0000H

ROM-DISK

ROM-DOS

2168_05

Figure 5. Intel386 EX Embedded Microprocessor
Evaluation Board System Memory Map with

28F016XD SIMM

AP-614 E

8

00000H

FFFFFH 1MB

F0000H
BIOS

E0000H

D0000H

C8000H

ROM-DISK

ROM-DOS (Low)

4MB

SETCHIP.C

400000H

410000H

12MB

ROM-DOS (High)

C00000H

D
R

A
M

F
LA

S
H

2168_06

Figure 6. Intel486 Microprocessor System
Memory Map with 28F016XD SIMM

3.3 Memory Self-Test/BIOS
Memory Scan

Systems which use the 28F016XD must consider the
BIOS memory scan of the system upon boot-up.
Generally, the BIOS will write and read back a data
pattern such as 55AAH to memory locations to
determine the amount of DRAM in the system. This
method will not be able to detect the amount of flash
memory in the system, since writing to flash involves a
two-cycle command sequence.

Reserving a region of system memory for the 28F016XD
and restricting the memory scan from this area will avoid
any possible corruption of the flash memory. The amount
of DRAM-interface flash memory can be user-definable
(in the BIOS set-up utility) or jumper selectable for
appropriate configuration of the chipset’s memory map
registers. The existing BIOS can incorporate this task of
reconfiguring the chipset easily.

3.4 Intel386 EX Embedded
Microprocessor Software

Loading the Datalight ROM-DOS files into the
28F016XD-based SIMMs presented the greatest software
challenge for the Intel386 EX embedded microprocessor
evaluation board project. As discussed in Section 2.2, the
memory address translation of the EMP-20 programmer
and the Intel386 EX embedded microprocessor
evaluation board do not match. Our software team
developed a routine to “scramble” the image file read
into the programmer to match the host system’s
translation scheme. Appendix A lists this “C” program; it
is also available on the Intel Applications Support BBS.
One can easily modify this example code to account for
the memory address translations and scrambling of many
systems.

3.5 Intel486 Embedded
Microprocessor Software

The software issues relating to the Intel486 embedded
microprocessor system centered around the development
of the software routine to reconfigure the 82420ZX
PCIset. Initially this code was implemented in a ISA stub
because we did not have control of the BIOS. This
reconfiguration code, shown as an example in Appendix
C, accomplished three specific tasks:

• Modified DRAM Control Timing Registers to
accommodate 28F016XD specifications

• Modified Main Memory Map (DRAM) to include
28F016XD SIMMs

• Reset flash components to read array mode before
returning control of system to processor

Section 2.5 discussed the modifications of the timing
registers. Writing 00H to register 55H of the 82420ZX
PCIset configured the chipset to support a 4-2-2-2
(clocks) read cycle profile, matching the timing
requirements of the 28F016XD.

E AP-614

9

This extended BIOS code also reconfigured the chipset’s
memory map registers to account for the flash memory in
the system. As discussed earlier, the traditional AA55H
memory-scan will not detect 28F016XD-based SIMMs.
Therefore, the chipset was configured specifically to
recognize the 28F016XD flash memory in the main
memory region.

A sequence of two FFH write cycles was issued to each
of the flash components, “resetting” them to read array
mode. Since the system is not aware of flash in the main
memory regions, many different writes may have been
issued to the flash memory during power-up. These
could be interpreted by the Command User Interface of
the flash components and thus change their state. Writing
two “Read Array” commands in sequence will clear any
previously issued commands and return the components
to a known state, e.g., read mode. Ensuring that the BIOS
does not unnecessarily write to the 28F016XD
components during power-up avoids this issue all
together.

4.0 CONCLUSION

The 28F016XD flash memory component is an ideal
memory solution for numerous reasons. The embedded
environment lends itself to code and data segmentation
with the wide-spread availability of direct execute
operating systems and applications. Adapting existing
systems as well as designing new platforms to
accommodate the 28F016XD is a simple and
straightforward task that will reap cost, power and space
savings while improving overall system read
performance and reliability.

AP-614 E

10

5.0 ADDITIONAL INFORMATION

5.1 References

Order Number Document/Tool

297372 "16-Mbit Flash Product Family User's Manual”

272525 “Intel 386™ EX Embedded Microprocessor Evaluation Board Manual”

290533 28F016XD DRAM-Interface Flash Memory Datasheet

290467 82420ZX PCIset Datasheet

292092 AP-357 “Power Supply Solutions for Flash Memory”

292097 AP-362 "Implementing Mobile PC Designs Using High-Density FlashFile™
 Components"

292123 AP-374 "Flash Memory Write Protection Techniques"

292131 AP-384 "Designing with the 28F016XD"

292163 AP-610 "Flash Memory In-System Code and Data Update Techniques"

292152 AB-58 "28F016XD-Based SIMM Designs"

292165 AB-62 "Compiled Code Optimizations for Flash Memories"

297508 FLASHBuilder Utility

Contact Intel/Distribution
Sales Office

28F016XD Benchmark Utility

Contact Intel/Distribution
Sales Office

28F016XD iBIS Model

Contact Intel/Distribution
Sales Office

28F016XD VHDL Model

Contact Intel/Distribution
Sales Office

28F016XD Timing Designer Library Files

Contact Intel/Distribution
Sales Office

28F016XD Orcad and ViewLogic Schematic Symbols

5.2 Revision History

Number Description

-001 Original Version

E AP-614

11

APPENDIX A

EXAMPLE CODE FOR MEMORY ADDRESS
TRANSLATION MATCHING OF INTEL386 EX

EVALUATION BOARD AND NEEDHAM'S EMP-20
PROGRAMMER

/***
 * Copyright Intel Corporation 1994
 * AUTHOR:
 * Steve Gorman / Garry Mion
 *
 * FILE: mergeit.c
 *
 ***/
#include <stdio.h>
#include <stdlib.h>

#define FILL_LOCHAR 0x31
#define FILL_HICHAR 0x32
unsigned char buffer[0x8000];

void main(int argc, char *argv[])
{

FILE *InFile, *OutFile;
FILE *LoFile, *HiFile;
FILE *TmpFileA, *TmpFileB,*TmpFileC, *TmpFileD, *TmpFile;
int i, BytesRead;
long TBytesRead;

if(argc < 3)
{

printf("Parmeters required --> %s <Input File> <Low Output File>
<Hi Output File>\n",argv[0]);

exit(0);
}

 if((InFile = fopen(argv[1],"rb")) == NULL)
 {
 printf("Unable to open Input file : %s\n", argv[1]);
 exit(3);
 }

 if((TmpFileA = fopen("tmpa.wrk","w+b")) == NULL)
 {
 printf("Unable to open Temporary output file mergeit.wrk\n");
 fclose(InFile);
 exit(3);
 }
 if((TmpFileB = fopen("tmpb.wrk","w+b")) == NULL)
 {
 printf("Unable to open Temporary output file mergeit.wrk\n");
 fclose(InFile);
 exit(3);
 }

AP-614 E

12

E AP-614

13

 while(!feof(InFile))
 {
 BytesRead = fread(buffer,1,0x800,InFile);
 if(BytesRead < 0x800)
 break;
 fwrite(buffer,1,BytesRead, TmpFileA);
 BytesRead = fread(buffer,1,0x800,InFile);
 if(BytesRead < 0x800)
 break;
 fwrite(buffer,1,BytesRead, TmpFileB);
 }
 fclose(InFile);

 fseek(TmpFileA,0L,SEEK_SET); // Start back at the beginning of merged
 fseek(TmpFileB,0L,SEEK_SET); // Start back at the beginning of merged

 if((LoFile = fopen(argv[2],"wb")) == NULL)
 {
 printf("Unable to open low output file %s\n",argv[2]);
 fclose(TmpFile);
 exit(3);
 }

 for(i=0; i < 8; i+=2)
 {
 buffer[i] = FILL_LOCHAR;
 buffer[i+1] = FILL_HICHAR;
 }
 while(!feof(TmpFileA))
 {
 BytesRead = fread(&buffer[2],1,2,TmpFileA);
 if(BytesRead < 2)
 continue;
 fwrite(buffer,1,4,LoFile);
 }
 fclose(LoFile);
 if((HiFile = fopen(argv[3],"wb")) == NULL)
 {
 printf("Unable to open hi output file %s\n",argv[3]);
 exit(3);
 }

 while(!feof(TmpFileB))
 {
 BytesRead = fread(&buffer[2],1,2,TmpFileB);
 if(BytesRead < 2)
 continue;
 fwrite(buffer,1,4,HiFile);
 }

}

AP-614 E

14

Microsoft Visual C++ generated build script - Do not modify

PROJ = MERGEIT
DEBUG = 1
PROGTYPE = 6
CALLER =
ARGS = flshdemo.bin lo.bin hi.bin
DLLS =
D_RCDEFINES = -d_DEBUG
R_RCDEFINES = -dNDEBUG
ORIGIN = MSVC
ORIGIN_VER = 1.00
PROJPATH = D:\SOURCES\DATA\
USEMFC = 0
CC = cl
CPP = cl
CXX = cl
CCREATEPCHFLAG =
CPPCREATEPCHFLAG =
CUSEPCHFLAG =
CPPUSEPCHFLAG =
FIRSTC = MERGEIT.C
FIRSTCPP =
RC = rc
CFLAGS_D_DEXE = /nologo /W3 /FR /G2 /Zi /D_DEBUG /Od /AM /D_DOS
CFLAGS_R_DEXE = /nologo /W3 /FR /G2 /DNDEBUG /Gs /Ox /AM /D_DOS
LFLAGS_D_DEXE = /NOLOGO /ONERROR:NOEXE /NOI /CO /STACK:5120
LFLAGS_R_DEXE = /NOLOGO /ONERROR:NOEXE /NOI /STACK:5120
LIBS_D_DEXE = oldnames mlibce
LIBS_R_DEXE = oldnames mlibce
RCFLAGS = /nologo
RESFLAGS = /nologo
RUNFLAGS =
OBJS_EXT =
LIBS_EXT =
!if "$(DEBUG)" == "1"
CFLAGS = $(CFLAGS_D_DEXE)
LFLAGS = $(LFLAGS_D_DEXE)
LIBS = $(LIBS_D_DEXE)
MAPFILE = nul
RCDEFINES = $(D_RCDEFINES)
!else
CFLAGS = $(CFLAGS_R_DEXE)
LFLAGS = $(LFLAGS_R_DEXE)
LIBS = $(LIBS_R_DEXE)
MAPFILE = nul
RCDEFINES = $(R_RCDEFINES)
!endif
!if [if exist MSVC.BND del MSVC.BND]
!endif
SBRS = MERGEIT.SBR

MERGEIT_DEP =

all: $(PROJ).EXE $(PROJ).BSC

MERGEIT.OBJ: MERGEIT.C $(MERGEIT_DEP)
$(CC) $(CFLAGS) $(CCREATEPCHFLAG) /c MERGEIT.C

E AP-614

15

$(PROJ).EXE:: MERGEIT.OBJ $(OBJS_EXT) $(DEFFILE)
echo >NUL @<<$(PROJ).CRF

MERGEIT.OBJ +
$(OBJS_EXT)
$(PROJ).EXE
$(MAPFILE)
c:\msvc\lib\+
c:\msvc\mfc\lib\+
$(LIBS)
$(DEFFILE);
<<

link $(LFLAGS) @$(PROJ).CRF

run: $(PROJ).EXE
$(PROJ) $(RUNFLAGS)

$(PROJ).BSC: $(SBRS)
bscmake @<<

/o$@ $(SBRS)
<<

AP-614 E

16

APPENDIX B

28F016XD SIMM VENDOR INFORMATION

Company Address Telephone/Fax Contact
Person

First Tech Corporation 12201 Technology Blvd.,
Suite 130
Austin, TX 78727

Tel: (512) 258-3570
Fax: (512) 258-3689

Karl Baumbach

Lifetime Memory Products Inc. 305 17th Street
Huntington Beach, CA 92648

Tel: (714) 969-2421
Fax: (714) 960-0638

Paul Columbus

Smart Modular Technologies 45531 Northport Loop West
Fremont, CA 94538

Tel: (510) 623-1231
Fax: (510) 623-1434

Bill Johnston

Syntaq Limited 16-17 Enterprise Court
Cramlington, Northumberland
NE23 9LZ England

Tel: 44-670-731-866
Fax: 44-670-731-741

NOTE:
Product Briefs of these SIMM vendors are also available on the Intel FaxBack Service.

E AP-614

17

APPENDIX C
EXAMPLE CODE FOR 82420ZX PCIset

RECONFIGURATION
 (TO ACCOMMODATE 28F016XD TIMINGS)

/***
 * Copyright Intel Corporation 1995
 *
 * DESCRIPTION:
 * 82420ZX PCIset Configuration for Flash SIMM Devices
 *
 * AUTHORS:
 * Andrew Gafken and John Pierron
 *
 * FILE: setchip.c
 *
 ***/

#include <dos.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

void main()
{
printf("\n82420ZX PCISet Configuration\n");

 asm {
mov dx, 0cf8h
mov al, 0f0h
out dx, al

mov dx, 0c055h
mov al, 0h
out dx, al

mov dx, 0c060h
mov al, 02h
out dx, al

inc dx
mov al, 04h
out dx, al

inc dx
mov al, 0ch
out dx, al

inc dx
mov al, 0ch
out dx, al

mov dx, 0cf8h
mov al, 00h
out dx, al

 }

AP-614 E

18

}

E AP-614

19

APPENDIX D

EMBEDDED DIRECT-EXECUTE OPERATING
SYSTEM PROVIDERS CONTACT INFORMATION

Application Product Company Contact
Telephone

Direct-Execute DOS and
DOS-Based O/S

Microsoft MS-DOS
ROM-Executable, MS-
Windows ROM
Executable

Annabooks Corporation 800-462-1042
(619-673-0870)

ROM-DOS Datalight 800-221-6630
(360-435-8086)

Real-Time Embedded O/S Chorus Nucleus Chorus Systems Inc. 503-690-2300

LynxOS Lynx Real-Time Systems, Inc. 408-354-7770

OS/9 Microware Systems Corp. 800-475-9000
(515-224-1929)

pSOSystem Integrated Systems, Inc. 408-980-1500

PSX JMI Software Systems, Inc. 215-628-0840

QNX QNX Software Systems Ltd. 613-591-0931

Venix VentureCom Inc. 617-661-1230

VRTX Microtec Research 800-950-5554

VxWorks WindRiver Systems 800-545-WIND
(510-748-4100)

Handheld Computing O/S Geos GeoWorks 510-814-1660

MagicCap General Magic 408-774-4000

Newton O/S Apple Computer Corp. 408-996-1010

Filename: 292168_1.DOC
Directory: C:\TESTDOCS\DOCS
Template: C:\WINDOWS\WINWORD6\TEMPLATE\ZAN____1.DOT
Title:E
Subject:
Author: s
Keywords:
Comments:
Creation Date: 09/17/95 9:53 AM
Revision Number: 31
Last Saved On: 11/28/95 10:16 AM
Last Saved By: Ward McQueen
Total Editing Time: 227 Minutes
Last Printed On: 11/28/95 10:17 AM
As of Last Complete Printing

Number of Pages: 21
Number of Words: 4,792 (approx.)
Number of Characters: 27,317 (approx.)

	Title Page
	1.0 INTRODUCTION
	2.0 HARDWARE CONSIDERATIONS/CHANGES
	2.1 Wait-State Profile/Memory Controller Timings
	2.2 Memory Address Translation
	2.3 Parity
	2.4 Intel386 EX Embedded Microprocessor Evaluation Board Hardware Considerations
	2.5 Intel486 Embedded Microprocessor Hardware Considerations

	3.0 SOFTWARE CONSIDERATIONS
	3.1 Compiled Code
	3.2 Direct Execute Operating Systems
	3.3 Memory Self-Test/BIOS Memory Scan
	3.4 Intel386 EX Embedded Microprocessor Software
	3.5 Intel486 Embedded Microprocessor Software

	4.0 CONCLUSION
	5.0 ADDITIONAL INFORMATION
	5.1 References
	5.2 Revision History
	APPENDIX A
	APPENDIX B
	APPENDIX C
	APPENDIX D

